Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In: 2010 IEEE second international conference on social computing. IEEE, pp 177–184
Chapter
Google Scholar
Boyd D, Golder S, Lotan G (2010) Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. In: 2010 43rd Hawaii international conference on system sciences. IEEE, pp 1–10. https://doi.org/10.1109/HICSS.2010.412
Chapter
Google Scholar
Nagarajan M, Purohit H, Sheth A (2010) A qualitative examination of topical tweet and retweet practices. In: Proceedings of the international AAAI conference on web and social media, vol 4
Google Scholar
Hodas NO, Lerman K (2012) How visibility and divided attention constrain social contagion. In: 2012 international conference on privacy, security, risk and trust and 2012 international conference on social computing. IEEE, pp 249–257
Chapter
Google Scholar
Harrigan N, Achananuparp P, Lim E-P (2012) Influentials, novelty, and social contagion: the viral power of average friends, close communities, and old news. Soc Netw 34(4):470–480
Article
Google Scholar
Hodas NO, Lerman K (2014) The simple rules of social contagion. Sci Rep 4:4343
Article
Google Scholar
Goffman W, Newill VA (1964) Generalization of epidemic theory: an application to the transmission of ideas. Nature 204:225–228
Article
Google Scholar
Daley DJ, Kendall DG (1965) Stochastic rumours. J Inst Math Appl 1:42–55
MathSciNet
Google Scholar
Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1:143–186
MATH
Google Scholar
Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443
Article
Google Scholar
Dodds PS, Watts DJ (2004) Universal behavior in a generalized model of contagion. Phys Rev Lett 92:218701
Article
Google Scholar
Dodds PS, Watts DJ (2005) A generalized model of social and biological contagion. J Theor Biol 232:587–604. https://doi.org/10.1016/j.jtbi.2004.09.006
Article
MathSciNet
MATH
Google Scholar
Centola D, Macy MW (2007) Complex contagions and the weakness of long ties. Am J Sociol 113:702–734
Article
Google Scholar
Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Proc Natl Acad Sci 109(16):5962–5966
Article
Google Scholar
Cozzo E, Banos RA, Meloni S, Moreno Y (2013) Contact-based social contagion in multiplex networks. Phys Rev E 88(5):050801
Google Scholar
Bessi A, Coletto M, Davidescu GA, Scala A, Caldarelli G, Quattrociocchi W (2015) Science vs conspiracy: collective narratives in the age of misinformation. PLoS ONE 10(2):0118093
Article
Google Scholar
Bass F (1969) A new product growth model for consumer durables. Manag Sci 15:215–227
Article
MATH
Google Scholar
Van den Bulte C, Joshi YV (2007) New product diffusion with influentials and imitators. Mark Sci 26(3):400–421
Article
Google Scholar
Trusov M, Bucklin RE, Pauwels K (2009) Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. J Mark 73(5):90–102
Google Scholar
Iyengar R, Van den Bulte C, Valente TW (2011) Opinion leadership and social contagion in new product diffusion. Mark Sci 30(2):195–212
Article
Google Scholar
Kelly M, O Grada C (2000) Market contagion: evidence from the panics of 1854 and 1857. Am Econ Rev 90(5):1110–1124
Article
Google Scholar
Cipriani M, Guarino A (2008) Herd behavior and contagion in financial markets. B E J Theor Econ 8(1):1–56
MathSciNet
MATH
Google Scholar
Hirshleifer D, Teoh SH (2009) Thought and behavior contagion in capital markets. In: Hens T, Schenk-Hoppé KR (eds) Handbook of financial markets: dynamics and evolution. Handbooks in finance. North-Holland, San Diego, pp 1–56. http://www.sciencedirect.com/science/article/pii/B9780123742582500051
Google Scholar
Fenzl T, Pelzmann L (2012) Psychological and social forces behind aggregate financial market behavior. J Behav Finance 13(1):56–65
Article
Google Scholar
Hamilton JD, Hamilton LC (1981) Models of social contagion. J Math Sociol 8(1):133–160
MathSciNet
MATH
Google Scholar
Bovasso G (1996) A network analysis of social contagion processes in an organizational intervention. Hum Relat 49(11):1419–1435
Article
Google Scholar
Fagan J, Wilkinson DL, Davies G (2007) In: Flannery DJ, Vazsonyi AT, Waldman IDE (eds) Social contagion of violence. Cambridge handbooks in psychology. Cambridge University Press, Cambridge, pp 688–724. https://doi.org/10.1017/CBO9780511816840.037
Chapter
Google Scholar
Christakis NA, Fowler JH (2013) Social contagion theory: examining dynamic social networks and human behavior. Stat Med 32(4):556–577
Article
MathSciNet
Google Scholar
Papachristos AV, Wildeman C, Roberto E (2015) Tragic, but not random: the social contagion of nonfatal gunshot injuries. Soc Sci Med 125:139–150
Article
Google Scholar
Pollack CE, Soulos PR, Herrin J, Xu X, Christakis NA, Forman HP, Yu JB, Killelea BK, Wang S-Y, Gross CP (2017) The impact of social contagion on physician adoption of advanced imaging tests in breast cancer. J Natl Cancer Inst 109(8):330
Article
Google Scholar
Bond RM, Fariss CJ, Jones JJ, Kramer AD, Marlow C, Settle JE, Fowler JH (2012) A 61-million-person experiment in social influence and political mobilization. Nature 489(7415):295–298
Article
Google Scholar
Kramer AD, Guillory JE, Hancock JT (2014) Experimental evidence of massive-scale emotional contagion through social networks. Proc Natl Acad Sci 111(24):8788–8790
Article
Google Scholar
Ellison NB, Vitak J, Gray R, Lampe C (2014) Cultivating social resources on social network sites: Facebook relationship maintenance behaviors and their role in social capital processes. J Comput-Mediat Commun 19(4):855–870
Article
Google Scholar
Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun ACM 59(7):96–104
Article
Google Scholar
Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. In: Fourth international AAAI conference on weblogs and social media
Google Scholar
Borge-Holthoefer J, Moreno Y (2012) Absence of influential spreaders in rumor dynamics. Phys Rev E 85(2):026116
Google Scholar
Kwon S, Cha M, Jung K, Chen W, Wang Y (2013) Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th international conference on data mining. IEEE, pp 1103–1108
Chapter
Google Scholar
Ozturk P, Li H, Sakamoto Y (2015) Combating rumor spread on social media: the effectiveness of refutation and warning. In: 2015 48th Hawaii international conference on system sciences. IEEE, pp 2406–2414
Chapter
Google Scholar
Kaligotla C, Yücesan E, Chick SE (2015) An agent based model of spread of competing rumors through online interactions on social media. In: 2015 winter simulation conference (WSC). IEEE, pp 3985–3996
Chapter
Google Scholar
Zubiaga A, Liakata M, Procter R, Wong Sak Hoi G, Tolmie P (2016) Analysing how people orient to and spread rumours in social media by looking at conversational threads. PLoS ONE 11(3):0150989
Article
Google Scholar
Del Vicario M, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) The spreading of misinformation online. Proc Natl Acad Sci 113(3):554–559
Article
Google Scholar
Spohr D (2017) Fake news and ideological polarization: filter bubbles and selective exposure on social media. Bus Inf Rev 34(3):150–160
Google Scholar
Shao C, Ciampaglia GL, Varol O, Yang K-C, Flammini A, Menczer F (2018) The spread of low-credibility content by social bots. Nat Commun 9(1):1–9
Article
Google Scholar
Törnberg P (2018) Echo chambers and viral misinformation: modeling fake news as complex contagion. PLoS ONE 13(9):0203958
Article
Google Scholar
Zaman TR, Herbrich R, Van Gael J, Stern D (2010) Predicting information spreading in Twitter. In: Workshop on computational social science and the wisdom of crowds. NIPS, vol 104. Citeseer, pp 17599–17601
Google Scholar
Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th international conference on world wide web, pp 695–704
Chapter
Google Scholar
Weng L, Flammini A, Vespignani A, Menczer F (2012) Competition among memes in a world with limited attention. Nat Sci Rep 2:335
Google Scholar
Colleoni E, Rozza A, Arvidsson A (2014) Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. J Commun 64(2):317–332
Google Scholar
Barberá P, Jost JT, Nagler J, Tucker JA, Bonneau R (2015) Tweeting from left to right: is online political communication more than an echo chamber? Psychol Sci 26(10):1531–1542. https://doi.org/10.1177/0956797615594620. PMID: 26297377
Article
Google Scholar
Barberá P (2015) Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Polit Anal 23(1):76–91. https://doi.org/10.1093/pan/mpu011
Article
Google Scholar
Stieglitz S, Dang-Xuan L (2012) Political communication and influence through microblogging—an empirical analysis of sentiment in Twitter messages and retweet behavior. In: 2012 45th Hawaii international conference on system sciences. IEEE, pp 3500–3509
Chapter
Google Scholar
Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web, pp 591–600
Chapter
Google Scholar
Rao HR, Vemprala N, Akello P, Valecha R (2020) Retweets of officials’ alarming vs reassuring messages during the COVID-19 pandemic: implications for crisis management. Int J Inf Manag 55:102187
Article
Google Scholar
Mønsted B, Sapieżyński P, Ferrara E, Lehmann S (2017) Evidence of complex contagion of information in social media: an experiment using Twitter bots. PLoS ONE 12(9):0184148
Article
Google Scholar
Cha M, Haddadi H, Benevenuto F, Gummadi K (2010) Measuring user influence in Twitter: the million follower fallacy. In: Proceedings of the international AAAI conference on web and social media, vol 4
Google Scholar
Fitch WT (2017) Empirical approaches to the study of language evolution. Psychon Bull Rev 24(1):3–33
Article
Google Scholar
Bolhuis JJ, Okanoya K, Scharff C (2010) Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 11(11):747–759
Article
Google Scholar
Kim S, Weber I, Wei L, Oh A (2014) Sociolinguistic analysis of Twitter in multilingual societies. In: Proceedings of the 25th ACM conference on hypertext and social media, pp 243–248
Chapter
Google Scholar
Fábrega J, Paredes P (2013) Social contagion and cascade behaviors on Twitter. Information 4(2):171–181
Article
Google Scholar
Joulin A, Grave E, Bojanowski P, Mikolov T (2017) Bag of tricks for efficient text classification. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics: volume 2, short papers. Association for Computational Linguistics, Valencia, pp 427–431. https://www.aclweb.org/anthology/E17-2068
Google Scholar
Twitter (2019) Developer application program interface (API). https://developer.twitter.com/en/docs/ads/campaign-management/api-reference
Hong L, Convertino G, Chi E (2011) Language matters in Twitter: a large scale study. In: Proceedings of the international AAAI conference on web and social media, vol 5
Google Scholar
Zubiaga A, Spina D, Martínez R, Fresno V (2015) Real-time classification of Twitter trends. J Assoc Inf Sci Technol 66(3):462–473
Article
Google Scholar
Dewhurst DR, Alshaabi T, Kiley D, Arnold MV, Minot JR, Danforth CM, Dodds PS (2020) The shocklet transform: a decomposition method for the identification of local, mechanism-driven dynamics in sociotechnical time series. EPJ Data Sci 9(1):3
Article
Google Scholar
Mellon J, Prosser C (2017) Twitter and Facebook are not representative of the general population: political attitudes and demographics of British social media users. Res Polit 4(3):2053168017720008
Google Scholar
Ke Q, Ahn Y-Y, Sugimoto CR (2017) A systematic identification and analysis of scientists on Twitter. PLoS ONE 12(4):1–17. https://doi.org/10.1371/journal.pone.0175368
Article
Google Scholar
Mitchell A, Hitlin P (2019) Twitter reaction to events often at odds with overall public opinion. Pew Research Center: Internet, Science & Tech
Wojcik S, Hughes A (2019) How Twitter users compare to the general public. Pew Research Center: Internet, Science & Tech
Palen L, Anderson KM (2016) Crisis informatics—new data for extraordinary times. Science 353(6296):224–225
Article
Google Scholar
Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web. Association for Computing Machinery, New York, pp 851–860. https://doi.org/10.1145/1772690.1772777
Chapter
Google Scholar
Lampos V, Cristianini N (2010) Tracking the flu pandemic by monitoring the social web. In: 2010 2nd international workshop on cognitive information processing, pp 411–416. https://doi.org/10.1109/CIP.2010.5604088
Chapter
Google Scholar
Culotta A (2010) Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the first workshop on social media analytics. SOMA 10. Assoc. Comput. Mach., New York, pp 115–122. https://doi.org/10.1145/1964858.1964874
Chapter
Google Scholar
Pickard G, Pan W, Rahwan I, Cebrian M, Crane R, Madan A, Pentland A (2011) Time-critical social mobilization. Science 334(6055):509–512
Article
Google Scholar
Gao H, Barbier G, Goolsby R (2011) Harnessing the crowdsourcing power of social media for disaster relief. IEEE Intell Syst 26(3):10–14
Article
Google Scholar
Steinert-Threlkeld ZC, Mocanu D, Vespignani A, Fowler J (2015) Online social networks and offline protest. EPJ Data Sci 4(1):19
Article
Google Scholar
Dodds PS, Minot JR, Arnold MV, Alshaabi T, Adams JL, Dewhurst DR, Reagan AJ, Danforth CM (2019) Fame and ultrafame: measuring and comparing daily levels of ‘being talked about’ for United States’ presidents, their rivals, God, countries, and K-pop. http://arxiv.org/abs/1910.00149
Ritter A, Clark S, Mausam EO (2011) Named entity recognition in tweets: an experimental study. In: Proceedings of the 2011 conference on empirical methods in natural language processing. Association for Computational Linguistics, Edinburgh, pp 1524–1534. https://www.aclweb.org/anthology/D11-1141
Google Scholar
Ritter A, Mausam EO, Clark S (2012) Open domain event extraction from Twitter. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. KDD’12. Assoc. Comput. Mach., New York, pp 1104–1112. https://doi.org/10.1145/2339530.2339704
Chapter
Google Scholar
Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349(6245):261–266
Article
MathSciNet
MATH
Google Scholar
Lui M, Baldwin T (2012) langid.py: an off-the-shelf language identification tool. In: Proceedings of the ACL 2012 system demonstrations. Association for Computational Linguistics, pp 25–30
Google Scholar
Bergsma S, McNamee P, Bagdouri M, Fink C, Wilson T (2012) Language identification for creating language-specific Twitter collections. In: Proceedings of the second workshop on language in social media. LSM’12. Association for Computational Linguistics, pp 65–74
Google Scholar
Lui M, Baldwin T (2014) Accurate language identification of Twitter messages. In: Proceedings of the 5th workshop on language analysis for social media (LASM). Association for Computational Linguistics, Gothenburg, pp 17–25. https://doi.org/10.3115/v1/W14-1303. https://www.aclweb.org/anthology/W14-1303
Chapter
Google Scholar
Williams J, Dagli C (2017) Twitter language identification of similar languages and dialects without ground truth. In: Proceedings of the fourth workshop on NLP for similar languages, varieties and dialects (VarDial). Association for Computational Linguistics, Valencia, pp 73–83. https://doi.org/10.18653/v1/W17-1209. https://www.aclweb.org/anthology/W17-1209
Chapter
Google Scholar
Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM (2011) Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter. PLoS ONE 6(12):e26752. https://doi.org/10.1371/journal.pone.0026752
Article
Google Scholar
Chu Z, Gianvecchio S, Wang H, Jajodia S (2012) Detecting automation of Twitter accounts: are you a human, bot, or cyborg? IEEE Trans Dependable Secure Comput 9(6):811–824
Article
Google Scholar
Kharde V, Sonawane S (2016) Sentiment analysis of Twitter data: a survey of techniques. Int J Comput Appl 139(11):5–15. https://doi.org/10.5120/ijca2016908625
Article
Google Scholar
Kryvasheyeu Y, Chen H, Obradovich N, Moro E, Van Hentenryck P, Fowler J, Cebrian M (2016) Rapid assessment of disaster damage using social media activity. Sci Adv 2(3):1500779
Article
Google Scholar
Kursuncu U, Gaur M, Lokala U, Thirunarayan K, Sheth A, Arpinar IB (2019) In: Agarwal N, Dokoohaki N, Tokdemir S (eds) Predictive analysis on Twitter: techniques and applications. Springer, Cham, pp 67–104. https://doi.org/10.1007/978-3-319-94105-9_4
Chapter
Google Scholar
Pennington J, Socher R, Manning C (2014) GloVe: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Association for Computational Linguistics, Doha, pp 1532–1543. https://doi.org/10.3115/v1/D14-1162. https://www.aclweb.org/anthology/D14-1162
Chapter
Google Scholar
Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). Association for Computational Linguistics, Minneapolis, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423
Chapter
Google Scholar
Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in pre-training distributed word representations. In: Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki
Google Scholar
Grave E, Bojanowski P, Gupta P, Joulin A, Mikolov T (2018) Learning word vectors for 157 languages. In: Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki. https://www.aclweb.org/anthology/L18-1550
Google Scholar
Papineni K, Roukos S, Ward T, Zhu W-J (2002) Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting of the association for computational linguistics, pp 311–318
Google Scholar
Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: Bengio Y, LeCun Y (eds) 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015. Conference track proceedings
Google Scholar
Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 conference on empirical methods in natural language processing. Association for Computational Linguistics, Lisbon, pp 1412–1421. https://doi.org/10.18653/v1/D15-1166
Chapter
Google Scholar
McNamee P (2005) Language identification: a solved problem suitable for undergraduate instruction. J Comput Sci Coll 20(3):94–101
Google Scholar
Hughes B, Baldwin T, Bird S, Nicholson J, MacKinlay A (2006) Reconsidering language identification for written language resources. In: Proceedings of the fifth international conference on language resources and evaluation (LREC’06). European Language Resources Association (ELRA), Genoa. http://www.lrec-conf.org/proceedings/lrec2006/pdf/459_pdf.pdf
Google Scholar
Grothe L, De Luca EW, Nürnberger A (2008) A comparative study on language identification methods. In: Proceedings of the sixth international conference on language resources and evaluation (LREC’08). European Language Resources Association (ELRA), Marrakech
Google Scholar
Lui M, Baldwin T (2011) Cross-domain feature selection for language identification. In: Proceedings of 5th international joint conference on natural language processing. Asian Federation of Natural Language Processing, Chiang Mai, pp 553–561. https://www.aclweb.org/anthology/I11-1062
Google Scholar
Lui M, Lau JH, Baldwin T (2014) Automatic detection and language identification of multilingual documents. Trans Assoc Comput Linguist 2:27–40. https://doi.org/10.1162/tacl_a_00163
Article
Google Scholar
Michel J-B, Shen YK, Aiden AP, Veres A, Gray MK, Pickett JP, Hoiberg D, Clancy D, Norvig P, Orwant J et al. (2011) Quantitative analysis of culture using millions of digitized books. Science 331(6014):176–182
Article
Google Scholar
Roomann-Kurrik A (2013) Introducing new metadata for tweets. Twitter
Tromp E, Pechenizkiy M (2011) Graph-based N-gram language identification on short texts. In: Proceedings of Benelearn 2011, pp 27–34
Google Scholar
Elfardy H, Diab M (2012) Token level identification of linguistic code switching. In: Proceedings of COLING 2012: posters. The COLING 2012 Organizing Committee, Mumbai, pp 287–296
Google Scholar
Carter S, Weerkamp W, Tsagkias M (2013) Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Lang Resour Eval 47(1):195–215. https://doi.org/10.1007/s10579-012-9195-y
Article
Google Scholar
Steinmetz K (2013) What Twitter says to linguists. Time Inc. http://content.time.com/time/subscriber/article/0,33009,2150609,00.html
Goldszmidt M, Najork M, Paparizos S (2013) Boot-strapping language identifiers for short colloquial postings. In: Blockeel H, Kersting K, Nijssen S, Železný F (eds) Machine learning and knowledge discovery in databases. Springer, Berlin, pp 95–111
Google Scholar
Nguyen D, Trieschnigg D, Cornips L (2015) Audience and the use of minority languages on Twitter. In: Proceedings of the international AAAI conference on web and social media, vol 9
Google Scholar
Vilares D, Alonso MA, Gómez-Rodríguez C (2015) Sentiment analysis on monolingual, multilingual and code-switching Twitter corpora. In: Proceedings of the 6th workshop on computational approaches to subjectivity, sentiment and social media analysis. Association for Computational Linguistics, Lisboa, pp 2–8. https://doi.org/10.18653/v1/W15-2902
Chapter
Google Scholar
Rijhwani S, Sequiera R, Choudhury M, Bali K, Maddila C (2017) Estimating code-switching on Twitter with a novel generalized word-level language detection technique. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long papers), pp 1971–1982. https://doi.org/10.18653/v1/P17-1180
Chapter
Google Scholar
Rosen A (2017) Tweeting made easier. https://blog.twitter.com/en_us/topics/product/2017/tweetingmadeeasier.html
Batrinca B, Treleaven PC (2015) Social media analytics: a survey of techniques, tools and platforms. AI & Society 30(1):89–116
Article
Google Scholar
Giachanou A, Crestani F (2016) Like it or not: a survey of Twitter sentiment analysis methods. ACM Comput Surv 49(2):28. https://doi.org/10.1145/2938640
Article
Google Scholar
Pla F, Hurtado L-F (2017) Language identification of multilingual posts from Twitter: a case study. Knowl Inf Syst 51(3):965–989
Article
Google Scholar
Zubiaga A, San Vicente I, Gamallo P, Pichel JR, Alegria I, Aranberri N, Ezeiza A, Fresno V (2016) Tweetlid: a benchmark for tweet language identification. Lang Resour Eval 50(4):729–766
Article
Google Scholar
Blodgett SL, Wei J, O’Connor B (2017) A dataset and classifier for recognizing social media English. In: Proceedings of the 3rd workshop on noisy user-generated text. Association for Computational Linguistics, Copenhagen, pp 56–61. https://doi.org/10.18653/v1/W17-4408
Chapter
Google Scholar
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. In: Bengio Y, LeCun Y (eds) 1st international conference on learning representations, ICLR 2013, Scottsdale, Arizona, USA, May 2–4, 2013. Workshop track proceedings. http://arxiv.org/abs/1301.3781
Google Scholar
Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:135–146
Article
Google Scholar
Facebook AI Research (2017) FastText language identification. https://fasttext.cc/docs/en/language-identification.html
Conneau A, Schwenk H, Barrault L, Lecun Y (2017) Very deep convolutional networks for text classification. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics: volume 1, long papers. Association for Computational Linguistics, Valencia, pp 1107–1116
Google Scholar
Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification. In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Red Hook
Google Scholar
Bergsma S, Dredze M, Van Durme B, Wilson T, Yarowsky D (2013) Broadly improving user classification via communication-based name and location clustering on Twitter. In: Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies, pp 1010–1019
Google Scholar
Twitter (2019) Rules and filtering. https://developer.twitter.com/en/docs/tweets/rules-and-filtering/overview/premium-operators
Phillips A, Davis M (2009) Best current practice (BCP): tags for identifying languages. Technical report, Network Working Group IETF, California, USA
Alshaabi T, Adams JL, Arnold MV, Minot JR, Dewhurst DR, Reagan AJ, Danforth CM, Dodds PS (2020) Storywrangler: a massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter. http://arxiv.org/abs/2003.03667
Dodds PS et al (2020) Long-term word frequency dynamics derived from Twitter are corrupted: a bespoke approach to detecting and removing pathologies in ensembles of time series. https://arxiv.org/abs/2008.11305
Ringbom H (2006) Cross-linguistic similarity in foreign language learning. Multilingual Matters, Bristol. https://doi.org/10.21832/9781853599361
Book
Google Scholar
Borer H (1984) Parametric syntax: case studies in semitic and romance languages. de Gruyter, Berlin. https://doi.org/10.1515/9783110808506
Book
Google Scholar
Samoilenko A, Karimi F, Edler D, Kunegis J, Strohmaier M (2016) Linguistic neighbourhoods: explaining cultural borders on Wikipedia through multilingual co-editing activity. EPJ Data Sci 5(1):9
Article
Google Scholar
Jin H, Toyoda M, Yoshinaga N (2017) Can cross-lingual information cascades be predicted on Twitter? In: International conference on social informatics. Springer, Berlin, pp 457–472
Chapter
Google Scholar
Hussain M, Howard P (2012) Democracy’s fourth wave? Information technologies and the fuzzy causes of the Arab Spring. SSRN Electron J 57. https://doi.org/10.2139/ssrn.2029711
Article
Google Scholar
Wolfsfeld G, Segev E, Sheafer T (2013) Social media and the Arab Spring: politics comes first. Int J Press Polit 18(2):115–137
Article
Google Scholar
Dewey T, Kaden J, Marks M, Matsushima S, Zhu B (2012) The impact of social media on social unrest in the Arab Spring. Int Policy Program 5:8
Google Scholar
Cottle S (2011) Media and the Arab uprisings of 2011. Journalism 12(5):647–659
Article
Google Scholar
Stone B (2009) Retweet limited rollout. Twitter
Shu C (2015) Twitter officially launches its “retweet with comment” feature. TechCrunch
Stone B (2007) Are you Twittering @ me? Twitter. https://blog.twitter.com/official/en_us/a/2007/are-you-twittering-me.html
Gadde V, Beykpour K (2020) Additional steps we’re taking ahead of the 2020 US election. https://blog.twitter.com/en_us/topics/company/2020/2020-election-changes.html
Roth Y, Achuthan A (2020) Building rules in public: our approach to synthetic & manipulated media. https://blog.twitter.com/en_us/topics/company/2020/new-approach-to-synthetic-and-manipulated-media.html
Roth Y, Pickles N (2020) Updating our approach to misleading information. https://blog.twitter.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information.html
Gadde V, Beykpour K (2020) Expanding our policies to further protect the civic conversation. https://blog.twitter.com/en_us/topics/company/2020/2020-election-changes.html
Twitter (2019) Tweet geospatial metadata. https://developer.twitter.com/en/docs/tutorials/tweet-geo-metadata
Zipf GK (1949) Human behaviour and the principle of least-effort. Addison-Wesley, Cambridge
Google Scholar