Morrow-Jones HA, Morrow-Jones CR (1991) Mobility due to natural disaster: theoretical considerations and preliminary analyses. Disasters 15(2):126-132
Article
Google Scholar
Myers K (2008) Remembering refugees: then and now by Tony Kushner. Cult Soc Hist 5(3):379-382
Article
Google Scholar
Bissell RA (1983) Delayed-impact infectious disease after a natural disaster. J Emerg Med 1(1):59-66
Article
Google Scholar
Watson JT, Gayer M, Connolly MA (2007) Epidemics after natural disasters. Emerg Infect Dis 13(1):1
Article
Google Scholar
Boyle C, Mudd G, Mihelcic JR, Anastas P, Collins T, Culligan P, Edwards M, Gabe J, Gallagher P, Handy S et al. (2010) Delivering sustainable infrastructure that supports the urban built environment. Environ Sci Technol 44(13):4836-4840
Article
Google Scholar
Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proc. 19th Int. Conf. on WWW, pp 851-860
Google Scholar
Becker H, Naaman M, Gravano L (2011) Beyond trending topics: real-world event identification on Twitter. In: ICWSM ’11, pp 438-441
Google Scholar
Traag VA, Browet A, Calabrese F, Morlot F (2011) Social event detection in massive mobile phone data using probabilistic location inference. In: IEEE third international conference on social computing, pp 625-628
Google Scholar
The World in 2013, ICT Fact and Figures. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf. Accessed 24 Mar. 2016
Cox DR (1955) Some statistical methods connected with series of events. J R Stat Soc, Ser B, Methodol 17:129-164
MathSciNet
MATH
Google Scholar
Ihler A, Hutchins J, Smyth P (2006) Adaptive event detection with time-varying Poisson processes. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 207-216
Chapter
Google Scholar
Kapoor A, Eagle N, Horvitz E (2010) People, quakes, and communications: inferences from call dynamics about a seismic event and its influences on a population. In: AAAI spring symposium: artificial intelligence for development
Google Scholar
Bagrow JP, Wang D, Barabási A-L (2011) Collective response of human populations to large-scale emergencies. PLoS ONE 6(3):e17680. doi:10.1371/journal.pone.0017680
Article
Google Scholar
Bengtsson L, Lu X, Thorson A, Garfield R, Von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med 8(8):e1001083
Article
Google Scholar
Gething PW, Tatem AJ (2011) Can mobile phone data improve emergency response to natural disasters? PLoS Med 8(8):e1001085. doi:10.1371/journal.pmed.1001085
Article
Google Scholar
Lu X, Bengtsson L, Holme P (2012) Predictability of population displacement after the 2010 Haiti earthquake. Proc Natl Acad Sci 109(29):11576-11581
Article
Google Scholar
Gao L, Song C, Gao Z, Barabási A-L, Bagrow JP, Wang D (2014) Quantifying information flow during emergencies. Sci Rep 4:3997
Google Scholar
Data for Development Challenge. http://www.d4d.orange.com. Accessed 24 Mar. 2016
Blondel VD, Esch M, Chan C, Clérot F, Deville P, Huens E, Morlot F, Smoreda Z, Ziemlicki C (2012) Data for development: the d4d challenge on mobile phone data. arXiv preprint arXiv:1210.0137
Young WC, Blumenstock JE, Fox EB, McCormick TH (2014) Detecting and classifying anomalous behavior in spatiotemporal network data. In: Proceedings of the 2014 KDD workshop on learning about emergencies from social information (KDD-LESI 2014), pp 29-33
Google Scholar
Blondel VD, Decuyper A, Krings G (2015) A survey of results on mobile phone datasets analysis. EPJ Data Sci 4:10
Article
Google Scholar
Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779-782
Article
Google Scholar
Kung KS, Greco K, Sobolevsky S, Ratti C (2014) Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 9(6):e96180
Article
Google Scholar
Miritello G, Lara R, Cebrian M, Moro E (2013) Limited communication capacity unveils strategies for human interaction. Sci Rep 3:1950
Article
Google Scholar
Schläpfer M, Bettencourt LM, Grauwin S, Raschke M, Claxton R, Smoreda Z, West GB, Ratti C (2014) The scaling of human interactions with city size. J R Soc Interface 11(98):20130789
Article
Google Scholar
Louail T, Lenormand M, Cantú OG, Picornell M, Herranz R, Frias-Martinez E, Ramasco JJ, Barthelemy M (2014) From mobile phone data to the spatial structure of cities. Sci Rep 4:5276
Article
Google Scholar
De Nadai M, Staiano J, Larcher R, Sebe N, Quercia D, Lepri B (2016) The death and life of great Italian cities: a mobile phone data perspective. In: Proceedings of the 25th international conference on world wide web. WWW ’16, Switzerland, pp 413-423
Google Scholar
Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO (2012) Quantifying the impact of human mobility on malaria. Science 338(6104):267-270
Article
Google Scholar
Tizzoni M, Bajardi P, Decuyper A, King GKK, Schneider CM, Blondel V, Smoreda Z, González MC, Colizza V (2014) On the use of human mobility proxies for modeling epidemics. PLoS Comput Biol 10(7):e1003716
Article
Google Scholar
Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, Blondel VD, Tatem AJ (2014) Dynamic population mapping using mobile phone data. Proc Natl Acad Sci 111(45):15888-15893
Article
Google Scholar
Bogomolov A, Lepri B, Larcher R, Antonelli F, Pianesi F, Pentland A (2016) Energy consumption prediction using people dynamics derived from cellular network data. EPJ Data Sci 5:13
Article
Google Scholar
Eagle N, Macy M, Claxton R (2010) Network diversity and economic development. Science 328(5981):1029-1031
Article
MathSciNet
MATH
Google Scholar
Bogomolov A, Lepri B, Staiano J, Oliver N, Pianesi F, Pentland A (2014) Once upon a crime: towards crime prediction from demographics and mobile data. In: Proc. 16th ICMI. ACM, New York, pp 427-434
Google Scholar
Toole JL, Lin Y-R, Muehlegger E, Shoag D, González MC, Lazer D (2015) Tracking employment shocks using mobile phone data. J R Soc Interface 12(107):20150185
Article
Google Scholar
Altshuler Y, Fire M, Shmueli E, Elovici Y, Bruckstein A, Pentland AS, Lazer D (2013) Detecting anomalous behaviors using structural properties of social networks. In: Social computing, behavioral-cultural modeling and prediction. Springer, Berlin, pp 433-440
Chapter
Google Scholar
Gibson M (2006) Order from chaos: responding to traumatic events. The Policy Press, Bristol
Google Scholar
Akoglu L, Faloutsos C (2010) Event detection in time series of mobile communication graphs. In: Army science conference
Google Scholar
Dong Y, Pinelli F, Gkoufas Y, Nabi Z, Calabrese F, Chawla NV (2015) Inferring unusual crowd events from mobile phone call detail records. In: Machine learning and knowledge discovery in databases. Springer, Berlin, pp 474-492
Chapter
Google Scholar
Dobra A, Williams NE, Eagle N (2015) Spatiotemporal detection of unusual human population behavior using mobile phone data. PLoS ONE 10:0120449
Article
Google Scholar
Calabrese F, Pereira FC, Di Lorenzo G, Liu L, Ratti C (2010) The geography of taste: analyzing cell-phone mobility and social events. In: Pervasive computing. Springer, Berlin, pp 22-37
Chapter
Google Scholar
Paraskevopoulos P, Dinh T, Dashdorj Z, Palpanas T, Serafini L (2013) Identification and characterization of human behavior patterns from mobile phone data. In: International conference the analysis of mobile phone datasets (NetMob 2013). Special session on the data for development (D4D) challenge
Google Scholar
Zhang Y, Meratnia N, Havinga P (2010) Outlier detection techniques for wireless sensor networks: a survey. IEEE Commun Surv Tutor 12(2):159-170
Article
Google Scholar
Chib S (1998) Estimation and comparison of multiple change-point models. J Econom 86(2):221-241
Article
MathSciNet
MATH
Google Scholar
Raftery A, Akman V (1986) Bayesian analysis of a Poisson process with a change-point. Biometrika 73(1):85-89
Article
MathSciNet
MATH
Google Scholar
Gardner W, Mulvey EP, Shaw EC (1995) Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychol Bull 118(3):392-404
Article
Google Scholar
Rodriguez-Avi J, Olmo-Jiménez MJ, Conde-sánchez A, Martínez-Rodríguez AM (2013) A new regression model for overdispersed count data. In: The 29th European meeting of statisticians, p 256
Google Scholar
Cameron AC, Trivedi PK (2013) Regression analysis of count data, vol 53. Cambridge University Press, Cambridge
Book
MATH
Google Scholar
White GC, Bennetts RE (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77(8):2549-2557
Article
Google Scholar
Zhang H, Dantu R, Cangussu JW (2009) Change point detection based on call detail records. In: IEEE international conference on intelligence and security informatics, 2009. ISI ’09. IEEE, New York, pp 55-60
Chapter
Google Scholar
Luong TM, Perduca V, Nuel G (2012) Hidden markov model applications in change-point analysis. arXiv preprint arXiv:1212.1778
Witayangkurn A, Horanont T, Sekimoto Y, Shibasaki R (2013) Anomalous event detection on large-scale gps data from mobile phones using hidden Markov model and cloud platform. In: Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication. ACM, New York, pp 1219-1228
Chapter
Google Scholar
Scott SL, Smyth P (2003) The Markov modulated Poisson process and Markov Poisson cascade with applications to web traffic data. In: Bayesian statistics, vol 7, pp 671-680
Google Scholar
Chib S, Winkelmann R (2001) Markov chain Monte Carlo analysis of correlated count data. J Bus Econ Stat 19:4
Article
MathSciNet
Google Scholar
Scott SL (1999) Bayesian analysis of a two-state Markov modulated Poisson process. J Comput Graph Stat 8(3):662-670
Google Scholar
Yoshihara T, Kasahara S, Takahashi Y (2001) Practical time-scale fitting of self-similar traffic with Markov-modulated Poisson process. Telecommun Syst 17(1-2):185-211
Article
MATH
Google Scholar
African Mobile Observatory 2011. http://www.gsma.com/spectrum/wp-content/uploads/2011/12/Africa-Mobile-Observatory-2011.pdf. Accessed 24 Mar. 2016
Armed Conflict Location and Event Data Project. http://www.acleddata.com. Accessed 24 Mar. 2016
United Nations Refugee Agency. http://www.unhcr.org/pages/4d831f586.html
Shapiro JN, Weidmann NB (2011) Talking about killing: cell phones, collective action, and insurgent violence in Iraq. Technical report, DTIC Document
Pierskalla JH, Hollenbach FM (2013) Technology and collective action: the effect of cell phone coverage on political violence in Africa. Am Polit Sci Rev 107(2):207-224
Article
Google Scholar
Le Figaro Newspaper. http://www.lefigaro.fr/flash-actu/2012/02/13/97001-20120213FILWWW00689-cote-d-ivoire-3-morts-dans-des-violences.php. Accessed 24 Mar. 2016
United Nations Security Council Reports. http://www.securitycouncilreport.org/un-documents/cote-divoire/. Accessed 24 Mar. 2016
International Crisis Group Crisis Watch Database. http://www.crisisgroup.org/en/publication-type/crisiswatch/. Accessed 24 Mar. 2016