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Abstract
This study leverages mobile phone data to analyze human mobility patterns in a
developing nation, especially in comparison to those of a more industrialized nation.
Developing regions, such as the Ivory Coast, are marked by a number of factors that
may influence mobility, such as less infrastructural coverage and maturity, less
economic resources and stability, and in some cases, more cultural and
language-based diversity. By comparing mobile phone data collected from the Ivory
Coast to similar data collected in Portugal, we are able to highlight both qualitative
and quantitative differences in mobility patterns - such as differences in likelihood to
travel, as well as in the time required to travel - that are relevant to consideration on
policy, infrastructure, and economic development. Our study illustrates how cultural
and linguistic diversity in developing regions (such as Ivory Coast) can present
challenges to mobility models that perform well and were conceptualized in less
culturally diverse regions. Finally, we address these challenges by proposing novel
techniques to assess the strength of borders in a regional partitioning scheme and to
quantify the impact of border strength on mobility model accuracy.
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Introduction
Transportation and communication networks form the fabric of industrialized nations.
The roll-out of such infrastructure in such regions can play a major role in supporting,
or deterring, a regions’ ability to thrive economically and socially. Likewise, citizens’ use
of these networks can tell us much about the region, including insight on how ideas and
diseases may be spreading, or how to most effectively augment services, such as health
care and education [].
Existing studies of mobile phone data have given us insight on numerous aspects of

human mobility [–]. However, these studies tend to focus on regions with the highest
mobile phone coverage, which also happens to be in more stable, mature, and developed
regions. Thus, themodels produced based on this data might not be as appropriate for de-
veloping regions with a substantially different patterns of social interactions and human
mobility. However, these highly industrialized and wealthy regions represent less than
one-third of the world’s population, with the remaining two-thirds living in developing
and less economically mature regions. Accurate models for developing regions are critical
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as these regions are facing the most rapid demographic and economic shifts worldwide,
and are in even greater need of such models to help inform policy makers, urban plan-
ners, and service providers. Yet, little work has been done to assess the appropriateness of
models conceptualized for industrialized regions for use in developing regions.
Obtaining a comprehensive and accurate dataset of the telecommunications activity in

developing regions can be extremely difficult due to security and privacy considerations,
limited coverage by any single provider, and the need for a rigorous data capture method-
ology and infrastructure. The DataDevelopment (DD) dataset [] provided a unique
opportunity by collecting data throughout the Ivory Coast and releasing it specifically for
research purposes, so that developing regions could also be analyzed in greater detail. The
contrast of long-standing cultural and linguistic diversity with relatively recent and rapid
urbanization offered researchers a unique opportunity to understand the communication
and mobility patterns and needs of a developing nation during key phases of its transfor-
mation.
Our study brought the DD data from Ivory Coast together with mobility data from an

industrialized nation (Portugal) in order to assess the ability of human mobility models
developed for industrialized regions to accurately model developing regions. We focus on
the comparison of these two countries at very different stages in their industrialization and
in their levels of cultural and linguistic diversity, and sheds new light on the applicability of
metrics and models conceptualized for industrialized regions to developing regions. Our
results demonstrate the importance of considering cultural and linguistic diversity in the
construction of new models to address the challenges of developing regions. The insights
gained from our study have important applications to policymaking, urban planning, and
the services deployments that are transforming Ivory Coast and many other developing
countries.
In the following sections, we provide additional details on the data used in this study,

the results derived, and the conclusions drawn.

Related works
Leveraging mobile phone data to elucidate and quantify many aspects of human life is
growing in popularity. For example,mobile phone data has been used to gain insights from
a diversity of cultures, ranging fromuniversity students to professionals in theUS, Finland,
and Africa []. Targeted cultural patterns included pace of life, reaction to outlier events,
and social support, as opposed to the mobility focus of our study. Eagle et al used mobile
phone communication logs and top up records to conduct a comprehensive comparison
of urban and rural life within a small country, as opposed to across countries as targeted by
our research [].Mobile phone data has also been used to study the seasonal consumption
patterns of tourists in Estonia [].
As part of the DD competition, researchers studied a wide range of topics ranging from

social behaviors, economics, health, transportation, and mobility. Several studies [–]
consideredmobility patterns for the purpose of improving the planning or efficiency of the
transportation systems. While some articles [, ] targeted mobility within the largest
city, Abidjan, and others considered mobility across the country, none tackled the chal-
lenge of assessing mobility models created for mature and industrialized nations on the
developing nation of Ivory Coast. Additionally, ours is the first study to have considered
the linguistic and cultural barriers and affinities that we have shown to be significantly
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stronger in the developing nation of Ivory Coast, in comparison the more industrialized
nation of Portugal. Thus our study represents a novel and important contribution to un-
derstanding the challenges of creating globally applicable mobility models.

Data description
We used four datasets to assess and compare the human mobility patterns in the Ivory
Coast and Portugal. The first dataset, D was provided by Orange Telecom as SET, via
the Data for Development (DD) Challenge []. This dataset was based on anonymized
Call Detail Records (CDRs) of . billion calls and SMS exchanges between million users
December ,  until April ,  ( days).
SET contains consecutive call activities of each subscriber over the study period. Each

record in this dataset represents a single connection to an antenna and contains the fol-
lowing fields: timestamp, anonymized ID of the user, and the antenna ID they connected
to. To further anonymize this data, the original dataset was subsampled to the calls of K
randomly sampled individuals for each of -week periods in the dataset. The geographical
positions of the antenna forDwas also provided and visualized in Figure B according to
the density of antennae in every region. Black lines overlaid on the country represent the
corresponding first-level administrative boundaries ( Ivorian régions and  Portuguese

Figure 1 Cartographic representations of the Ivory Coast (left) and Portugal. (A) Population Distribution,
where colors are logarithmically based on the population density. (B) Geographic cell tower position, where the
size and color of the antennae are logarithmically mapped based on the density of antennae in the area.
(C) Community Partitioning, where communities are built from human migrations over a 24 hour time window
and visually displayed along with the countries official administrative boundaries.
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districts). Records without antenna IDs were removed;  antennae had no calls and 
antennae had no population movements.
The second dataset,D, provided million anonymizedCDRs across Portugal for the

time period of January ,  to December , . D was also provided by Orange
Telecomwith  antennae distributed across Portugal, and the same data fields as inD.
DatasetsD and D provided a high-resolution population density data for Ivory Coast

[] and Portugal [], respectively. To map the population data to the antennae, we cre-
ated a Voronoi tessellation [] of each country based on the antennae location. For the
 locations that had - antennas in a single location, those - antennas were collapsed
into a single Voronoi cell. Each antenna was assigned the total population within the cor-
responding Voronoi cell. Figure A provides a logarithmic scale population density dis-
tribution map using the data from D and D. The population maps were created as an
interpolation of the population density at each antenna.
Although used widely for human mobility studies, mobile phone data provides only a

proxy for human mobility, for example, callers are tracked only to the spatial resolution
of the antenna (which may be up to  km, depending on tower height and terrain), and
usually only when the phone is in use while not everyone uses a mobile phone while trav-
eling. However, even in developing regions, mobile phone penetration is high. Ivory Coast
has % mobile phone coverage, with Orange Telecom (the provider of the data for Ivory
Coast and Portugal used in this study) being the top mobile phone provider having a mar-
ket share of .%. In general mobile phone penetration in Portugal is almost absolute,
while the total number of phone accounts is even higher than the total number of people
- % of the country population owns a mobile device, with Orange Telecom at % of
market share.

Collective mobility patterns
We first performed a bulk mobility pattern analysis based on D and D by plotting the
probability density function P(�r) of the individual travel distances (or jump sizes)�r in a
trace of agglomerated de-identified callers over a period of two weeks, for Ivory Coast (left
plot, solid black line) and Portugal (right plot, solid black line), as shown in Figure A. The
distributionswere qualitatively similar to each other except that at the administrative level,
the distributions in Ivory Coast are muchmore scattered than those observed in Portugal,
suggesting greater regional variance. We fit the density function to a truncated power law
of the form P(�r) = (�r +�r)–β exp(–�r/κ), as described in [], where �r, β , and κ are
the fit constants. While the two distributions had similar cutoff distance (κPortugal = ±
 km; κIvory = ± km), the two countries have slightly different power law coefficients
(βPortugal = .±.; βIvory = .±.). This higher coefficient in IvoryCoast indicates
that the likelihood of displacement generally decays faster with distance in comparison to
Portugal.
We also investigated regional differences in the mobility patterns. In both cases of Ivory

Coast and Portugal, we identified the first level administrative boundaries as the highest
country-defined level of partitioning. For Ivory Coast these are called ‘régions,’ while in
Portugal they are referred to as ‘districts.’ We partitioned the mobility data by the differ-
ent level-one administrative regions and overlaid the same density functions specific for
each administrative region on the same plots above. Different administrative regions are
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Figure 2 Comparative mobility functions for Ivory Coast (left) and Portugal (right). Probability density functions for distance traveled (A) and radius of gyration (B) for each administrative area
(differentiated by different color/shape markers). Comparison of country-wide data to capital city daily commuting profiles through respective probabilities of displacement (C) andmean inter-event migration
distance (D). Country wide temporal commuting profiles separated by the distance traveled (E).
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identified by different scatter marker types and colors. We observed the same truncated
power law behavior across the different regions, but the Ivory Coast regions exhibited sig-
nificantly greater diversity than similarly defined regions in Portugal. This would indicate
that in Ivory Coast the likelihood that people migrate and commute with respect to dis-
tance is much more dependent on what part of the country they are in, as opposed to in
Portugal where the different administrative regions show very little diversity from each
other.
Another important metric for assessing mobility patterns is the radius of gyration. As

defined in [], the radius of gyration for each caller is the characteristic distance traveled
by each caller when observed up to time t, and is computed as the probability distribution
function of themean squared variance of the center ofmass of each user’s set of catchment
locations. The results are plotted in Figure B, with t = the period of data collection for
each of the datasets.
The distributions plotted in Figure B and show that the bulk mobility data from Ivory

Coast adheres well to the scale-free framework proposed in []. The similarity in the bulk
mobility characteristics between Ivory Coast and Portugal serves to strengthen the argu-
ment that we can make valid comparisons between the two datasets, as described in the
sections below.

Commuting patterns
Daily commuting patterns are a critical component of any region’s mobility requirements.
Displacement is defined as movement from one cell tower to another cell tower between
two consecutive calls, and is a key marker for assessing mobility. To focus on daily com-
muting patterns, we excluded data collected during weekends, and computed the fraction
of inter-call events that were accompanied by displacements in a moving -minute win-
dow of time for Ivory Coast and Portugal. We averaged the fraction of displacement for
each -minute window across  weekdays to get a -hour temporal profile of the prob-
ability of displacement during a workday.
The first and probably the most significant difference is the absolute difference in the

probability of displacement, which can be seen in Figure C. We observe that in Portugal,
in a given period, people are much more mobile compared to their counterparts in Ivory
Coast.
Both countries exhibit a commuting pattern; there is a sharp rise in the probability of

displacement around - a.m. The evening decline is not as sharp, suggesting that people
leave work at different times in the evening.
Significant quantitative differences between the countries can also be seen throughout

the day. In Portugal, people in Lisbon and across the nation exhibited similar likelihood
to commute during the busiest hours. However, a significantly higher percentage of peo-
ple in Abidjan were mobile than across the nation. Additionally, while displacement levels
in Abidjan and across Ivory Coast were similar during the lowest period (- a.m.). Dis-
placement for the same period is significantly higher for Portugal than for Lisbon, and is
likely an indicator of more significant numbers of suburban commuters in Portugal than
in Ivory Coast.
Figure D provides a comparison of the mean migration distances between the  coun-

tries for the same period. Here again, the average distance traveled is significantly less in
Ivory Coast and its capital city, than in Portugal. In the country-wide data, we observe a
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sharp increase in themean inter-event displacement distance near themorning peak com-
mute (around - a.m.) in both Ivory Coast and Portugal. However, the spike in distance
encountered in Lisbon during morning commute does not occur in Abidjan. This differ-
ence may be indicative of people both living and working in close proximity in Abidjan, as
opposed to commuting in from outside or across the city as is often the case in developed
regions with more comprehensive public transport facilities.
We examined the country-specific commuting pattern more closely by looking at how

the distance commuted may affect the daily behaviors. The observed distances traveled
were binned (- km, - km, - km, - km, and - km), and the daily temporal
profile of the probability of displacement was computed for each bin for the two countries,
as shown in Figure E.
The temporal profiles for both Ivory Coast and Portugal show a bimodal pattern in Fig-

ure E. For Ivory Coast the morning peak is around  a.m. and the evening peak is around
 p.m., as opposed to roughly  a.m. and  p.m. for Portugal. Note that the peaks for
Portugal are much sharper than those of Ivory Coast. Overall these differences indicate a
shorter prime commuting period for Portugal, which is likely indicative of the ability for
commuters to travel more efficiently to their destinations.

Community structure
Large networks, such as the telecommunications or transportation networks of a nation,
often exhibit community structure, i.e., the organization of vertices into clusterswithmany
edges joining vertices of the same cluster and comparatively few edges joining vertices of
different clusters. Identifying the community structure in such networks has many ap-
plications, such as better placement and provisioning of services. Recently, this type of
community structure analysis has been performed on land-line communications in Great
Britain [], mobile connections in Belgium [], United States [], and various other
countries across Europe, Asia, and Africa [, ]. While there is research investigating
the impact of physical human mobility on the space-independent community structure
[] there has been a lack of similar research for developing nations.
Network modularity [] is a measure of the strength of the division of a network into

clusters. Networks with high modularity have dense connections between nodes within
clusters, and sparse connections between nodes in different clusters. Modularity is com-
puted as the fraction of edges that fall within a cluster, minus the expected such fraction
if the edges were distributed at random with respect to the node strength distribution.
The value of modularity lies in the range [–, ], and is positive if the edges within groups
exceeds the number expected on the basis of chance.
The definition of network modularity is:

Q =

m

∑
ij

[
Aij –

kikj
m

]
δ(ci, cj), ()

where Aij is the weight of the link from i to j, ki is the sum of the weights from node i, ci
is the community that node i was assigned to,m = 


∑

ij Aij, and δ(ci, cj) is  if ci = cj and 
otherwise.
High modularity in mobility networks may point to an efficient organization of resi-

dences, employment, and services all in close proximity, or it may point to restrictive poli-
cies or infrastructures that limit free movement across communities. We were interested
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Table 1 Comparison of different similarity indices to compare similarity between community
partitioning (generated from network of humanmobility) and the respective administrative
boundaries

Similarity Index Portugal Ivory Coast Difference

Wallace [30] 0.482813 0.199134 0.283679
Adjusted Rand [31] 0.495536 0.258351 0.237184
Jaccard [32] 0.377999 0.184733 0.193266
Fowlkes-Mallows [33] 0.553788 0.378296 0.175491
Melia-Heckerman [34] 0.659385 0.515347 0.144037
Hubert [35] 0.806411 0.707795 0.098615
Larsen [36] 0.58273 0.525396 0.057334
Rand [31] 0.903205 0.853898 0.049308

in the community structure of developing nations, such as Ivory Coast, especially in com-
parison to more developed nations, such as Portugal.
We used datasets D and D to build the human mobility networks and identify the

community structure of antennae within the Ivory Coast and Portugal. We set nodes to
the locations of each cell tower, and edges to the total number of migrations of all people
that placed two consecutive calls between the twonodeswithin a timewindowof hours.
We tested the followingCommunityDetection algorithms: Louvain [], LeMartelot [],
Newman [], Infomap [], and a newmethod of community detection suggested in [].
We computed the modularity of community structures identified by each of these meth-
ods. Themethod described in [] provided the highestmodularity, andwas subsequently
chosen to be used for this part of the study. Figure C graphically compares the communi-
ties identified (in color) with their first level administrative boundaries (outlined in black).
An especially interesting difference in the communities identified for Ivory Coast and

those identified for Portugal was the similarity between identified communities and the
official administrative boundaries of the nations.We calculated  different clustering coef-
ficients, each representing the qualitative similarity between the two different partitions of
each region. While the communities identified for Portugal exhibited high similarity with
the  official administrative boundaries (districts), this was not the case for the Ivory
Coast’s  official administrative boundaries (régions). As shown in Table , communities
identified for Portugal show significantly higher similarity (as much as % higher cluster-
ing coefficients) to administrative boundaries, in comparison to that of the Ivory Coast.
While this significant difference in community and official boundary alignments may

be attributable to the layout of infrastructure along official boundaries, we began to ques-
tion whether there might be more fundamental differences. Previous studies have shown
that other factors, such as geographical features, can play an important role in how com-
munities are formed and services are sought [, ]. However, little has been done to
investigate the direct impact of culture and language on human mobility.
Ivory Coast represents an especially interesting context to investigate cultural and lin-

guistic influences on mobility within a single nation. The Ivory Coast is a nation made up
of more than  distinct tribes, classified into  principle regions []. The official lan-
guage is French, although many of the local languages are widely used, including Baoulré,
Dioula, Dan, Anyin and Cebaara Senufo, and an estimated  languages are spoken in the
country.
Intuitively, these cultural and linguistic differences are likely to influence mobility pat-

terns in the region. However, it is also known that as regions becomemore industrialized,
cultural ways are often blended or lost altogether. Portugal represents an interesting con-
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text for the latter, as Portuguese is the single national language of Portugal, and any tribal
boundaries pre-date Roman times.
Due to the vast differences seen in the network community structure to administrative-

defined boundaries, our goal in the next section was to understand if tribal structure of
the Ivory Coast could be the influential factor of the mobility patterns in the region.

Tribal community analysis
Since the communities detected in Section IV exhibited low similarity to administrative
boundaries, we began to investigate the impact of certain factors present in the IvoryCoast
that may be attributable to such a substantial difference. Since people and their behaviors
throughout a large portion of Africa are still impacted by their tribal affiliations while any
tribal boundaries in Portugal predate Roman times, studying the tribal boundary impact
in Ivory Coast represented a perfect example of this. We generated digital shape files for
each of the eight distinct tribal regions in Ivory Coast []. Such tribal maps do have a
level of uncertainty associated with them due to migrations over time; however, we used
the most recent versions of tribal boundaries available.
We then modified the community detection approach to use the tribal boundaries as

the Level  boundaries and subsequently ran a hierarchical community detection using
the Louvain method [] in each of these Level  tribal partitions in order to produce
the sub-communities inside different tribal regions which we will refer to as sub-tribal
communities. The Louvain method provided the closest final number of partitions to the
administratively defined subprefectures of the algorithms that we tested, and was thus
chosen as the most appropriate for current purposes. By doing so, we were able to gener-
ate sub-tribal communities while also conserving the physical shape of each tribal region.
Figure A demonstrates this by showing the official prefecture and subprefecture bound-
aries (left) and the tribal and sub-tribal communities (right) that were created using this
approach. The larger first level partitions (prefecture and tribal) are indicated as a single
color, while the smaller secondary partitions (subprefecture and sub-tribal) are indicated
as black lines within their respective first level partition. The number of subprefectures
and sub-tribal regions are very similar (approximately  and  respectively) and thus
can be used as a valid comparison against each other.
As a first measure of impact of tribes on mobility, we aggregated the mobility network

between communities. Figure B provides a plot of the mobility network with each node
representing a sub-tribal community, and each edge is colored on a logarithmic scale to
reflect the number of migrations between the connected nodes in the mobility network.
Nodes are colored with the same logarithmic scheme and represent the sum of all migra-
tions into this location. The intra-tribal community mobility network is plotted separately
from the inter-tribal community mobility network, in order to facilitate comparison. The
intra-tribal network plots only those edges between communities in the same tribe. The
inter-tribal network plots only edges between communities of differing tribes.
This diagram provides a first insight into tribal influences on mobility. Note that the

number of intra-tribal migrations (as indicated by the color coding of edges) dwarfs the
number of inter-tribal migrations. Additionally, the inter-tribal migrations are largely
dominated by connections to the largest city, Abidjan.
The impact of the tribal borders versus administrative borders in Ivory Coast on human

mobility could be also directly demonstrated by measuring the strength of normalized
mobility fluxes at different geographical distances in case they cross or do not cross those

http://www.epjdatascience.com/content/3/1/6
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Figure 3 Hierarchical boundary and humanmigration visualization in Ivory Coast. (A) Partitionings of
Ivory Coast by administrative prefectures/sub-prefectures (left) and tribal/sub-tribal communities (right).
(B) Intra-Inter tribal migrations, where each node represents an individual sub-tribal community, and each link
is logarithmically colored to represent the number of migrations (extracted from call records) between the
two nodes.

borders. Figure B provides a zoomed in version of the statistically significant data points
of Figure A and shows that for any given distance, the flux between intra-Administrative
and intra-Tribal regions is consistently higher than the flux between inter-Administrative
and inter-Tribal regions. One can then conclude that the fluxes crossing the tribal border
are much weaker on average compared to fluxes at the same geographical distance but
crossing an administrative border instead.
We also quantified the strength of these partitioning ties by computing the network

modularity of the sub-tribal communities versus that of the administrative boundaries.
The network modularity of the sub-tribal communities was ., in comparison to a
network modularity of . for the administrative boundaries. Given that the number
of regions for both partitions (sub-tribal and sub-prefecture) is very similar, this increase of
networkmodularity corresponding to sub-tribal communities by the definition of network
modularity shows again that mobility patterns have a stronger connection in a sub-tribal
country partitioning compared to that of an administrative partitioning.

Modeling humanmobility
Accurately modeling human interactions between regions can present many challenges;
however, effectively doing so can provide a crucial piece of information to efficiently dis-
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Figure 4 Normalized migration fluxes between two locations. Gray data-points represent the individual
fluxes, while the black line indicates the data averaged into smaller bins. Fluxes are separated into 4 additional
categories (A), depending whether the flux was intra/inter and tribal/admin regions of the Ivory Coast. The
marker of a given bin is filled if that bin contains more than 1% of all data points, (i.e., the bin is considered
statistically significant if it is filled). A zoomed in version of (B) over the part of the graph where all signal bins
are statistically significant is shown in (A). The data is also fitted to a power-law and exponential distribution
(C) and visualized. The MAPE for each fit is also given.

tribute resources, health services, etc. throughout a given area. The GravityModel, whose
origins trace back to Ravenstein’s laws of migration [], was formulated onNewton’s Law
of gravity, and predicts flux between a source and destination based on the populations
of the source and destination, and the distance between the source and destination. More
specifically, according to the gravity model, the average flux migrations from regions i to
j is:

Tij = A
pipj
rγij

, ()

where i and j are origin and destination locations with populations pi and pj respectively
at a distance of rij from each other. A is a normalization factor and γ is an adjustable
parameter chosen to fit the data.
An alternative version of the gravitymodel using an exponential fit can be also described

as:

Tij = Apipje–γ ri,j . ()

To determine which model would be more appropriate we plotted the normalized flux
between two locations separated by a given distance in Figure C.We fit these normalized
migrational fluxes to both a power-law and exponential fit (blue and red lines) and obverse
that the power-law distribution is much more consistent for modeling our data (which is
also confirmed by comparing mean absolute percent error values reported on the plot).
Therefore, for the remainder of this study we used the gravity model in Equation ().
In order to apply themodel onemust inherently define the appropriate spatial resolution

(i.e., the areas tomodel migrations between/within). Bymonitoring the resulting accuracy
of the model, it is possible to gain insight on what type of partitioning of an area will most
effectively allow for human mobility to be modeled. We started by investigating if the use
of these sub-tribal communities would provide an advantage in modeling the mobility
network of the Ivory Coast compared to an administrative (subprefecture) partitioning.

http://www.epjdatascience.com/content/3/1/6


Amini et al. EPJ Data Science 2014, 3:6 Page 12 of 20
http://www.epjdatascience.com/content/3/1/6

We computed the Gravity model using dataset D, and specifically modeled the migra-
tions for both administrative and sub-tribal partitioning of the country, and subsequently
tested the accuracy of the model from the mean average percent error (MAPE) with re-
spect to the true network of humanmobility. MAPE has been shown to be a very effective
measure of error in model predictions, especially when considering population forecast-
ing [, ].
We compute MAPE according to:

M =

n

n∑
t=

∣∣∣∣At – Ft
At

∣∣∣∣, ()

where At is the actual value, Ft is the forecasted value, and n is the number of data points.
Therefore, an inaccurate model will subsequently yield a high MAPE value; whereas an
accurate model will yield a much smaller MAPE value.
To further explore the relationship between tribal and administrative boundaries we ap-

plied an alternative approach for modeling humanmobility and interaction, the Radiation
Model. The RadiationModel [] was recently proposed as a parameter freemobilitymodel
in which individuals move and interact based on the population density of the source and
destination regions, and that of the surrounding regions. Using the Radiation Model, the
average flux between two regions i and j is:

Tij = Ti
minj

(mi + si,j)(mi + nj + si,j)
, ()

where i and j are origin and destination locations with populationsmi and nj respectively,
at distance ri,j from each other, with si,j representing the total population in the circle of
radius ri,j centered at i (excluding the source and destination population). Ti signifies the
total outgoing flux that originates from region i. Since, our system represents a finite space
(the regions and boundaries within a country), we subsequently normalize Ti by a factor
of ( – mi

M ) whereM is the total sample population in the system [].
Figure A shows the normalized MAPE comparison for the sub-tribal and administra-

tive boundaries, and demonstrates that the MAPE for Gravity Model predictions made
via administrative boundaries ranged from % to % higher than that of sub-tribal
communities, while the Radiation Model also yielded % to % higher MAPE values
for administrative boundaries. This indicates a higher accuracy (lower MAPE) produced
when sub-tribal communities were used, as opposed to administrative boundaries. This
subsequently suggests that, in terms ofmobility patterns of Ivory Coast, it ismore effective
to model mobility on a partition that accounts for tribal, cultural, and lingual differences
in groups of people, as opposed to the current administratively defined country partition.
We also partitioned the mobility model predictions according to intra-tribal and inter-

tribal flux in order to quantify the strength of the connectivity of the tribes. Quantitatively,
theMAPE for the inter-tribal mobility was .% higher than theMAPE of the intra-tribal
mobility predictions, and supports the dominant pattern of intra-tribal migrations over
inter-tribal migration which may require special consideration in terms of mobility mod-
eling. Again, the fact that the Radiation model produces more accurate results for mi-
grations within a single tribe compared to those between tribes suggests that the tribes
themselves are playing a key role in the overall improved accuracy of the model.

http://www.epjdatascience.com/content/3/1/6
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Figure 5 Model accuracy comparison across the different countries and regions. (A) NormalizedMAPE
values for Administrative and Tribal partitionings for Radiation and Gravity Model. The migration models for
Ivory Coast’s administrative (B) and sub-tribal boundaries (C), as well as in Portugal’s administrative partitioning
(D) are also compared where each signal represents the probability of migration to a location ‘r’ kilometers
away from the originating location. MAPE values for each model and partitioning to the respective data are
shown in (E).

Figures B-D compare the probability of migration predicted by both the Gravity and
RadiationModels, to the actualmigration percentages as computed fromCDRdata.While
the CDR data is not the ground truth for migration, for example because it is a sample of
the total population and is tracked only to the antenna level, it is also the basis for both
models and thus represents a valid comparison for this study. As amore direct comparison
of accuracy, Figure E provides the error (MAPE) for the models plotted in Figures B-D.
For the Ivory Coast, these figures show the higher accuracy (i.e., lower error) of Radiation
Model for both administrative and sub-tribal communities, and it shows that using the
Radiation Model with sub-tribal communities provides the highest accuracy (i.e., lowest
MAPE).
Figure D illustrates the Portuguese administrative municipality boundaries perform

well for both the Radiation and Gravity Models. This may be indicative of municipal
boundaries that were designed to align with cultural and social communities or that cul-
tural and social communities have adapted to fit administrative boundaries.
However, we believe a more likely explanation is the growing homogeneity of language

and culture that comes withmaturing industrialization and urbanization. This is reflected
in the predominance of Portuguese as the national language in Portugal, compared to the
more than  local languages spoken in Ivory Coast.
There are several important implications from these findings.
 Models of mobility, migration, and interaction that are conceptualized in mature and
industrialized regions may not directly map to developing regions with more
pronounced cultural and linguistic differences. Such models need to better account
for these differences.

 If administrative boundaries are drawn and services are placed based on models that
do not accurately reflect these influences, results could include inefficiencies, leading
to inequality of services (e.g., longer or less accessible commutes), and potentially
discrimination and alienation of segments of the population.

http://www.epjdatascience.com/content/3/1/6
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 Techniques for assessing the strength of borders in a given regional partitioning
scheme are critical to ensuring the accuracy of mobility and migration modeling, and,
perhaps more importantly, to enabling sound decision-making by authorities tasked
with setting effective administrative boundaries.

In the following section, we propose novel techniques for quantifying the impact of a
regional partition scheme on model accuracy, and for assessing the strength of borders in
a given partitioning scheme.

Assessing regional affinities and border strength
In previous sections, we demonstrated the issues arising from usingmobilitymodels, such
as the Gravity and Radiation models, on regions where the partitioning scheme, such as
Ivory Coast administrative boundaries, does not reflect the regional affinities and border
strengths these models assume.We illustrated techniques to create more appropriate par-
titioning schemes, such as the tribal communities, and demonstrated the ability to achieve
higher accuracy mobility modeling using this improved partitioning.
However, it may not always be possible to simply re-draw borders. Instead, tools are

needed to assess the efficacy of an existing partitioning scheme, in terms of the affinities
within the identified borders and the strength of the borders.
In this section, we propose two novel techniques to address the above challenge. Firstly,

we present a metric to determine whether affinities exist within borders that may impact
the accuracy of mobility modeling. We test our metric on the tribal and administrative
boundaries used in the previous sections. Secondly, we propose a technique to assess the
strength of existing borders, and we demonstrate our technique on the existing adminis-
trative borders of Portugal and Ivory Coast. Our techniques use the same mobility data
used in previous sections and can be performed on any regional partitioning scheme, and
thus provide valuable tools to mobility researchers and to urban planners.

Regional affinity
The accuracy of both theGravityModel and the RadiationModel depends on the ability to
accurately model, for a given time epoch, movement from any region to any other region,
and lack of movement to another region. Inter-region movements are driven by oppor-
tunities and resources, which are reflected in the population of region, and constrained
by distance. Intra-region affinities, such as physical proximity to home, work, family, and
friends, tend to limit movement from a given region. Improperly partitioning a region to
account these affinities results in over or under predicting flux, and therefore, poor model
performance.
We propose a metric to assess whether such affinities exist, and test that metric on the

tribal and administrative boundaries used in previous sections. To compute thismetric, we
segregated all migrations into two categories: intra- and inter-regional migrations. Refer-
ring to Figure A, an inter-region migration is a migration that crosses a color boundary.
Likewise, an intra-region migration is a migration that does not cross a color boundary.
When amodel over-predicts the number of inter-regionmigrations, it is under-estimating
the strength of the affinities within that region.
We use S to denote the bias of a regional partitioning to over or under estimate flux

across regional boundaries. We compute S as:

S =
∑n


R
T

n
, ()
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Figure 6 Percent difference in values of S for
intra and inter migration bias towards holistic
model accuracy.

where R is the modeled flux, T is the true flux, and n is the total number of predictions
made. In other words, S represents the average ratio of modeled to predicted fluxes in
the system. Therefore, relatively high values of S indicate the model is generally over pre-
dicting, while lower values indicate a general under prediction by the model. We compute
separate Sinter and Sintra values, where the Sinter value includes only inter-region flux and
Sintra includes only intra-region flux.
The percent difference (D) between Sintra and Sinter for all partitions provides a measure

of bias. That is, the larger the value of D, the stronger the bias for over estimating inter-
region flux. Figure  illustrates that both the Gravity and Radiation Models exhibited the
most significant over estimation of inter region flux for Ivory Coast Tribes. Recall that
significant over estimation of inter region flux is a result of significant under estimation of
intra region affinities. Consistent with the results of previous sections, the administrative
boundaries of both Portugal and Ivory Coast demonstrate substantially less bias. Thus our
metric performs well in highlighting the strong affinities (in this case tribal), which must
be accounted for in the model.

Border strength
Background
Just as human mobility may be constrained by affinities, it is similarly impacted by the
strength of surrounding borders. Mobility models must accurately and succinctly reflect
borders that may be physical, such as gates or other guards, or abstract, such as lack of
opportunities. However, neither the Gravity Model nor the Radiation Model provide a
means to assess border strength.
In this section, we propose a novel metric for assessing the strength of borders within

a region. We demonstrate our metric by computing the strengths of the administrative
borders of Portugal and Ivory Coast used in previous sections. As predicted by the Gravity
and Radiation Models, we show that borders surrounding the heavily populated region
of Abidjan are more penetrable than borders elsewhere in the Ivory Coast. Similarly, our
results show that the borders throughout the country of Portugal are muchmore uniform,
even showing consistency with the more heavily populated Lisbon. Our metric allows us
to show that while these two cities, located in two very different regions, share a higher
penetrability of borders than surrounding regions, they also exhibit significant differences
in the distribution of border strength.

http://www.epjdatascience.com/content/3/1/6
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Methodology
To compute border strength, we start by defining the connectedness of each node (in our
study, cell-tower) to each partition. The connectedness of node i to partition P is denoted
by Ci,P , and computed as:

Ci,P =

∑
j∈P
j �=i

(ei,j + ej,i)

Si + Ti – mi,i
, ()

where i and j are nodes,wi,j is the weighted directedmatrix of humanmobility,mi,j =
wi,j∑
wi,j

,
Si =

∑
j mi,j, and Tj =

∑
i mi,j. Finally, ei,j =mi,j – SiTj is the difference between the actual

number of migrations and the expected number of migrations from i to j.
For any given node i (located within partition Pi), if there exists a partition Pq (i �= q)

for which Ci,Pq > Ci,Pi (i.e., node i is more strongly connected to partition Pq than to the
partition in which it is located), then we say node i is not stable within partition Pi. We
compute the stability of node i as si, where:

si = Ci,Pi –max
D�=Pi

{Ci,D}. ()

Therefore, for any given node i, – ≤ si ≤ . Further, si =  indicates node i is as strongly
connected to at least one partition other than the partition Pi to which it is assigned, and
thus we say node i is not stable within the partition Pi it is located. Negative values of si in-
dicate node i is more strongly connected to partitions other than the partition Pi to which
it is assigned (i.e., the considered partitioning is not optimal in terms of the modularity
score), and positive values of si indicate node i is more strongly connected to its assigned
partition Pi.
Figure A illustrates the stability values (si) for each node (i.e., cell tower) in Ivory Coast,

relative to the partitioning imposed by administrative borders, and colored on a logarith-
mic scale. By performing a linear interpolation of the si values across the entire map of
Ivory Coast (Figure B), we obtain an estimate of the stability across the entire region.
This linear interpolation assigns a stability measure to each pixel in the XY plane (sx,y),

Figure 7 The procedure for calculating the strength of borders for Ivory Coast’s tribal regions. Cell
tower antennas are plotted on a map of the country and colored by their respective si value (A). A two
dimensional interpolation across the entire map is then performed (B) to estimate the si value at any point
throughout the country. The pixels that subsequently lie along the tribal borders are then extracted and
visualized (C).
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and thus enables us to compute a border strength metric for a given border as the mean
of the stability values of the pixels that directly lie on that border (Figure C). We denote
the border strengthmetric of any given border b as sb. Thus sb =mean(sxb ,yb ) where (xb, yb)
are all coordinates of pixels that lay on a border.
Note also that by computing sb from the linearly interpolated values across the entire

region, our approach enables a border strength metric that reflects the aggregate impact
of cells that are not well connected, even if those cells are not physically close to borders.

Analysis
In addition to providing a single border strength metric by which any border may be as-
sessed, our method enables analysis of the distribution of stability values (sx,y) for each
border. Figures A-D illustrate how significantly more penetrable borders surrounding
the densely populated Abidjan are in comparison to other portions of the country. This
higher penetrability of borders surrounding Abidjan holds for both tribal (Figure A) in
comparison to the remainder of tribal borders (Figure B). This effect is again prominent
with the administrative border surrounding Abidjan (Figure C) relative to the rest of the
country (Figure D). Furthermore, Figure A illustrates the mean positive penetrability
(sb) of . for the borders surrounding Abidjan, versus . for borders through-
out the rest of Ivory Coast (Figure B). Also note that penetrability in Abidjan is markedly
higher than in the remainder of IvoryCoast, whereas the Lisbon borders (Figures E-F) are
only marginally less penetrable than in the remainder of Portugal. This supports our ear-

Figure 8 Strength of node connectivity visually mapped from values of si along (A)-(B) Ivory Coast
Tribal; (C)-(D) Ivory Coast Administrative; and (E)-(F) Portuguese Administrative boundaries. Border
categories are separated according to whether they contain the main city of the respective country (i.e.,
(A) & (C) Abidjan, Ivory Coast and (E) Lisbon, Portugal). Histograms display the distribution of the border
strength values along the border(s). Black vertical lines are indicative of the mean positive border strength
value.
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lier finding that mobility in Portugal is muchmore uniform throughout the entire country
compared to the Ivorian Coast context.
The distributions illustrated in Figure  also provide interesting insights into mobility in

Ivory Coast and Portugal. More specifically, notice the tight clustering of border strengths
for Abidjan under the Tribal partitioning (Figure A) versus more widely distributed bor-
der strength values for the rest of Ivory Coast. This supports our early findings that Tribal
boundaries play a key role in mobility throughout the country, except in highly industri-
alized regions such as Abidjan.

Conclusion
Africa is a continent that has been shaped by human migration over tens of thousands
of years. Indeed, migrations within and beyond the African borders have recently been
shown as influencing all civilizations as we know them. However, until recently, there
has been a dearth of data on the forms and patterns of migration within the nations of
Africa. Moreover, much of the mobility research is based on theories that have emerged
from highly industrialized nations and lack validation in the context of developing envi-
ronments.
Our study has demonstrated that many of these conceptions are not necessarily applica-

ble in theAfrican context.We havemade these differences clear by comparing our findings
in Ivory Coast to one such industrialized nation, Portugal. For example, we have shown
that the probability of displacement during normal commuting hours in Portugal is often
nearly double that of Ivory Coast for the same time of day. Similarly, average distances
traveled by commuters in Portugal is nearly double that of commuters in Ivory Coast.
While differences in the likelihood of travel and average distance travel can be attributed

to quantitative differences in infrastructural support for mobility this already strongly af-
fects the whole mobility picture leading to a number of quantitative dissimilarities. Our
study shows evidence of more fundamental differences in infrastructural support for mo-
bility, such as tribal, cultural, and lingual differences. In addition, we demonstrate that the
similarity between administrative boundaries and communities detected in mobile phone
data is markedly lower in Ivory Coast than in Portugal.
By identifying the tribal influence on mobility in the Ivory Coast, we were able to illu-

minate further differences in mobility patterns. For example, we were able to show intra-
tribal migrations were much more frequent than that of inter-tribal migrations over the
same distance and therefore are under or overestimated by the models. Taking this into
account by exploiting our tribally aligned communities for the mobility models drastically
improves modeling of human mobility in Ivory Coast. We validated this higher accuracy
by computing the MAPE across all data points for both models, and found a % to %
higher error for themodels using administrative boundaries.We also validated our results
by computing the distribution of migrations by distance migrated and found that by us-
ing this sub-tribal method of spatial units definition in modeling humanmobility we were
able to improve the accuracy of the models so drastically, that the Ivory Coast performed
even better than its developed country-counterpart, Portugal.
We propose novel techniques for assessing the strength of borders within a regional

partitioning scheme, and for assessing the impact of inappropriate partitioning on model
accuracy. Our results offer improved insights on why models developed for mature and
stable regions may not translate well to developing regions, and provide tools for urban
planners and data scientists to address these deficiencies.
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We believe that the findings of this study demonstrate important differences that exist
between developing and industrialized regions. Using these two countries as an example,
we are motivated to further explore these differences by considering more countries and
areas with diverse cultural, economical and social backgrounds.
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