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Abstract
Using open source data, we observe the fascinating dynamics of nighttime light.
Following a global economic regime shift, the planetary center of light can be seen
moving eastwards at a pace of about 60 km per year. Introducing spatial light Gini
coefficients, we find a universal pattern of human settlements across different
countries and see a global centralization of light. Observing 160 different countries
we document the expansion of developing countries, the growth of new
agglomerations, the regression in countries suffering from demographic decline and
the success of light pollution abatement programs in western countries.
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1 Introduction
In the mid-s, the U.S. Air Force started a research project called the Defense Meteo-
rological Satellite Program (DMSPa). The main purpose of this enterprise was to provide
the military with daily information on worldwide cloud coverage. After scrutinizing the
first results, it was discovered that, besides the initial goal of measuring cloud coverage,
nighttime light was also very well captured by the sensors. When the system was declas-
sified in , and the data made publicly available, this unexpected, but very convenient,
side-effect, gradually gained more interest from the scientific community.
Light emission is a quantity that can be measured instantaneously, objectively and sys-

tematically. This is in stark contrast to many widely used economic and demographic in-
dicators, which are often based on estimates and censuses, such as the gross domestic
product, energy consumption, population levels, or the degree of poverty. In the standard
approaches, biases, time lags and inaccuracies are unavoidable and the comparison be-
tween different countries is often problematic. In contrast, nighttime lights are remotely
sensed from one single satellite, with the same resolution, at the same time-of-day, in a
systematic way, covering the surface of the whole planet.
Since , the images have been systematically digitized and are now freely download-

able from the web []. This has opened a treasure of data, available at no cost, to the scien-
tific community. As a consequence, in the past decade, a new research field has prospered
using these observations of nighttime light and its dynamics in space and in time, aimed
at studying economic activity, demographics, energy consumption, poverty and develop-
ment, conflicts, urbanism and the environment.
We will discuss the data, the different products that are freely available on the web and

our additional processing and enhancement tools in Section . In Section , we will review
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the existing research and academic literature. From our synthesis of the wide range of
papers using nighttime images, a best-practice approach will be proposed.
This paper will further contribute to the existing research and literature with the fol-

lowing unique results. Firstly, in Section ., we will calculate the dynamics of our planet’s
mean center of light. It will be shown that, over the past two decades, this center of light
has gradually shifted eastwards over a distance of roughly , km. This result will be
compared with a recent study of the McKinsey Global Institute [], which calculated the
dynamics of the global economic center of gravity based on GDP figures.
Next, in Section ., a spatial light Gini coefficient will be introduced. This will make a

comparison possible of how evenly light is distributed in different countries.Wewill come
to the fascinating conclusion that, if only relatively dense urbanized areas are considered,
the Lorenz curves and Gini coefficients of light are almost identical in every country, even
though the considered area can differ up to two orders of magnitude. Additionally, it will
be shown that the Gini coefficients follow a slightly increasing trend over the past two
decades. This is evidence of a continuous centralization of light, or, the gradual increase
in the inequality of the spatial distribution of light.
Global light is centralizing. In Section ., we will dig deeper into this observation, an-

alyzing the dynamics of bright versus dimly lit areas. It will be shown that dimly lit ar-
eas have increased proportionally more than bright areas, with a % compared to a %
growth rate over the past  years. From this, it can be concluded that the area of dimly
lit settlements has increased proportionally more than the area of the bright cities. Maybe
counter-intuitively, this appears to be the major driver behind the observed increase in
spatial light Gini coefficients over that period. Further, in this section, we will compare
the nighttime light dynamics of economic tigers like China, India and Brazil, with coun-
tries that have seen a sensitive reduction in the urban population like Russia (excluding
Moscow), Ukraine and Moldova. Additionally, it will be shown that, in some developed
countries like Canada or the U.K., the size of the largest light agglomerations is slightly di-
minishing. This demonstrates the relative success of light pollution abatement programs
launched in different countries around the world. Finally, the notion of a country will be
dropped and the concept of light-defined agglomerations will be introduced. Tables and
graphs will be given of the  largest light agglomerations worldwide in  compared
with . This will demonstrate quantitatively how dramatically fast-growingmegalopo-
lis are changing in some developing countries like China and Egypt.
In this paper, we will look at the dynamics of global light growth covering almost two

decades of available data. A review of the literature reveals that the majority of existing
studies makes use only of single one-year snapshots and does not study time evolutionary
processes. One of the reasons for this is the complex data handling and inter-calibration
between the different satellite sensors. We therefore explain in details how we have ad-
dressed this problem.

2 Data andmethods
2.1 The satellites
In the DMSP program, typically two satellites are orbiting simultaneously, in a sun-
synchronous low earth orbit, at an  km altitude. The satellites, which have a lifespan
of about  to  years, pass over any given point on Earth between . pm and . pm,
local time []. They are equipped with a so-called Operational Line-scan System (OLS).b
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Table 1 The available composites

Year Satellites
1992 F10
1993
1994 F12
1995
1996
1997 F14
1998
1999
2000 F15
2001
2002
2003
2004 F16
2005
2006
2007
2008
2009
2010 F18

For most of the time, two satellites were orbiting simultaneously.

This consists of two sensors, one operating in the visible, near-infrared ( to , nm)
spectrum and the other operating in the thermal infrared (. to . μm) domain. Each
detector has a field of view of , km and captures images at a resolution of approxi-
mately . km.

2.2 The stable lights product
Creating good-quality scientific products from the raw data of the satellites is an under-
taking of monumental difficulty and requires a huge processing effort. The National Geo-
physical Data Center (NGDC) of the National Oceanic and Atmospheric Administration
(NOAA) has a research project dedicated exclusively to this task.
Firstly, the usable area of each image must be selected taking into account daylight scat-

tering. Further, the parts with a scan angle greater than a certain threshold have to be
excluded because these suffer frombackground noise and give a poor accuracy on the geo-
location []. Then, the images are re-projected into  arc-second grids; this represents
an area of about . square kilometers at the equator. A geo-location is assigned to each
pixel of the usable area, based on different variables such as scan angles, satellite altitude
and azimuth. In order to obtain a composite that covers the whole globe, all the selected
satellite images are entwined. In the end, each composite represents a one-year average
nighttime light image of the world, covering an area between  and – degrees longi-
tude and – and  degrees latitude. Some parts of Greenland, Alaska, Canada, Scandi-
navia and Antarctica are missing. However, it has been estimated that only about ,
people or amere .% of the world population lives there []. Sincemany observations
were disturbed by clouds, moonlight, sun glare and other factors, it is estimated that each
pixel is the result of  to  clear observations [].
Table  shows the list of available composites. When two satellites were orbiting at the

same time, two different composites were produced. This creates a redundancy that can
be used to inter-calibrate the images. We will come back to this in the following section.
At the time of writing, there are  composite images available covering a time-span of
 years. For each of these composites, a product called Stable Lights is available. In this
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product, fires and other ephemeral lights are removed, based on their high brightness
and short duration. In the final result, each pixel quantizes the one-year average of stable
light in a -bit data format. The pixel values, which we will call Digital Number (DN)
in the following part of this paper, are integers ranging from  to . A comprehensive
description of the methodology is given in []. It should be mentioned here that there are
some artifacts in this final product, which have also been discussed byHenderson et al. [].
As a result of the noise and unstable light removal, the number of dim pixels, with a DN
below , is unreasonably low, e.g. in the year  composite of satellite F (see Table 
for an overview), there are no pixels with a Digital Number equal to . A second artifact
is the occurrence of a saturation, which can be seen in the higher end of the spectrum
for pixels with a DN of  and above. We have carefully considered these matters during
the measurements and data analyses presented in this paper and will discuss them when
relevant in our analyses presented below.
Following an attentive study of the literature and a consultation with the authors of the

dataset, we decided that the Stable Lights product is themost suitable for our research. All
the described methods and analyses from here onward refer therefore to the Stable Lights
dataset, version  [].

2.3 Data processing
.. Tools
Dealing with geographical images of up to  Gigabytes in size is not trivial. Therefore, all
the preliminary data processing is done using theArcGISc software package; this is theGe-
ographic Information System from ESRI.d The country boundaries used in this research
were downloaded as a polygonal shapefile from CShapes []. All countries that ceased to
exist (e.g. Yugoslavia, USSR) were removed, such that a total of  non-overlapping coun-
tries remained in the dataset. For the geo-location of big cities, the point-based shapefile
from [] was used. It features the center of the  cities with a population larger than
, in . Additional analysis of the data was done using MATLAB.e

.. Gas flares removal
Gas flares are combustion devices used mainly in oil wells and big offshore platforms to
burn flammable gas (mostly methane) released during the operations of oil extraction.
They are a continuous phenomenon. Consequently, they are not filtered from the Stable
Lights product. As the goal of this research is to study human settlements, they should be
removed in order to avoid their misinterpretation as small cities. Gas flares have a charac-
teristic circular shape of saturated pixels with glowing surroundings. These features make
it possible tomap their location []. The shapefiles, containing the gas flares’ geo-location,
one per country, were downloaded from the NGDCf website and then merged within the
ArcGIS system. The obtained mask was then converted into a binary raster so that the gas
flares’ locations were given value zero, whereas all others pixels had a value of one. Every
Stable Light composite was then multiplied with this raster to obtain images free of gas
flares. Unfortunately, the polygons that encircle the gas flares are relatively large. Thus, it
is unavoidable that certain areas of human-made lighting are improperly canceled out in
this procedure. According to Henderson, [], only .% of the world land area and .% of
the world population in , fell into the excluded polygons. Only a fraction of this is im-
properly excluded from the dataset. It is, however, not possible to quantify this error, but
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it must be a very small amount, given the meticulous selection procedure []. The small
drawback of excluding this tiny fraction of data, however, does not outweigh keeping the
whole set of gas flares in the composites.

.. Inter-calibration
In this paper, we research the dynamics and the evolution in time of global nightlight,
covering two decades of available data. The comparison between different image-years
must be done with great care. Different satellites have different sensor settings. Also for
the same satellite, the captured images are subject to a natural deterioration of the sensor
over time and of undocumented gain adjustments.
To correct for these effects, we decided to apply the method of Elvidge [], because it is

fully documented, complete and has been used as an academic standard in different pre-
vious studies (e.g. [–] and []). Three calibrating parameters, C, C and C, are cal-
culated for each year and satellite. In this way, the new, inter-calibrated, Digital Numbers
(DN) can be calculated directly from the old numbers, for each image, using the following
equation:

DNnew = C +C∗
 DNold +C∗

DN

old. ()

The inter-calibration coefficients that are provided in the referenced publication only
cover the years  until . However, additional calibration coefficients were found,
for the year , in a not yet published paper by the same authors []. In the end, only the
 image of the satellite F had to be removed from the analysis because no calibration
coefficients were obtainable.
An indicator of the goodness of the calibration is that the Sum of Lights (SOL), i.e. the

sum of all pixel values for a certain region, matches between two composites of the same
year coming from different satellites. Figure  gives the example of China. It can be clearly
seen that the overlaps between the different satellites is much smoother after calibration.

.. Re-projection
The  arc-seconds grid, used in the composite, does not correspond to an equal area at
the surface of the earth. For example, in Quito (on the Equator), one pixel tallies a .
square kilometer surface, whereas in Reykjavik (at °N latitude), it fits a surface less than
half this size, or . square kilometer. Since we want to analyze spatial dynamics of night-
light, a re-projection is needed so that each new pixel or cell in the satellite image corre-
sponds to an equal area at the planet’s surface. For this purpose, the Mollweide projection
was applied. This is a pseudo-cylindrical map projection where the accurate representa-
tion of areas takes precedence over the shape.

3 Literature review
The availability of the digitized and freely downloadable nighttime light images from the
NGDC website is a treasure of data that has instigated new research in economics, social
sciences and environmental studies. Nighttime lights can be remotely sensed, objectively,
at the same time-of-day, in a systematic way, covering the surface of the whole planet. This
is in stark contrast to many widely used economic and demographic indicators, which
are often based on estimates and censuses, where biases, time lags and inaccuracies are
unavoidable and the comparison between different countries is problematic.
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Figure 1 Sum of lights for China before (top) and after (bottom) the inter-calibration.

3.1 Economics
Nighttime lights provide an appealing innovative instrument to measure economic activ-
ity. However, the relationship between economics and light is not entirely trivial, which
makes it difficult to construct reliable estimators. Nevertheless, especially for countries
with poor data quality, the approach can add significant value to existing statistics.
In one of the first economic studies applying nighttime light data, Doll et al. [] used the

 night images of  European countries. They found a very strong linear relationship
(with an R value of .) between the night light energy emission of these countries and
their nominal GDP. This result was further confirmed by Sutton et al. []. Using the Stable
Light product for the year  of the U.S., India, China and Turkey, they found a log-
linear relationship between the night light energy emission and the nominal GDP (with
an R value of .). Similar studies were conducted for China [], India [] and Mexico
[], always using a one-year snapshot only.
In more recent work, Chen and Nordhaus [] and Kulkarni et al. [] link the time

evolution of nighttime light to economic activity. They do not limit their research to one
specific year only, but make use of all of the available data. They conclude that light can
be used as a proxy for nominal GDP, but that this approach only adds value to the offi-
cial statistics for countries with poor reporting standards and low data quality. This was
further confirmed for GDP growth by Henderson et al. [], who found that growth esti-
mates, based on nighttime light images, differ substantially from the official statistics for
countries with low data quality. A case in point is Myanmar. According to the World De-
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velopment Indicator of the World Bank (WDI), the average annual growth rate, between
 and , was %. This is to be compared with a .% estimate based on the night-
time light images. For Burundi, on the other hand, the WDI predicted a GDP decline of
–.%, whereas satellite data implied a growth of .% annually, over that same period.

3.2 Demographics and politics
Persistent light is a clear indicator of the presence of human settlements. An early attempt
to estimate population densities with nighttime light images was done by Sutton []. He
compared data from the  U.S. census with a binary image containing only the satu-
rated pixels. It was found that these images could only explain % of the variation in the
population density of the urban areas in the continental U.S. In a later study, the same au-
thor and collaborators estimated the global human population for the year . He came
up with a figure of . billion people compared to . billion, which was the generally ac-
cepted estimate for that year []. Similar studies were done at the national levels, e.g. for
China [, ] and Brazil []. Light alone may not be a perfect proxy to measure popula-
tions but, combined with other sources, it can substantially add value. It is worth noting
that the Gridded Population of the World (GPW),g which is one of the most widespread
databases of the global population density, uses nighttime lights as one of its many inputs.
Also using nighttime light images, Elvidge et al. [] constructed a global Poverty Index

(PI) by dividing population numbers by the average light. This shows the regions where
people are livingwithout satellite detectable stable light, which is, according to the authors,
an indicator for poverty. After calibrating the indexwith official statistics on poverty, it was
estimated that . billion people livewith an income below $ a day. This is to be compared
with the . billion estimated by the World Bank.
Another application of nighttime light images is themapping andmeasurement of urban

boundaries. This was done by Imhoff et al. [] for urban land areas in the U.S. and later
by Henderson et al. [] for three distinct cities: Lhasa, San Francisco and Beijing. In that
same field, Small et al. [] came upwith the very interesting result that conurbations, with
a diameter larger than  km, account for less than % of all settlements but for about half
the total lighted area worldwide. Other detailed studies on the level of urbanization in
China can be found in [–].
Some authors suggested that conflict related events also could have an impact on the

light emission of a region andmay, as such, be studied by means of nighttime images. One
such study evaluates the U.S. military surge in Iraq in  [], which was aimed to sta-
bilize and rebuild the cities after the war. The authors expected an increase in luminosity
over time, because of the restoration of the electrical infrastructure. However, no observ-
able effect could be found. Another study looked for effects of the wars in the Caucasus
regions of Russia and Georgia []. The authors claim to be able to detect oil fires and
large refugee outflows, as well as settlement (re)construction. In summary, the one-year
time resolution of the images may be too coarse to detect the actual impact of wars, but
for large conflicts with a longer duration, light can be used to study the impact of damages
and the dynamics of reconstruction.
The politics of electricity distribution in certain regions of India was studied by Min

[]. Although there is a relatively reliable network infrastructure, the actual power supply
is by far not sufficient to meet the demand. The decisional power of giving energy to a
certain municipality, district or county is quite centralized and involves political control.
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However, only a weak correlation could be found between the availability of energy in the
municipalities and the political party that won the elections.

3.3 Environmental studies
One obvious application of the night light data is to measure and estimate energy con-
sumption. In an early study, Elvidge et al. [] showed a very strong log-log relationship
(with an R value of .) between the lighted area and the energy consumption at a coun-
try level. Further similar studies were conducted at the national level for India [], Brazil
[] and Japan [].
Asmentioned earlier in Section ., other, probably less known, features recorded in the

light maps are the so-called gas flares. These are combustion devices to burn flammable
gas released during the operations of oil extraction. The gas is burned only for conve-
nience, or for lack of infrastructure, so that the energy is wasted and huge amounts of
CO are released in the atmosphere. The monitoring of this harmful and quite uncon-
trolled activity is motivated by environmental and health concerns, besides energy effi-
ciency reasons. Most gas flares burn uninterruptedly. Consequently, this phenomenon is
still observable in the Stable Lights products. Using night light images, Elvidge et al. [] es-
timated that, in , approximately  billion cubic meters gas were wasted on a global
scale. This is equivalent to % of the total natural gas consumption of the U.S. and has a
retail market value of $ billion and an impact on the atmosphere of  million metric
tons of CO equivalent.
Large forest fires (natural and humanmade) can also be visible from space. Studies were

done to monitor the surface of forests affected by fires in India [], Indonesia [] and
Brazil [].
Even some fishing activities can be seen from outer space. This is the case for a specific

technique where bright lights are mounted on the boats to attract squid. The illumination
can be so intense and persistent that it remains visible after the filtering procedure in the
Stable Lights images. Particular studies on this subject were made for Japan [], where
the spatial and temporal variability of night fishing were analyzed to better understand
the migration of squid. The impact on ecological systems around coral reefs, where the
illumination is seen as a stressor and a threat, was studied by Aubrecht et al. [].
There are many reasons why light pollution can have negative consequences: firstly, as-

tronomical light pollution reduces the number of visible stars and disturbs the scientific
observation of the sky. Secondly, the ecological light pollution represents a threat to entire
ecosystems, substantially altering the behavioral patterns of the animal population (orien-
tation, foraging, reproduction, migration, communication and so on). And finally, wasted
light means also wasted energy. Some human health disorders were also found to be cor-
related with prolonged exposure to light during night. Studies on light pollution, using the
nighttime light images, have been done for Europe [, ] and Iran [].

3.4 Discussion
Making the nighttime light images available for the scientific community has instigated a
lot of research covering a broad range of disciplines. Table  in Appendix A. summarizes
all the publications that were cited in the preceding literature review. This table makes it
possible to do a comparative and a qualitative analysis between the different studies and
may be helpful in setting up a best-practice in using the night images for different research
purposes.
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It can be seen that most of the studies used a single one-year snapshot only, although
the images are available for  satellite-years. More surprisingly, however, is the fact that
quite a few of the analyses that cover multiple years of data did not perform an inter-
calibration of the images. It is known and documented [], however, that the sensors have
different sensitivities (for example, F produced substantially dimmer images []), and
even for the same satellite, in addition to the natural deterioration of the sensor over time,
undocumented gain adjustments were made during its lifetime, so that the comparison
between different image-years is really delicate.
For most of the studies that were subject to this review, the gas flares are not rele-

vant; they should be removed before performing any analysis. However, this operation
was hardly ever done, or else, it was not mentioned explicitly in the publication. This phe-
nomenon is present in at least  countries, notably Russia, Nigeria, Iran, Iraq andAlgeria,
and, especially for small countries (such as Qatar, Kuwait) it could lead to a misinterpreta-
tion of the results, since gas flares can be easily confusedwith small cities. It was calculated
for the year , that gas flares represented . percent of the worldwide light emana-
tion, and in some regions, such as sub-Saharan Africa (e.g. Nigeria) they accounted for
even % of the total illumination [].
Another very important preprocessing operation is the re-projection of the images with

an equal-area method. This is always needed when analyzing spatial extent, because, as
we explained in Section .., the pixels in the  arc-seconds grid represent different land
areas depending on the latitude. Nevertheless, as can be seen in Table  in the Appendix,
this process seems to be often neglected, or, not specifically mentioned in the publication.
Finally, the different products are also available in different versions, depending on the

algorithm that was used for creating the Stable Lights image. It can be seen in Table  that
most publications fail to mention explicitly the specific version. This may complicate the
reproduction and comparison of different studies.
In this research, we tried to follow a best-practice by inter-calibrating and re-projecting

the different images and removing the gas flares. The Stable Lights dataset version  []
was used.

4 Results
4.1 The planet’s mean center of light
In a recent study by the McKinsey Global Institute [], called ‘Urban World: Cities and
the rise of the consuming class’, a method is presented to calculate the economic center
of gravity of the world. The research uses data and approximations from the year  CE
until . Additionally, projections are given until . The result shows that, propelled
by the industrialization and urbanization of Europe and the U.S., the economic center of
gravity (located near Kabul at year ) has been gradually shifting towards the northwest
(up to the vicinity of Reykjavik) until around . After that, driven by the rise of Japan,
the regime shifted and the dynamic reversed. Since then, in the last  years, the eco-
nomic center of gravity has been moving back eastwards rapidly. The most recent decade,
between  and , has seen the fastest rate of change, in global economic balance,
in history. During this period, the world’s economic center of gravity has shifted by about
 kilometers per annum. Figure  graphically demonstrates the result of this study.
The inter-calibrated nighttime light images that are at our disposal cover the period

between  and . This includes exactly the period of the dramatic regime shift that
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Figure 2 The dynamic of the global center of gravity (GDP based) from year 1 to 2010, and the
projection for 2025. Source: [2]

Figure 3 The dynamic of the light mean center for the different satellites and years. Note the strong
shift eastwards. The amplitude of the movement, between 1992 and 2009, is about 1,000 km; this is roughly
half the estimate of MGI.

can be seen in the MGI study. Therefore, we decided to challenge this fascinating study
and compare the dynamics of the economic center of gravity with the center of gravity
of nighttime light emissions. This was calculated as follows: First, the Digital Numbers of
all pixels for one specific satellite and one specific year were added up for each country
individually. This resulted in one DN-sum positioned at the centroid of each country. The
position of the mean center is the average x and y co-ordinate of these centroids using
the DN-sums as weights. Because we have different yearly observations for each satellite
image, we can observe the dynamics of this light mean center.
Figure  gives the results per satellite and year; Figure  shows the result per satellite

over the years of its operation. The first fact is that the location of the light center de-
viates substantially from the economic center. Although the distinction could be partly
explained by the use of different projection methods,h this demonstrates that the com-
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Figure 4 The dynamic of the light mean center for the different satellites. Here, the centroids are
calculated on the average sum of lights per satellite (labeled), in order to emphasize the direction of the shift.
Each satellite covers the year span indicated in the legend.

parison of light and economic indicators is non-trivial. The direction of the movement,
however, appears to be consistent: there is a clear and strong southeastern shift, though
the speed of this move is much smaller for the light center than for the economic center.
The amplitude of the light movement is about , km between  and ; this cor-
responds to about  km per year, which is less than half of the  km from theMcKinsey
study. Even though there are some quantitative differences with the economic approach
that was followed by the McKinsey Global Institute [], which comes from the non-trivial
relationship between economics and light, as we discussed in the review Section ., this
result strongly demonstrates that nighttime light satellite images provide a powerful tool
to monitor the global rebalancing of economic power.

4.2 The spatial light Gini coefficient
In this section, we analyze the distribution of nighttime light for different countries. More
specifically, we want to understand the level of ‘centralization’ of light. For this purpose,
we will calculate spatial light Gini coefficients. These measure, in one single number, how
the light is distributed over the area of a country. The lowest value of  corresponds to
a complete equality, whereas the highest value of  is indicative for a total inequality; the
higher the value, the more centralized the spatial distribution of light is. In our under-
standing, there are three distinct reasons why a country A would have a higher spatial
light Gini coefficient than a country B, or, why the spatial light distribution in country A
is more centralized:
• In country A, the small settlements occupy a larger fraction of the surface than the
bright cities; the country area with low pixel values is relatively higher than the area
with high pixel values;

• In country A, the light emission of the cities is brighter; this is difficult to measure,
however, because of the saturation effect of the satellite sensors;
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Figure 5 The Lorenz curves and Gini coefficients for selected countries in 1992. The variable ‘area’
indicates the amount of square kilometers (in thousands) in the country corresponding with pixels that have
a DN higher than the lower cutoff value (in this case DN ≥ 0).

• In country A, there is a lower light emission in the small settlements.

Often, in reality, the reason may as well be a combination of these three.
Figure  gives the Lorenz curves and the Gini coefficients for a selected group of coun-

tries. It can be seen that the coefficients cover a wide range from a value of . for the
Netherlands to . for Brazil. In these calculations, the full range of pixel values in the
images was used, including the ones with a Digital Number (DN) equal to zero, which
correspond to areas where there is no light emission. However, in most cases, this means
that these calculations also take into account the portion of land that is inhabitable. Conse-
quently, the huge difference between theNetherlands and Brazil hasmainly a geographical
explanation: a large portion of Brazil is covered by theAmazonian rainforest whereasmost
of the Netherlands is habitable.
In Figure , we corrected for this by excluding the zero-pixels from the calculations.

Thus, the Gini coefficients are calculated for land area that has a DN greater than, or
equal to, . As such, we have removed all the unlit land from the analysis. The results
are much different now, and the gap between the countries has, to a large extent, disap-
peared with coefficients ranging from . to .. This is quite astonishing, especially if
we compare the areas: the U.S. has a lit area more than  times that of the Netherlands,
yet, their Lorenz curves and the Gini coefficients are very similar. We take this approach a
step further and gradually increase the lower cutoff of the Digital Numbers. The result is
presented in Figures  and . It can be seen that the Lorenz curves and theGini coefficients
quickly converge for every country. This result suggests that the spatial configuration of
the settlements follows a universal pattern across these different countries, even though
the considered area can differ up to two orders of magnitude.
This part of the analysis has mainly focused on a one-year snapshot. Let us now take a

look at the historical evolution of the spatial light Gini coefficients for the selected coun-
tries. The left graph in Figure  gives the result without using any pixel value threshold.
The graphs are basically flat, suggesting that no dynamical change in the distribution
of nighttime light occurred. This is not a surprise because the result is dominated by the
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Figure 6 The Lorenz curves and Gini coefficients for selected countries in 1992, with a threshold pixel
value greater than or equal to 1. The variable ‘area’ indicates the amount of square kilometers (in
thousands) in the country corresponding with pixels that have a DN higher than the lower cutoff value.

Figure 7 The Lorenz curves and Gini coefficients for selected countries in 1992, with increasing
thresholds. Note how the Lorenz curves and the Gini coefficients converge. At the threshold of DN ≥ 25, i.e.
still far below the middle of the spectrum, the Netherlands and United States have the same Gini coefficient,
although the considered lit area differs by a factor of 35.
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Figure 8 The change in the Gini coefficient for selected countries in 1992 using increasing thresholds.

non-habitable land in the analysis.Whenwefilter the images, however, and only take those
pixels into accountwhich have aDNhigher than , the result is quite different. Now, a clear
rise can be seen for all countries. This is presented in the right graph of Figure .
This suggests that spatial light has gradually centralized over the past  years. This can

be explained as follows:
• The dimly lit area increased proportionally more than the brighter area. This suggests
that villages and small settlements have been built (respectively electrified) over a
surface greater than the one occupied by the city growth;

• The brightness of the cities increased proportionally more than the brightness of the
small settlements. Assuming, for example, that the illuminated area did not change, in
order for the Gini coefficient to rise, the brighter pixels have to increase their DN
proportionally more than the dimmer ones;

• The overall brightness of the small settlements decreased, so that the relative share of
luminosity taken by the bright lit agglomerations increased, driving the Gini
coefficient up.

4.3 Bright versus dimly lit areas
We have come to the conclusion that spatial light Gini coefficients have gradually in-
creased over the timeline of our observations, which is the past  years. Now, we will
further analyze the process behind this observation. It is important to mention that, be-
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Figure 9 The historical evolution of the Gini coefficients for selected countries without any filtering
(up) and using a threshold of DN > 4 (down).

cause of the pixel saturation in bright areas, it is not possible to use the nighttime light
images to study changes in brightness. Thus, given the limitation of the tools at our dis-
posal, we will have to focus on the change and evolution in the surface size of bright versus
dimly lit areas.
In order to separate bright from dimly lit areas, binary images were produced using

a threshold technique. Any pixel with a Digital Number higher than  and less than or
equal to  was classified as dim; any pixel with a DN higher than  was classified as
bright. This was done for the global image of the two individual years  and . The
result of this exercise, for a total of  countries,i is given in an extensive Table  in the
Appendix. A small extract from this table, showing the results for the BRIC countries, the
U.S. and the World is summarized in Table . It can be seen that between  and ,
the worldwide dimly lit surface grew %, whereas the bright area expanded %. From
the table, it becomes clear that the area of dimly lit settlements has, both in relative as
in absolute terms, increased more than the area of the bright cities. It may be counter-
intuitive, but this is the major driver behind the observed increase in spatial light Gini
coefficients over that period.
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Table 2 Change in the lit area in the world and in selected countries between 1992 and 2009

Change of dimly lit area Change of bright area

Absolute (km2) Percent Absolute (km2) Percent
China +574,609 +81.41% +95,394 +225.76%
India +448,852 +48.41% +21,380 +80.95%
Brazil +243,648 +94.19% +21,232 +57.86
Russia +261,858 +36.33% –25,231 –24.85%
USA +511,651 +81.41% –6,316 –1.44%
World +4,543,889 +48.92% +261,530 +19.43%

A pixel threshold of 30 is applied to classify dim versus bright pixels.

Figure 10 Evolution of the area with DN > 30 for the countries with the highest absolute increase
between 1992 and 2009.

To give a more dynamical view of the process observed in the table, Figure  shows
the evolution of the total bright area, in square kilometers, for the four countries with the
largest increase between  and . Three of the four BRIC countries are dominating
the ranking, China outclassing the other twowith an impressive absolute (, km) and
relative (%) growth. A clear concentration in the area around Shanghai and Shenzhen-
Guangzhou could be seen. To show this, we generated images, which can be found in the
Appendix A.. The high ranking of Egypt may come as a surprise. This is, however, the
result of the remarkable development of the delta and the coast along the Nile. For the
images, demonstrating these assertions, we refer to the Figures - in the Appendix.
It is also worthwhile mentioning that the evolutions of India and Brazil have been more
diffuse. No clearly defined hot spots could be observed during the analysis, as was the case
for China and Egypt.
Not all countries have seen an increase in bright area. A different dynamic is demon-

strated in Figure . The graph shows the four countries with the largest absolute decrease.
We can see two different processes at work here. For Russia and the Ukraine, the absolute
decrease in the bright area goes hand in hand with a decrease in the urban population.
This is further demonstrated in the table in Table , which gives an overview of the coun-
tries where the decrease of bright areas coincided with a considerable reduction of the
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Figure 11 Evolution of the area with DN > 30 for the countries with the largest absolute decrease
between 1992 and 2009.

Table 3 List of countries where the decrease of bright areas between 1992 and 2009
coincided with a considerable reduction of the urban population

Bright area change Urban population change

Absolute (km2) % Absolute (people) %
Russia –25,231 –24.85% –5,842,556 –5.35%
Ukraine –9,899 –62.87% –3,543,432 –10.16%
Moldova –610 –77.81% –249,382 –14.43%
Lithuania –84 –10.41% –256,730 –10.28%
Latvia –17 –3.14% –269,613 –14.92%
Georgia –11 –2.30% –332,121 –12.48%

The urban population figures are estimates from the World Bank [49].

urban population. In Canada and the United Kingdom, on the other hand, another pro-
cess is at work. For those countries, we conjecture that the decrease is the result of the
Light Pollution abatement programs. In Canada, various programs were introduced after
 to actively reduce the artificial sky brightness, notably from street and public lighting
[]. Theworldwide reference for such programs is the International Dark-Sky association
[].

4.4 Dynamics of agglomerations
In this final section presenting our results, wewill analyze agglomerations instead of coun-
tries. The goal is to identify the largest and respectively the most rapidly growing conur-
bations. We decided, however, not to use the administrative boundaries but to define ag-
glomerations using a threshold method combined with a segmentation function to iden-
tify the size of each contiguous cluster. Like in the previous analysis of countries, a binary
version of each image is made. All pixels with a digital number above the threshold are
given a value of , the others, a value of . Next, using the -pixel Von Neumann neigh-
borhood connectivity, the clusters’ sizes are calculated and the name of the biggest and
closest city is assigned by visual inspection. The results for different threshold are pre-
sented in Figure  and Tables  and . The regions were named after the included city
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Figure 12 Largest contiguous light agglomerations detected with increasing thresholds: 30 (upper),
40 (middle) and 50 (bottom). The Western cities, in the left part of the graph, show a stable or slightly
decreasing trend, whereas the other half experienced an incredible growth. Note how the trends are
independent of the chosen threshold. Interesting are the remarkable growth of Cairo, due to the
extraordinary development of the Nile Delta, and the agglomeration of Milano, resulting from the
coalescence with the surrounding Monza, Bergamo and Brescia.
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Table 4 The 20 largest contiguous light agglomerations in 1992, with different DN thresholds

DN > 30 DN > 40 DN > 50

Area (km2) City Area (km2) City Area (km2) City
37,940 New York 26,533 New York 20,584 New York
18,263 Brussels 11,753 Tokyo 8,640 Tokyo
15,310 Tokyo 11,495 Boston 7,895 Los Angeles
14,101 Boston 10,812 Chicago 7,514 Boston
13,791 Liverpool 10,738 Brussels 6,761 Chicago
13,069 Chicago 9,159 Toronto 5,599 Washington
11,691 Toronto 7,452 Washington 4,588 Nagoya
10,249 Los Angeles 6,895 London 4,513 Dallas
8,568 Washington 6,231 Nagoya 4,419 London
8,541 London 5,834 Dallas 4,266 Houston
7,680 Nagoya 5,455 Houston 3,990 Osaka
6,999 Montreal 5,366 Osaka 3,882 Detroit
6,755 Osaka 5,219 Köln 3,716 Toronto
6,639 Milano 4,963 Montreal 3,700 Miami
6,473 Köln 4,860 Detroit 3,587 Cleveland
6,321 Dallas 4,745 Cleveland 3,500 San Francisco
6,098 Huston 4,533 Milano 3,464 Atlanta
6,083 Detroit 4,330 San Francisco 3,232 Montreal
5,796 Shenzhen 4,303 Tampa 3,067 Köln
5,723 Cleveland 4,238 Miami 2,920 Paris

Table 5 The 20 largest contiguous light agglomerations in 2009, with different DN thresholds

DN > 30 DN > 40 DN > 50

Area (km2) City Area (km2) City Area (km2) City
38,418 New York 21,750 New York 17,649 New York
29,171 Cairo 11,889 Chicago 9,143 Shenzhen
19,970 Milano 11,607 Shenzhen 8,113 Tokyo
15,496 Brussels 11,016 Cairo 8,049 Chicago
14,836 Shenzhen 10,468 Tokyo 7,798 Los Angeles
14,146 Chicago 9,119 Boston 5,957 Cairo
13,810 Tokyo 8,672 Los Angeles 5,952 Boston
12,441 Boston 7,503 Tampa 5,526 Dallas
10,713 Shanghai 7,149 Brussels 5,343 Atlanta
10,225 Orlando 6,555 Seoul 5,046 Washington
9,732 Los Angeles 6,316 Washington 4,998 Houston
8,613 Dubai 6,300 Atlanta 4,912 Seoul
8,213 Seoul 6,261 Dallas 4,142 Detroit
7,978 Atlanta 5,826 Huston 4,088 Osaka
7,623 Toronto 5,799 Milano 4,004 Milano
7,415 Tel Aviv 5,709 Shanghai 3,914 Sao Paulo
7,372 Dallas 5,440 Nagoya 3,900 Nagoya
7,256 Moscow 5,201 Luxor 3,836 London
7,041 London 5,185 Detroit 3,753 Miami
6,825 Huston 5,176 London 3,518 Luxor

with the largest population, but often embrace also other cities. For example, whatever
the threshold value, the New York light region also includes Philadelphia, Bridgeport and
Hartford. Note in particular the newcomers in  from China (Shenzhen, Shanghai),
Korea (Seoul), Egypt (Cairo), and Brazil (Sao Paulo). Clearly, a diverging dynamic is ob-
servable between agglomerations in developing countries, which have seen an extraordi-
nary growth, and agglomerations in developed countries, which have seen stagnation and
even a decrease in size.
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5 Conclusions
In this research paper, we have analyzed the dynamics, and the spatial distribution of
nightlight. We started with an extensive literature review, which made it possible to do
a comparative and a qualitative analysis of the broad range of preceding studies. This
allowed us to set up a best-practice for the use of nighttime light images in different
research projects. Firstly, when covering multiple years of data, we recommend that an
inter-calibration of the images should be performed. Then, if not relevant for the study,
the gas flares should be removed. Next, a re-projection of the images with an equal-area
method should be carried out. And finally, to make reproduction and comparison of dif-
ferent studies possible, each analysis should explicitly mention the version of the Stable
Lights product being used.
Using anArcGIS software package, we first calculated the dynamics of our planet’smean

center of light. It was found that, over the past  years, this has been gradually shifting
eastwards over a distance of roughly , km, at a pace of about  km per year. This is
less than half of the  kmper year based onGDP as has been calculated by theMcKinsey
Global Institute [].
Then, we introduced the new concept of spatial light Gini coefficients. When removing

non-habitable land from the calculations, we came up with the astonishing result that
the Lorenz curves and the Gini coefficients converge for all the countries in our analysis.
This result suggests that the spatial configuration of settlements follows a universal pattern
across different countries, even though the considered areas can differ by up to two orders
of magnitude.
When looking at the historical evolution of the spatial light Gini coefficients, we saw a

gradual increase over the time span of our observations, which is the past  years. This is
indicative of a centralization of light. A detailed analysis revealed that, between  and
, the worldwide dimly lit surface grew %, whereas the bright area expanded %.
The total area of dimly lit settlements has, both in relative as in absolute terms, increased
more than the area of the bright cities. It may be counter-intuitive, but this is the major
driver behind the observed increase in spatial light Gini coefficients over that period.
This research was further completed with a detailed analysis of bright light (city) growth

covering  different countries. The results showed that nighttime light images provide
the perfect tool to monitor the expansion of developing countries (like India and Brazil),
the growth of new agglomeration sizes (like Shanghai in China or the Nile delta in Egypt),
the regression in countries suffering from demographic decline and a reduction in urban
population (like Russia and the Ukraine) and the success of light pollution abatement pro-
grams in western countries like Canada and the United Kingdom.
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Appendix
A.1 Evaluation table: literature review

Table 6 Evaluation of data andmethods used in the selected publications
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Economic activity [14] X X
[15] X
[9] 2 X X X
[16] X X X
[17] X X
[12] 4 X X
[18] X
[5] 4 X X

Demographics/politics [19] X
[20] X X
[21] X X
[22] 2 X X
[23] X
[6] X
[25] X X
[26] X
[27] X
[28] X X X
[29] X X
[30] 4 X X
[31] 1 X X
[32] 4 X X
[33] X

Environmental [34] X X
[38] X
[36] X
[37] X X
[38] X
[39] X
[40] X
[41] X
[42] X
[43] X X
[44] X X
[45] X

TOTAL 35 7 20 15 5 3 14

Only a minority of the publications performed an accurate preprocessing of the database. The cells were left blank if the
operation was not explicitly mentioned in the study.
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A.2 Change in bright areas

Table 7 Change in bright areas for all the countries that have been analyzed, in decreasing
order from the largest absolute increase
Country 1992 2009 Diff %
China 42,255 137,649 +95,394 +226%
India 26,411 47,791 +21,380 +81%
Brazil 36,694 57,926 +21,232 +58%
Egypt 12,231 32,973 +20,742 +170%
Italy 41,167 57,662 +16,495 +40%
Iran 16,085 30,700 +14,615 +91%
Spain 25,768 40,191 +14,423 +56%
Saudi Arabia 20,230 31,901 +11,671 +58%
South Korea 9,173 20,389 +11,216 +122%
Mexico 25,726 34,750 +9,024 +35%
Argentina 11,607 19,906 +8,299 +71%
Thailand 5,320 12,682 +7,362 +138%
Malaysia 3,120 10,422 +7,302 +234%
Portugal 4,208 10,709 +6,501 +154%
France 35,514 41,569 +6,055 +17%
Poland 9,978 15,713 +5,735 +57%
United Arab Emirates 4,767 9,657 +4,890 +103%
Turkey 6,896 11,617 +4,721 +68%
Vietnam 417 4,784 +4,367 +1,047%
Indonesia 5,214 9,152 +3,938 +76%
Ubya 2,748 6,272 +3,524 +128%
Israel 4,971 8,026 +3,055 +61%
Oman 1,757 4,548 +2,791 +159%
Algeria 4,296 6,934 +2,638 +61%
Chile 2,664 5,128 +2,464 +92%
Greece 2,836 5,215 +2,379 +84%
Taiwan 6,749 8,802 +2,053 +30%
Romania 1,334 3,287 +1,953 +146%
Croatia 651 2,420 +1,769 +272%
Morocco 2,350 4,113 +1,763 +75%
Jordan 1,126 2,867 +1,741 +155%
Ecuador 1,606 3,230 +1,624 +101%
Peru 1,823 3,436 +1,613 +88%
Colombia 5,769 7,303 +1,534 +27%
Pakistan 8,411 9,825 +1,414 +17%
Australia 12,303 13,696 +1,393 +11%
Switzerland 4,121 5,468 +1,347 +33%
Kuwait 1,180 2,411 +1,231 +104%
Syria 2,241 3,389 +1,148 +51%
Austria 2,439 3,568 +1,129 +46%
Serbia 1,268 2,373 +1,105 +87%
Qatar 928 2,005 +1,077 +116%
Venezuela 10,770 11,800 +1,030 +10%
Philippines 1,464 2,480 +1,016 +69%
Angola 228 1,211 +983 +431%
Trinidad and Tobago 639 1,620 +981 +154%
Yemen 577 1,483 +906 +157%
Finland 11,059 11,937 +878 +8%
Ireland 1,706 2,493 +787 +46%
Tunisia 1,918 2,613 +695 +36%
Bolivia 861 1,547 +686 +80%
Lebanon 530 1,203 +673 +127%
Bosnia 11 639 +628 +5,709%
Paraguay 759 1,379 +620 +82%
Sudan 920 1,508 +588 +64%
Cuba 510 1,060 +550 +108%
South Africa 13,297 13,834 +537 +4%
Hungary 2,092 2,610 +518 +25%
Slovenia 387 893 +506 +131%
Uruguay 957 1,438 +481 +50%
Guatemala 553 1,014 +461 +83%
Cyprus 634 1,094 +460 +73%
Czech Republic 4,827 5,249 +422 +9%
Turkmenistan 1,091 1,498 +407 +37%
Myanmar 268 673 +405 +151%
Honduras 396 792 +396 +100%
Estonia 687 1,073 +386 +56%
Ghana 688 1,072 +384 +56%
Mozambique 170 532 +362 +213%
Dominican Republic 796 1,151 +355 +45%
Afghanistan 189 499 +310 +164%
Brunei 236 546 +310 +131%
Albania 16 291 +275 +1,719%
Panama 520 788 +268 +52%
Sri Lanka 517 758 +241 +47%
Norway 7,671 7,903 +232 +3%
Senegal 186 396 +210 +113%
Cote d,lvoire 400 605 +205 +51%
El Salvador 427 632 +205 +48%
Cambodia 33 209 +176 +533%

Country 1992 2009 Diff %
Nigeria 2,978 3,173 +195 +7%
Laos 60 239 +179 +298%
Macedonia 250 422 +172 +69%
Ethiopia 151 301 +150 +99%
Iraq 4,531 4,680 +149 +3%
Nicaragua 295 441 +146 +49%
Burkina Faso 118 256 +138 +117%
Botswana 158 295 +137 +87%
Armenia 204 338 +134 +66%
Mali 121 254 +133 +110%
Bulgaria 1,213 1,339 +126 +10%
Benin 86 194 +108 +126%
Costa Rica 923 1,027 +104 +11%
Kosovo 90 194 +104 +116%
Zambia 592 695 +103 +17%
Malawi 186 285 +99 +53%
Montenegro 87 180 +93 +107%
Mauritania 60 150 +90 +150%
Suriname 112 196 +84 +75%
Uganda 97 178 +81 +84%
Swaziland 67 142 +75 +112%
Mongolia 245 311 +66 +27%
Lesotho 34 92 +58 +171%
Namibia 235 287 +52 +22%
Guinea 54 104 +50 +93%
Tanzania 297 345 +48 +16%
Cameroon 291 337 +46 +16%
Gabon 169 215 +46 +27%
The Gambia 21 63 +42 +200%
Bahamas 221 262 +41 +19%
Belize 32 70 +38 +119%
Haiti 68 97 +29 +43%
Madagascar 72 98 +26 +36%
Chad 39 63 +24 +62%
Togo 118 138 +20 +17%
Djibouti 14 32 +18 +129%
Sierra Leone 10 25 +15 +150%
Guyana 34 47 +13 +38%
Timor Leste 3 16 +13 +433%
Niger 106 118 +12 +11%
Eritrea 33 41 +8 +24%
Vanuatu 9 14 +5 +56%
Congo 247 249 +2 +1%
Fiji 26 24 –2 –8%
Guinea-Bissau 7 0 –7 –100%
New Zealand 1,975 1,966 –9 –1%
Rwanda 70 61 –9 –13%
Burundi 44 34 –10 –23%
Georgia 478 467 –11 –2%
Latvia 542 525 –17 –3%
Central African 33 14 –19 –58%
Nepal 146 126 –20 –14%
North Korea 95 66 –29 –31%
Kenya 467 437 –30 –6%
Jamaica 564 518 –46 –8%
Papua New 183 123 –60 –33%
Congo, DRC 557 479 –78 –14%
Lithuania 807 723 –84 –10%
Kyrgyzstan 559 419 –140 –25%
Netherlands 11,250 11,046 –204 –2%
Iceland 616 397 –219 –36%
Bangladesh 1,2S4 1,012 –242 –19%
Azerbaijan 1,306 1,009 –297 –23%
Zimbabwe 868 494 –374 –43%
Tajikistan 634 149 –485 –76%
Belarus 3,052 2,541 –511 –17%
Moldova 784 174 –610 –78%
Germany 34,373 33,505 –868 –3%
Denmark 3,170 1,901 –1,269 –40%
Slovakia 2,684 1,256 –1,428 –53%
Kazakhstan 6,811 5,366 –1,445 –21%
Japan 59,241 57,409 –1,832 –3%
Belgium 14,195 12,166 –2,029 –14%
Uzbekistan 5,603 2,606 –2,997 –53%
Sweden 14,654 9,020 –5,634 –38%
United States 438,324 432,008 –6,316 –1%
United Kingdom 43,746 36,220 –7,526 –17%
Ukraine 15,745 5,846 –9,899 –63%
Russia 101,529 76,298 –25,231 –25%
Canada 79,571 52,176 –27,395 –34%

A bright lit area has pixels with a DN > 30.
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A.3 The Nile delta, Shanghai and Shenzhen-Guangzhou

Figure 13 Nile delta in 1992 (left) and 2009 (right). Nearly the totality of light emission of Egypt comes
from this area and the coast of the Nile. Note the consolidations along the interconnections between the
settlements.

Figure 14 Impressive growth of lights in China around Shanghai from 1992 (left) to 2009 (right).

Figure 15 Lights growth for the agglomeration of Shenzhen-Guangzhou from 1992 (left) to 2009
(right).

http://www.epjdatascience.com/content/3/1/2
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Endnotes
a http://www.ngdc.noaa.gov/dmsp/dmsp.html (Accessed Feb 2013).
b http://www.ngdc.noaa.gov/dmsp/sensors/ols.html (Accessed Feb 2013).
c ArcGIS Desktop 10.0, Service Pack 5.
d Environmental Systems Institute - http://www.esri.com (Accessed Feb 2013).
e Matlab 7.12.0.
f http://www.ngdc.noaa.gov/dmsp/interest/gas_flares_countries_shapefiles.html (Accessed Feb 2013).
g http://sedac.ciesin.columbia.edu/data/collection/gpw-v3 (Accessed Feb 2013).
h In this study, the ‘Mean Center’ function of ArcGIS is used on the maps, after the Mollweide projection was applied.

More details on the McKinsey Global Institute’s approach can be found in their publication [2].
i Countries with an area of less than 5,000 square kilometres (mainly islands) were excluded because of misleading
results in the percentages. A total of 160 countries remained in the database.
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