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Abstract
Large scale analysis of source code, and in particular scientific source code, holds the
promise of better understanding the data science process, identifying analytical best
practices, and providing insights to the builders of scientific toolkits. However, large
corpora have remained unanalyzed in depth, as descriptive labels are absent and
require expert domain knowledge to generate. We propose a novel weakly
supervised transformer-based architecture for computing joint representations of
code from both abstract syntax trees and surrounding natural language comments.
We then evaluate the model on a new classification task for labeling computational
notebook cells as stages in the data analysis process from data import to wrangling,
exploration, modeling, and evaluation. We show that our model, leveraging only
easily-available weak supervision, achieves a 38% increase in accuracy over
expert-supplied heuristics and outperforms a suite of baselines. Our model enables us
to examine a set of 118,000 Jupyter Notebooks to uncover common data analysis
patterns. Focusing on notebooks with relationships to academic articles, we conduct
the largest study of scientific code to date and find that notebooks which devote an
higher fraction of code to the typically labor-intensive process of wrangling data in
expectation exhibit decreased citation counts for corresponding papers. We also
show significant differences between academic and non-academic notebooks,
including that academic notebooks devote substantially more code to wrangling and
exploring data, and less on modeling.
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1 Introduction
Data analysis is central to the scientific process. Increasingly, analytical results are derived
from code, often in the form of computational notebooks, such as Jupyter notebooks [1].
Analytical code is becoming more frequently published in order to improve replication
and transparency [2–4]. However, as of yet no tools exist to study unlabeled source code
both at scale and in depth. Previous in depth analyses of scientific code heavily rely on
expert annotations, limiting the scale of these studies to the order of a hundred exam-
ples [5, 6]. Large-scale studies across thousands of examples have been limited to simple
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summaries such as the number or nature of imported libraries, total line counts, or the
fraction of lines that are used for comments [6–8]. The software engineering community
has emphasized the inadequacy of these analyses, noting that “there is a strong need to
programmatically analyze Jupyter notebooks” [9], while HCI researchers have observed
that studying the data science process through notebooks may play a role in addressing
the scientific reproducability crisis [5, 10].

Automated annotation tools could enable researchers to answer important questions
about the scientific process across millions of code artifacts. Do analysts share common
sequential patterns or processes in their code? Do different scientific domains have differ-
ent standards or best practices for data analysis? How does the content of scientific code
relate to the impact of corresponding publications? To draw insights on the data science
process, previous work has conceptualized the analysis pipeline as a sequence of discrete
stages starting from importing libraries and wrangling data to evaluation [11–13]. Build-
ing on this conceptual model, our goal is to develop a tool that can automatically annotate
code blocks with the analysis stage they support, enabling large-scale studies of scientific
data analysis to answer the questions above.

Analyzing scientific code is particularly difficult because as a “means to an end” [14], sci-
entific code is often messy and poorly documented. Researchers engage in an iterative pro-
cess as they transition between tasks and update their code to reflect new insights [15, 16].
As such, a computational notebook may interleave snippets for importing libraries, wran-
gling data, exploring patterns, building statistical models, and evaluating analytical results,
thereby building a complex and frequently non-linear sequence of tasks [5, 11]. While
some analysts use markdown annotations, README’s, or code comments to express the
intended purpose of their code, these pieces of documentation are often sparse and rarely
document the full analysis pipeline [6]. Domain-specific best practices, techniques, and
libraries may additionally obfuscate the intent of any particular code snippet. As a result,
interpreting scientific code typically requires significant expertise and effort, making it
prohibitively expensive to obtain ground truth labels on a large corpus, and therefore in-
feasible to build annotation tools which require anything more than minimal supervision.

In this paper, we present COde RepresentAtion Learning with weakly supervised trans-
formers (CORAL) to classify scientific code into stages in the data analysis process. Im-
portantly, the model requires only easily available weak supervision in the form of five
simple heuristics, and does not rely on any manual annotations. We show that CORAL
learns new relationships beyond the information provided by these heuristics, indicating
that currently popular transformer architectures [17] can be extended to weakly super-
vised tasks with the addition of a small amount of expert guidance. Our model achieves
high agreement with human expert annotators and can be scaled to analyze millions of
code artifacts, uniquely enabling large-scale studies of scientific data analysis.

We describe a new task for classifying code snippets as stages in the data analysis process
(Sect. 3.1). We provide an extension to a corpus of 1.23M Jupyter Notebooks (Sect. 3.2): a
new dataset of expert annotations of stages in the data analysis process for 1840 code cells
in 100 notebooks, which we use exclusively for evaluation and not for training (Sect. 3.3).

Next we describe CORAL (Sect. 4): a novel graph neural network model for embed-
ding data science code snippets and classifying them as stages in the data science process.
To capture semantic clues about the analyst’s intention, CORAL uses a novel masked at-
tention mechanism to jointly model natural language context (such as markdown com-
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ments) with structured source code (Sect. 4.2). We implement a weakly supervised ar-
chitecture with five simple heuristics to compensate for the absence of labels, as labeling
code requires domain expertise and is therefore expensive and infeasible at massive scale
(Sect. 4.3). To further compensate for limited labels, CORAL combines this weak supervi-
sion with unsupervised topic modeling (Sect. 4.4) into a multi-task optimization objective
(Sect. 4.5).

We evaluate our model (Sect. 5) by comparing it to baselines including expert heuris-
tics, weakly supervised LDA, and state-of-the-art neural representation techniques such
as BERT [18], Word2Vec [19], Tree-LSTM [20] and Tree-Based CNN [21] (Sect. 5.1).
We demonstrate that CORAL, using both code and surrounding natural language an-
notations, outperforms expert heuristics by 36% and significantly outperforms all other
baselines. Through an ablation study we demonstrate that increased maximum sequence
length M, weak supervision and unsupervised topic modeling all strictly improve perfor-
mance, and that including markdown improves performance on cells without associated
markdown by 13% (Sect. 5.2). This demonstrates that CORAL learns effective joint repre-
sentations of code and markdown that generalize to settings where only code is available
and improve performance even when additional markdown information is unavailable.
Further, we explore the impact of maximum input size and dataset size on our model’s
performance (Sect. 5.3), showing that CORAL significantly outperforms all baselines even
when trained on only 1k examples. In a comprehensive error analysis, we demonstrate that
previously unseen data science functions are correctly labeled with appropriate analysis
stages (Sect. 5.4).

We then deploy our model to resolve previously unanswered questions about data anal-
ysis by linking academic notebooks and associated publications to conduct the largest
ever study of scientific code (Sect. 6). We find that (1) there are significant differences
between academic and non-academic papers, (2) that papers which include references to
notebooks receive on average 22 times the number of citations as papers that do not, and
(3) that papers linked to notebooks that more evenly capture the full data science pro-
cess in expectation receive twice the number of citations for every one standard deviation
increase in entropy between stages.

In summary, the contributions of this paper are:
• A new task and public dataset for classifying Jupyter cells as stages in the data science

process (Sect. 3).
• A multi-task, weakly supervised transformer architecture for classifying code snippets

which jointly models natural language and code (Sect. 4).
• A comprehensive evaluation of code representation learning methods (Sect. 5).
• The largest study of scientific code to date (Sect. 6).

We make all code and data used in this work publicly available at http://bdata.cs.
washington.edu/coral/.

2 Related work
2.1 Representation learning for source code
Early methods for code representational learning treated source code as sequence of to-
kens and built language models on top [22–26]. Later work incorporated additional infor-
mation specific to source code, such as object-access patterns [27], code comments [28],
parse trees [29], serialized Abstract Syntax Trees (ASTs) [30, 31], ASTs as graph structures
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[21, 32], associated repository metadata [33], and logs [34]. As documentation (in mark-
down format) is prevalent in Jupyter notebooks [6], our model incorporates both mark-
down text and graph-structured ASTs, taking advantage of both semantic and structural
information.

Due to the scarcity of labeled examples, most previous work learned code representa-
tions without supervision [26, 35–38]. The learned representations were mostly used for
hole completion tasks, including the prediction of self-defined function names [35], API
calls [37, 38], and variable names [26, 36]. In contrast, our task – classifying code cells as
analysis stages – arguably requires a higher level understanding of the intention of code.
To overcome the bottleneck of manual labeling, we turn to weak supervision. Snorkel [39]
combined labels from multiple weak supervision sources, denoised them, and used the
resulting probabilistic labels to train discriminative models. Building on this idea, we in-
troduce weak supervision to code representation learning by leveraging a small number
of expert-supplied heuristics.

2.2 Graph neural networks
GNNs are powerful tools for a variety of tasks, including node classification [40, 41], text
classification [42], link prediction [43, 44], graph clustering [45, 46] and graph classifica-
tion [46–49]. Additional work suggests that feeding underlying graphical syntax to a nat-
ural language model can improve generalization and overall performance [20, 50]. Tree
structures have been show to help summarize source code [51], and complete code snip-
pets [32, 52] in code representation learning. We build on prior work in attention-based
graph neural networks [53] and adopt a self-attention mechanism in our model that jointly
learns from ASTs and markdown text.

2.3 Studies of data analysis practices
There is significant existing research on understanding data analysis practices (e.g., [5, 10,
11, 13, 15]), mostly using qualitative methods to elicit experiences from analysts. Some
interviews focused specifically on Jupyter notebook users [6, 10]. Despite synthesizing
rich observations, interview studies were limited to dozens of participants. A few studies
conducted large-scale analysis of Jupyter notebooks, but were limited to simple summary
statistics [6], a single library [7], or code quality [8]. Our model enables the analysis of
data science both at scale and in depth, which may validate and complement findings from
previous qualitative studies.

2.4 The data science process
A related branch of work [11–13] modeled the data analysis process as a sequence of iter-
atively visited stages. Other authors have noted that a better understanding of this process
could improve scientific reproducability [5], aid in the development of new analysis tools
[10, 15], and identify common points of failure [54].

3 Prediction task & datasets
We present a new task for labeling code snippets as stages in the data science process
(Fig. 1), identify a corpus of computational notebooks for large-scale training, and provide
a new dataset of expert annotations that are used exclusively in the final evaluation.
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Figure 1 Examples of our proposed task of automatically labeling code snippets and accompanying natural
language annotations as stages in the data science process, with code in blue and markdown in yellow

3.1 Prediction task
In order to automatically learn useful data science constructs from code, we propose a
new task and accompanying dataset for classifying code snippets as stages in the data sci-
ence process. Figure 1 shows five mock examples from this task. We task models with
associating a snippet with one of five labels, which are drawn from and motivated by pre-
vious work: IMPORT, WRANGLE, EXPLORE, MODEL, and EVALUATE (Sect. 2.4). IMPORT
cells primarily load external libraries and set environment variables, while WRANGLE cells
load data and perform simple transformations. EXPLORE cells are used to visualize data,
or calculate simple statistics. MODEL cells define and fit statistical models to the data, and
finallyEVALUATE cells measure the explanatory power and/or significance of models. Ad-
ditional details on these stages is available in the Online Reproducability Appendix [55].

In keeping with prior work ([8, 56, 57]) we focus on Jupyter notebook cells as our unit
of analysis. While our method could certainly be extended to other snippets like lines,
function bodies, or even whole files (given a sufficiently large transformer block), focusing
on cells allows us to learn from and exploit authors’ tendencies to organically organize
their code along these lines.

3.2 Jupyter notebook corpus for training
We curate a training set for this task by building upon the UCSD Jupyter notebook corpus,
which contains all 1.23M publicly available Jupyter notebooks on Github [6]. Jupyter is the
most popular IDE among data scientists, with more than 8M users [58, 59], at least in part
because it enables users to combine code with informative natural language markdown
documentation. As noted by the corpus’ authors, the dataset contains many examples of
the myriad uses for notebooks, including completing homework assignments, demon-
strating concepts, training lab members, and more [6]. For the purposes of this paper we
filtered the corpus to those notebooks that transform, model, or otherwise manipulate
data by limiting our analysis to notebooks that import pandas, statsmodels, gensim, keras,
scikit-klearn, xgboost or scipy. This leaves us with a total of 118k Jupyter notebooks, which
we randomly split into training (90%) and validation sets (10%). These notebooks are not
annotated with any ground truth labels of data science stages. Thus, we propose a com-
bination of unsupervised representation learning and weak supervision to study them at
scale (Sect. 4).
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3.3 Expert annotated notebooks (only used for evaluation)
Annotation We randomly sampled 100 notebooks containing 1840 individual cells from
the filtered dataset for hand-labeling. The first two authors, who have significant familiar-
ity with the Python data science ecosystem, independently annotated the cells with one
of the five data science stages. The annotators performed a preliminary round of coding,
discussed their results, and produced a standardized rubric for qualitative coding, which
is available in the extended paper’s Online Reproducability Appendix A.4 (Table A3) [55].
The rubric clearly defines each data analysis stage and provides guidelines for when a label
should and should not be used. Using this rubric, the annotators each made a second inde-
pendent coding pass. We evaluate inter-rater reliability with Cohen’s kappa statistic, which
corrects for agreement by chance, and find the highest level of correspondence (“substan-
tial agreement”, κ = 0.803) [60]. The annotators resolved the remaining differences in their
labels by discussing each disagreement, producing a final dataset of 1840 cells for model
evaluation (Sect. 5).

Finally, to verify that the authors’ impressions correspond with popular conceptions,
three independent data scientists (who had no involvement with this project) were asked
to independently annotate five notebooks (comprising 87 cells in total) using the rubric in
Table A3. This second group of annotators achieved a mean Cohen’s Kappa of 0.64 (“Good”
[60]) with the authors and a Krippendorff’s Alpha of 0.74 (“Acceptable” [61]) between each
other. We note that it took each of these participants approximately one hour to complete
their annotation task. At this rate it would take thousands of person-hours to annotate our
complete unlabeled notebook corpus, further underscoring the need for semi-supervised
models like ours.

Our annotation rubric along with all data and code are available at http://bdata.cs.
washington.edu/coral/. Importantly, these expert annotations are never used in training
or validation including model selection, but only for the final evaluation (Sect. 5).

Multi-class v.s. Multi-label Both annotators paid close attention to potentially ambigu-
ous cells while labeling, observing that it was quite rare for a single cell to be used for
multiple stages of the data science process (less than 5% of the time). Furthermore, the
median cell in the dataset had two lines of code, making it difficult for a cell to sufficiently
express more than one stage. Low label ambiguity at the cell level and high inter-rater
reliability support the formulation of this task as multi-class (i.e., five mutually exclusive
labels) rather than multi-label (i.e., a cell may have one or more labels), and the selection
of cells as the unit of analysis.

4 The CORAL model
COde RepresentAtion Learning with weakly supervised transformers (CORAL) is a model
for learning neural representations of data science code snippets and classifying them as
stages in the data analysis process. CORAL leverages both source code abstract syntax
trees (ASTs) and associated natural language annotations in markdown text (see Fig. 2).

Model contributions CORAL contributes the following:
• CORAL jointly learns from code and surrounding natural language (Sect. 4.1), while

preserving meaningful code structure through a graph-based masked attention
mechanism (Sect. 4.2). We show that adding natural language improves performance
by 13% on snippets that do not have associated markdown comments (Sect. 5.2).

http://bdata.cs.washington.edu/coral/
http://bdata.cs.washington.edu/coral/
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Figure 2 An overview of the architecture of our CORAL model, which combines weak supervision and
unsupervised topic modeling into a multitask objective. For visual clarity, we only show edges from the AST
here. In practice, we also use connections between [CLS] and all the others nodes, and between each AST
node and markdown node (see Sect. 4.1)

• We address the lack of high-quality training data through an easily extensible weakly
supervised objective based on five simple heuristics (Sect. 4.3).

• CORAL combines this weak supervision with an additional unsupervised training
objective (again to avoid costly ground truth labels) based on topic modeling, which
we combine with other objectives in a multi-task learning framework (Sect. 4.5).

4.1 Input representations
CORAL builds on graph neural networks [62] and masked-attention approaches [53] to
encode the AST’s graph structure by first serializing the syntax tree in depth-first traversal
and then using its adjacency matrix as an attention mask (Sect. 4.2).

We add additional nodes to the AST to capture surrounding natural language. For each
code cell, we concatenate its most recent prior markdown as a token sequence to the AST
graph sequence (yellow in Fig. 2), so long as the markdown is no more than three cells away.
Concretely, we create a node for each markdown token and then connect each markdown
node with each AST node. Finally, we add a virtual node [CLS] (for classification) at the
head of every input sequence and connect all the other nodes to it. Similar to BERT, we
take this node’s embedding as the representation of the cell [18].

Notation Formally, let V = {u, v, . . .} be the set of nodes in the input, where each node
v is either an AST node or markdown token. For any input sequence that has more than
M nodes, we truncate it and keep only the first M nodes (a modeling choice which we
evaluate in Sect. 5.3). We use A to represent the graph adjacency matrix that encodes the
relationship between nodes as described above. All input nodes are converted to embed-
ding vectors of dimension dmodel. We assemble these embeddings into a matrix X.
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4.2 Encoding code cells with attention
We extend the popular BERT model [18] by adding masked multi-head attention to cap-
ture the graphical structure of ASTs. We evaluate the impact of this addition in Sect. 5.1.

CORAL feeds the input code and natural language representations to an encoder, which
is composed of a stack of N = 4 identical layers (Fig. 2). Similar to Transformers [17], we
equip each layer with a multi-head self-attention sublayer and a feed-forward sublayer.
The graph structure is captured through masked attention (Eq. (2) below).

Masked multi-head attention We use Aggregatei
k to represent the self-attention function

of headi in layerk . Let (q, k, v) be the query, key, and value decomposition of the input
to Aggregatei

k . Queries and keys are vectors of dimension dk , and values are vectors of
dimension dv. For a given node u, let (qu, ku, vu) be the triple of query, key and value, and
let N(u) be the set of all its neighbours. Formally, the parameters qu, ku, vu vary across each
headi and layerk , but we drop additional notation for simplicity here. Then we compute
aggregate results as:

Aggregatei
k(u) =

∑

v∈N(u)

Softmax
(

qu · kv√
dk

)
· vu. (1)

We adopt the scaling factor 1√
dk

from Vaswani et al. [17] to mitigate the dot product’s

growth in magnitude with dk . In practice, the queries, keys, and values are assembled into
matrices Q, K , V . We compute the output in matrix form as:

Aggregatei
k(Q, K , V ) = Softmax

(
Ã � QKT

√
dk

)
V , (2)

where Ã = A + I is the adjacency matrix with self-loops added to implement the masked
attention approach, where each node only attends to its neighbours (described in Sect. 4.1)
and itself.

Since we adopt multi-head attention, we concatenate h heads within the same layer:

MultiHead(Q, K , V )

= Concat(head1, . . . , headh)WO, (3)

headi = Aggregatei
k
(
XW i

Q, XW i
K , XW i

V
)
, (4)

where headi ∈ R
dv and W i

Q ∈ R
dmodel×dk , W i

K ∈ R
dmodel×dk , W i

V ∈ R
dmodel×dv , and WO ∈

R
h∗dv×dmodel are projection matrices that map the node embeddings X to queries, keys,

values, and multi-head output, respectively.

Feed forward In each layer, we additionally apply a fully connected feed-forward sub-
layer. This is composed of two linear transformations with ReLU activation in between:

FFN(x) = WFF2 · max(0, WFF1 · x + bFF1) + bFF2, (5)

where

WFF1 ∈ R
h∗dmodel×dmodel ,
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WFF2 ∈ R
dmodel×h∗dmodel

and bFF1 and bFF2 are parameters learned in model.

Add & norm Each sublayer is followed by layer normalization [63]. The output of each
sublayer is:

LayerNorm
(
x + Sublayer(x)

)
, (6)

where Sublayer(x) is multi-head attention or feed forward.

Output The multi-head attention sublayer and feed-forward sublayer are stacked and
make up one “layer”. After stacking this layer N = 4 times to allow information to propagate
between nodes, the encoder’s output contains contextual representations of all the nodes
in the input sequence. We take the embedding of the [CLS] node as the representation of
the each notebook cell’s graph (Sect. 4.1), denoted as z ∈R

dmodel .
We compress this cell representation z into a lower-dimens-ional distribution over K

“topics” to capture information about the data analysis stages. Concretely:

ptopic = Softmax(Wtopic · z + b), (7)

where Wtopic ∈R
K×dmodel is the weighted matrix parameter and b is the bias vector.

4.3 Weak supervision
It is prohibitively expensive to obtain manual annotations of data analysis stages at scale, as
doing so would require thousands of person-hours of work by domain experts. Therefore,
we use five simple heuristics to tailor CORAL to the prediction task described in Sect. 3.1:

1. We collect a set of seed functions and assign each to a corresponding stage based on
its usage. These functions are among the most commonly used in popular Python
data science libraries like matplotlib and sklearn, and were selected by expert Python
data scientists. Any cell that uses a seed is weakly labeled as the corresponding stage.
For example, any cell that calls “sklearn.linear_model.LinearRegression” is weakly
labeled MODEL. The full set of 39 seed functions is in Online Reproducability
Appendix A.1 [55]. We demonstrate CORAL’s ability to correctly classify unseen
code outside these functions in Sect. 5.4.

2. A cell with one line of code that does not create a new variable is weakly labeled
EXPLORE. This rule leverages a common pattern in Jupyter notebooks where users
often use single line expressions to examine a variable, such as a DataFrame.

3. A cell with more than 30% import statements is labeled IMPORT.
4. A cell whose corresponding markdown is less than four words and contains {‘logistic

regression’, ‘machine learning’, ‘random forest’} is weakly labeled MODEL.
5. A cell whose corresponding markdown is less than four words and contains ‘cross

validation’ is weakly labeled EVALUATE.
Note that there may be conflicts between these rules. We observe that less than one per-
cent of cells in our corpus comply with more than one of these heuristics, further support-
ing our decision to formulate labels as mutually exclusive. We resolve any such conflicts by
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assigning priority in the following order:IMPORT,MODEL,EVALUATE,EXPLORE,WRAN-
GLE.1 In this layer, we aim to compute pstage – a probability distribution over these six
stages – from the topic distribution computed in Eq. (7). We implement this by mapping
the topic distribution ptopic to a probability distribution pstage over the nstages = 6 stages.
We compute the stage distribution pstage as follows, where Wstage ∈R

K×nstages :

pstage = softmax(Wstage · ptopic + bstage). (8)

We adopt cross entropy loss to minimize classification error on weak labels. For each
ptopic, loss is computed as:

Lweakly_supervised = –
∑

s
yo,s log(ps), (9)

where yo,s is a binary indicator (0 or 1) if stage label s is the correct classification for ob-
servation o and ps is the predicted probability pstage is of stage s.

The five weak supervision heuristics cover about 20% of notebook cells in the training
data. To minimize the model’s ambiguity on the remaining 80% of unlabeled data, and en-
courage it to choose a stage for each topic, we add an additional loss function. Concretely,
we add an entropy term to pstage to encourage uniqueness by forcing the topic distribution
to map to as few stages as possible:

Lunique_stage = –
∑

s
ps log(ps), (10)

where ps is the predicted probability pstage[s] for stage s. This entropy objective is mini-
mized when ps = 1 for some s and ps′ = 0 all other s′.

4.4 Unsupervised learning through reconstruction
As the weak supervision heuristics only cover about 20% of the cells, we enrich the model
with additional training through an unsupervised topic model. Here, the goal is to op-
timize the topic representation ptopic such that we can reconstruct the intermediate cell
representation z. We reconstruct z from a linear combination of its topic embeddings
ptopic:

r = R · ptopic, (11)

where R ∈ R
dmodel×K is the learned cell embedding reconstruction matrix. This unsuper-

vised topic model is trained to minimize the reconstruction error. We adopt the con-
trastive max-margin objective function using a Hinge loss formulation [64–66]. Thus, in
the training process, for each cell, we randomly sample m = 5 cells from our dataset as
negative samples:

Lunsupervised =
∑

c∈D

m=5∑

i=1

max(0, 1 – rczc + rcni), (12)

1We also include a dummy sixth stage to represent cells that are empty or not covered by one of these heuristics. To reflect
the uncertainty of these stages they are not included in the model’s loss function.
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where D is the training data set, rc is reconstructed vector of cell c, zc is intermediate
representation of cell c, and ni is the reconstructed vector of each negative sample. This
objective function seeks to minimize the inner product between rc and ni, while simulta-
neously maximizing the inner product between rc and zc.

We also employ a regularization term from He et al. [67] to promote the uniqueness of
each topic embedding in R:

Lunique_topic =
∥∥Rnorm · RT

norm – I
∥∥, (13)

where I is the identity matrix and Rnorm is the result of L2-row-normalization of R. This
objective function reaches its minimum when the inner product of two topic embeddings
is 0. We apply this regularization term to encourage orthogonality among the rows of the
cell embedding reconstruction matrix R and penalize redundancy between reconstruction
vectors. We demonstrate in Sect. 5.2 that this additional unsupervised training improves
overall classification performance.

4.5 Final optimization objective
We combine the loss functions of Equations (9), (10), (12), and (13) into the final optimiza-
tion objective:

L = λ1Lweakly_supervised + λ2Lunique_stage

+ λ3Lunsupervised + λ4Lunique_topic,
(14)

where λ1, λ2, λ3 and λ4 are hyperparameters that control the weights of optimization ob-
jectives.

We experiment with various training curricula and find that CORAL with the hyperpa-
rameters in Online Reproducability Appendix A.2 [55] achieve the best loss (Eq. (14)) on
the validation set. Importantly, this optimization and model training is based on solely on
the labels from weak supervision heuristics. We do not use expert annotations (Sect. 3.3),
which we exclusively reserve for the final evaluation.

5 Evaluation
CORAL achieves accuracy of over 72% on the stage classification task using an unseen
test set (Sect. 3.3), outperforming a range of baseline models and demonstrating that weak
supervision, unsupervised topic modeling, and adding markdown information all strictly
improve overall classification performance.

5.1 Baseline comparison
In Fig. 3(a) we compare CORAL’s performance to eight baselines, which we describe be-
low. Importantly, the lack of ground truth labels in our training set makes it impossible
to evaluate a model that does not use some amount of weak supervision, as without these
heuristics we cannot map between learned topics and data science stages. Unless noted
otherwise, all models accept markdown and code using the same input preprocessing
(Sect. 4.1).
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Figure 3 Accuracy on expert-annotated test set for all baselines (a) and ablation studies (b). Performance
improves with neural topic models and weak supervision. CORAL significantly outperforms all baselines
(Wilcoxon signed rank, p < 0.001) and ablation studies (p < 0.05)

How much does our model learn beyond its simple heuristics and weak supervision? To
answer this question, we compare CORAL to a baseline that only uses the Expert Heuris-
tics described in Sect. 4.3. This set of heuristics considers function-level and markdown
information in addition to library information. This is a natural comparison since this is
the exact weak supervision used in CORAL. These heuristics cover only 20.38% of the test
examples, so we choose one stage uniformly at random otherwise. We show that CORAL
outperforms this baseline by a factor of two (Fig. 3(a)), indicating that our model learns
significant information beyond its heuristics.

How important is it to use a deep neural encoder for our task? To address this question,
we replace CORAL’s encoder with a Latent Dirichlet Allocation (LDA) [68] topic model,
but use the same input data (Sect. 4.1), and the same weak supervision (Sect. 4.3). We
denote this model as LDA+Weak Supervision. Specifically, we optimize this model with
Lweak_supervision (Eq. (9)) and Lunique_stage (Eq. (10)) on top of the unsupervised LDA repre-
sentation. We first used the same number of LDA topics (50) as we use in CORAL (i.e.
the size of the cell representation ptopic). In order to make this baseline stronger we dou-
bled the number of LDA topics to 100, which did improve performance slightly, but the
model still only achieved 42.8% accuracy (Fig. 3(a)). This experiment shows that neural
representations lead to significant improvement on our task.

How does CORAL compare to a state-of-the-art transformer-based network? We used
the standard BERT architecture with the same embedding size as CORAL and masked lan-
guage model pre-training. After pre-training, we optimized the model against
Lweak_supervision (Eq. (9)) and Lunique_stage (Eq. (10)) on top of the learned representations of
code cells. We evaluate BERT baselines both with and without ASTs and finetuning. With
finetuning, we backpropagate the loss from a linear layer trained to predict the snippet’s
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stage from the embedding of the [CLS] virtual node. For experiments conducted with no
finetuning, we independently trained a linear layer without backpropagation through the
rest of the network. To explore the sensitivity of this model to its input representations, we
tried treating code both as sequences of tokens and as serialized ASTs. In all experiments
CORAL significantly outperformed BERT (72.2% v.s. at most 67.9%, Fig. 3(a)) indicating
that our model improves upon the successful transformer architecture.

How important are contextual embeddings for performance on our task? We trained
Word2Vec on the dataset, and then took the mean of the embeddings for each token as
the embedding for the full sequence. We used a single layer that treated the weak super-
vision heuristics from CORAL as strong labels to classify these sequences. As with BERT,
we run this experiment both with token sequences and serialized ASTs. Word2Vec per-
forms poorly, near the level of LDA + Weak Supervision (42.6%, Fig. 3(a)), indicating that
contextual embeddings like those in CORAL are a powerful method for our task.

Is it important to use a transformer? We trained an LSTM on depth-first traversal of
ASTs from the dataset, with the same embedding size and maximum sequence length as
CORAL. Then we took the last hidden state output as the embedding for the full sequence.
We used a single layer that treated the weak supervision heuristics from CORAL as strong
labels to classify these sequences. CORAL significantly outperforms LSTM (72.2% v.s.
58.86%, Fig. 3(a)), indicating that the attention-centric mechanism of the transformer pro-
vides measurable gains in our task.

How does CORAL compare to neural baselines specific to learning code representations?
We trained Tree-Based CNN (TBCNN) [21] on ASTs from the dataset, with the same
embedding size as CORAL. The softmax classifier took the weak supervision heuristics
from CORAL as strong labels to classify these cells. As TBCNN does not generalize to
cyclic graphs, and markdown nodes are connected to every AST node in our input repre-
sentation (Sect. 4.1), we cannot evaluate this model with markdown information. CORAL
significantly outperforms this baseline (72.2% v.s. 59.6% Fig. 3(a)), indicating that our novel
model is a powerful method for learning code representations.

Does a recurrent graph neural network perform well on our task? We trained Depen-
dency Tree-LSTM [20] on ASTs from the dataset. At the root node of each AST, we used
a softmax classifier to predict the label generated by the weak supervision heuristics from
CORAL. The classifier took the hidden state at the root node as the cell embedding.
CORAL performs better than Tree-LSTM (72.2% vs 63.0% Fig. 3(a)), indicating that our
method learns powerful graph representations.

Summary of baseline comparison. Results from these experiments are available in
Fig. 3(a). CORAL learns significantly more than simply memorizing the heuristic rules.
CORAL outperforms existing neural models. In particular, we find that it outperforms
both the LSTM and Tree-LSTM. CORAL is also 12.6% more accurate than TBCNN,
demonstrating the power of its masked self-attention mechanism. CORAL favorably com-
pares to state-of-the-art neural language models, beating the highest performing BERT
baseline by 4.3%. We observe that while popular deep learning techniques like finetuning
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produce only a marginal difference in model performance, CORAL significantly outper-
forms all other baselines (Wilcoxon signed rank, p < 0.001).Interestingly, while CORAL’s
performance is dramatically improved by including markdown (from 60.1% to 72.2%,
Sect. 5.2), recurrent models like Tree LSTM and LSTM see only marginal gains. This
may indicate that these previous-generation models do not jointly model code and natu-
ral language efficiently.

Notably, BERT’s performance is not strongly affected by the inclusion of ASTs. Recent
work indicates that large transformer-based language models, like BERT, can learn to ef-
fectively represent code even without structural information about syntax (i.e. by simply
treating code as text) [69, 70]. Our results support this observation.

5.2 Ablation study
We just demonstrated in Sect. 5.1 that CORAL improves significantly over expert heuris-
tics, representations that do not leverage graphical structure, and state-of-the-art neu-
ral models. Here we show that (1) adding markdown information, (2) weak supervision,
and (3) additional unsupervised training all independently improve the performance of
CORAL, as shown in Fig. 3(b). Across all experiments we use maximum sequence length
of M = 160 and train on the maximum 1M code cells, based on the best performing model
overall.

How much does jointly learning code and natural language improve performance? For
this ablation (denoted as CORAL No Markdown), we remove any markdown information
from the input sequence, while keeping all other aspects of CORAL the same. We com-
pare maximum sequence length of 80, 120 and 160 since the maximum sequence length
M may interact with markdown information due to truncation (Sect. 4.1). We find that in-
cluding markdown information consistently and significantly improves performance 12%
at M = 160, even though less that 9% of cells are directly preceded by markdown (Table 1).
Furthermore, these comparatively rare comments significantly improve performance even
on cells that do not have corresponding markdown information from 59.6% to 72.6%, sug-
gesting that markdown cells help CORAL better represent source code independent of
these comments.

How well does CORAL perform if fewer weakly supervised labels are available? The weak
supervision heuristics described in Sect. 4.3 cover about 20% of the training examples.
We simulate lower coverage by randomly subsampling 50% and 25% of these weakly la-
beled examples (i.e., 10% and 5% of all examples). Higher weak supervision coverage dra-
matically increases performance, but even at 25% of examples CORAL still outperforms
CORAL (No Masked Attention) by 10% and BERT by 15% (Table 2).

Table 1 Impact of Max Sequence Length on CORAL. Training on markdown data in addition to code
significantly increases performance independent of maximum sequence length

Model Max Sequence Length

80 120 160

CORAL 59.9 64.2 72.2
CORAL(No Markdown) 54.4 57.0 60.2
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Table 2 CORAL accuracy across weak supervision coverage. Training with more weak supervision
significantly improves performances

Model Weak Supervision Coverage

25% 50% 100%

CORAL 41.6 46.4 72.2
CORAL(No Masked Attention) 31.7 46.1 70.4
BERT(AST, No Finetuning) 26.1 47.2 67.9

Table 3 CORAL accuracy across various training dataset sizes. Performance consistently increases
with more training data but remains promising even with three orders of magnitude less training
data

Model Number of Cells

1k 10k 100k 1M

CORAL 61.9 62.7 63.6 72.2
CORAL (No Masked Attention) 53.6 57.0 59.7 70.4
BERT (AST, No Finetuning) 41.0 52.4 63.2 67.9

Does CORAL’s additional unsupervised topic model objective materially improve perfor-
mance? The CORAL(No Unsupervised Topic Model) ablation addresses this question.
Specifically, we remove Lunsupervised (Eq. (12)), and Lunique_topic (Eq. (13)) from CORAL but
keep everything else the same. We show that the unsupervised training objective improves
overall accuracy by 10% (Fig. 3(b)). This demonstrates the significant potential of combin-
ing limited weak supervision with additional unsupervised training in a multi-task frame-
work.

Does masked attention contribute to CORAL’s results? We provide an additional ablation
on CORAL in which we replace the model’s masked attention mechanism (Sect. 4.1) with
standard full attention. As shown in Fig. 3(b), masked attention produces a modest but
statistically significant increase in performance from 70.1% to 72.2%.

5.3 Impact of input length & training set size
Maximum sequence length We investigate how model performance changes with the
maximum input sequence length M (see Table 1). For CORAL models with and without
markdown, a larger maximum sequence length consistently improves accuracy. Longer
sequence lengths may include more markdown information and limit truncation of larger
cells. Only 6% of the training examples have more than 160 nodes, and increases in M also
increase training time and memory requirements. Therefore, we did not consider models
beyond M = 160 and use this setting for all other experiments.

Training dataset size We evaluate the accuracy of CORAL and two other high-
performing models with different training dataset sizes to gauge how sensitive our model
is to training data size. We fix M to 160 and train with a maximum of 1M notebook cells.
In all other experiments, we use the maximum 1M notebook cells for training. While per-
formance consistently decreases with smaller training data (Table 3), CORAL achieves an
accuracy of 61.85% with only 1k examples and outperforms baselines by a large margin.
This demonstrates that the CORAL architecture is effective at learning useful code repre-
sentations even in smaller-data scenarios, such as on the order of magnitude of a typical
GitHub repository.
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Figure 4 Example predictions. Probability distributions over stages from CORAL’s SoftMax output (Eq. (7)) are
listed on the right side. In (a), CORAL correctly identifies the cell as EVALUATE rather than WRANGLE, likely
by interpreting “confusion matrix”, perhaps based on previously seen markdown. In (b), the model identifies
the use of sns.regplot, an unseen statistical visualization function, as an example of EXPLORE. In (c),
CORAL correctly interprets a user-defined function

5.4 Error analysis
Confusion matrix We include a confusion matrix of CORAL’s predictions from the best
performing model (M = 160 trained on 1M examples) in the Online Reproducability Ap-
pendix A.5 (Fig. A.2) [55]. The most frequent confusion is misclassifying EXPLORE as
WRANGLE. This is in part because WRANGLE and EXPLORE are the two most common
stages in the hand labeled corpus, but also possibly because analysts may apply simple
transformations while primarily using a cell to visualize or otherwise explore data. For
example, in Fig. 4(b) the user applies a trivial transformation by filtering examples where
train.speed is above zero, the overall intention of the cell is to visualize the relation-
ship between train speed and power. We note that MODEL is occasionally confused for
WRANGLE, perhaps because operations like train-test splits frequently happen in model-
ing cells (although these operations typically constitute a small fraction of all cells tokens).
Furthermore, EVALUATE is frequently misclassified as EXPLORE, perhaps because model
evaluations often involve visualization (e.g. confusion matrices). Finally, we note that pre-
dictions on EVALUATE cells are wrong more often than not, perhaps because of limited
training data for this class. While performance on IMPORT cells is higher (despite compa-
rably few training examples),IMPORT cells all contain theimport token and are therefore
easier to predict.

Unseen functions To evaluate how well CORAL can learn beyond memorizing examples
from weak supervision, we select eight common data analysis function and compare the
labels of cells that contain them (Table 4). Importantly, these functions were not used in
weak supervision and thus were never directly associated with any label in the model.
Many functions demonstrate clear stage membership in line with our expectations (e.g.,
pandas.DataFrame.groupby, seaborn.countplot), demonstrating that CORAL can assign
cells including these functions to likely correct stages. Other functions exhibit a more even
distribution across stages. For example, sklearn.linear_model.PassiveAggressiveClassifier,
a simple linear classifier, appears in both MODEL and EVALUATE cells. While ambiguity
between stages is rare overall (Sect. 3.3) we hypothesize that this confusion may be the
result of the scikit-learn use pattern where users specify and evaluate their models in the
same cell.
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Table 4 Fraction of predicted stages for cells that contain previously unseen functions. CORAL
accurately categorizes common data analysis functions as frequently belonging to their expected
stage

Function Expectation IMPORT WRANGLE EXPLORE MODEL EVALUATE

pandas.DataFrame.dropna Wrangle 0 0.93 0.07 0 0
pandas.DataFrame.groupby Wrangle 0 0.52 0.12 0.02 0.34
seaborn.jointplot Explore 0 0.00 0.98 0.00 0.02
seaborn.countplot Explore 0 0.01 0.98 0.00 0.01
sklearn.linear_model.SGDClassifier Model 0 0 0 0.67 0.32
sklearn.linear_model.PassiveAggressiveClassifier Model 0 0.06 0 0.61 0.39
sklearn.metrics.f1_score Evaluate 0 0 0.01 0.05 0.94
sklearn.metrics.log_loss Evaluate 0.02 0.01 0.02 0.26 0.70

Example predictions We highlight three predictions in Fig. 4 to demonstrate CORAL’s
ability to capture data analysis semantics and inherent ambiguity. In Fig. 4(a), the user
transforms a pandas DataFrame and calls pandas.DataFrame.groupby, a function typi-
cally used to aggregate data. While a naive method (e.g., the expert heuristic baseline in
Sect. 5.1) might label the cell as WRANGLE, CORAL infers that the analyst’s intention is to
use this user-defined function to evaluate a classifier with a confusion matrix, likely mak-
ing use of the information in the comment and function parameters, and appropriately
labels the cell as EVALUATE.

In Fig. 4(b), the analyst loads data, selects a subset, creates a plot, and fits a linear regres-
sion. CORAL correctly identifies this example as serving to both modify data and look for
patterns, but assigns a higher probability toEXPLORE, demonstrating its ability to capture
the significance of previously unseen statistical visualization methods like seaborn.regplot.

In Fig. 4(c), the analyst calls a user-defined function. While CORAL has never seen this
function or notebook, it still correctly identifies the intent of the cell as EXPLORE likely
by attending to tokens like “plot” and “breakdown”.

6 Large scale studies of scientific data analysis
Our model and datasets provide an opportunity to pose and answer previously unaddress-
able questions about the data analysis process, the role of scientific analysis in academic
publishing, and differences between scientific domains. We note that our corpus (Sect. 3.2)
is limited to the most recent (potentially partial) snapshot of the user’s analysis and that
the observational nature of this data prohibits any causal claims.

6.1 Are there differences between academic notebooks and non-academic
notebooks?

Differences between academic and non-academic notebooks could identify how practices
vary across these communities.

Method The Semantic Scholar Open Research Corpus (S2ORC) is a publicly available
dataset containing 8.1M full-text academic articles [71]. In order to relate these papers
to relevant source code, we performed a regular expression search across the corpus for
any reference to a GitHub repository, returning associations between 2.0k papers and 7.1k
notebooks from the UCSD corpus. We use this dataset to resolve previously unanswerable
questions about the role of analysis code in the scientific process. Although there is no
strict guarantee that a linked notebook contains the data analysis that was used to create
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Figure 5 Differences between academic and non-academic notebooks

the paper, the median notebook is linked to exactly one paper, indicating some degree of
injectivity from notebooks to papers. Furthermore, manual inspection of our dataset and
prior work indicate that researchers often break their analysis up across many notebooks,
which may explain why papers link to multiple notebooks. So as not to bias our analysis
against how a scientist decides to structure their code, we compute statistics for each paper
by concatenating all associated notebooks. We compute the fraction of code devoted to
each data analysis stage and the fraction of cells that are followed by a cell of a different
stage and examine differences between academic and non-academic notebooks.

Results Academic notebooks devote 56% more code to exploring data and 26% less code
to developing models than non-academic notebooks (Fig. 5(a)). Furthermore, we note that
analysts on average use only 23% of their code for the traditionally laborious process of
wrangling data. While the relative size of the stage likely does not accurately reflect the
relative effort of data wrangling, it is perhaps surprising that such a maligned stage of the
process [11] is represented by a comparatively low fraction of all code.

6.2 Is the content of notebooks related to the impact of associated publications?
Evidence of a relationship between scientific notebooks and publication impact may en-
courage researchers to publish their code, and could reveal differences between the prior-
ities placed on scientific data analysis by different domains.

Method We employ a negative binomial regression to estimate the impact of notebook
stage distribution on the number of citations their associated papers receive. We hypoth-
esize that notebooks which evenly and comprehensively document their analysis (rather
than focusing on just one part) may receive more citations. In our first regression R1,
we therefore regress citation count on the Stage Entropy = –

∑
k pk log pk , where pk is the

fraction of the notebook that is devoted to stage k. This captures the uniformity of the
distribution of stages across a paper’s associated notebooks. Here, we normalized this
quantity across all publications by taking the Z-score. We controlled for a paper’s year
of publication and domain. To reveal differences between disciplines, we build upon this
experiment with a second regression R2, which includes all terms from R1 except for the
entropy term, but adds interaction variables between the Z-scores of the fraction of each
paper’s notebook devoted to each data analysis stage and paper domains to capture differ-
ences between disciplines. additional details for these regression models are available in
the Online Reproducability Appendix A.6 [55].
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Figure 6 Results from (R2), indicating differences in how paper impact in different domains is related to the
content of associated notebooks

Results We find that papers that link to notebooks have 10βhasNotebook = 101.34 ≈ 21.88
times more citations than papers that do not reference a notebook (95% CI: [1.29, 1.41],
p < 0.001). From R1 we note that Stage Entropy is strongly related to the number of cita-
tions a publication receives, as those publications can expect a 10βstageEntropyZ = 100.33 ≈ 2.11
times increase in citations with an entropy level for each standard deviation above the
mean (95% CI: [0.26, 0.39], p < 0.001) This result suggests that researchers may value note-
books which evenly document the whole data science process, rather than highlighting
just one part of analysis. These results also indicate that a notebook with one standard de-
viation more than the average EXPLORE code would expect 10βEXPLORE = 10–0.4325 ≈ 0.35
times the citations in its associated paper than a notebook with an average quantity of
all stages (95% CI: [-0.64,-0.22], p < 0.001). One possible explanation for this effect is that
notebooks which feature a high volume of code for exploring data are associated with
generating hypotheses, and may therefore be associated with incomplete or exploratory
publications that are less likely to attract references.

The results from R2 (Fig. 6) indicate significant differences between domains. Most no-
tably, we find that in computer science and mathematics an increase in the portion of code
devoted to wrangling data decreases the citation count in expectation, while no such inter-
action is present for papers from biological sciences. We hypothesize that the most pop-
ular cited notebooks in computer science and mathematics may cleanly demonstrate new
techniques and models, rather than documenting an extensive data wrangling pipeline.

We note that although these effect sizes may seem large, we need to consider that the
median citation count for papers in our dataset is only two. This implies that even with a
high citation multiplier, papers with just a few citations would expect a rather moderate
increase in citations.

7 Conclusion
We presented CORAL, a novel weakly supervised neural architecture for generating rep-
resentations of code snippets and classifying them as stages in the analysis pipeline. We
showed that this model outperforms a suite of baselines on this new classification task.
Further, we introduced and made public the largest dataset of code with associated publi-
cations for scientific data analysis, and employed CORAL to answer open questions about
the data analysis process.
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Appendix: Reproducability
A.1 Weak supervision seed functions
The seed functions with associated data analysis stages used in weak supervision heuris-
tics are listed in Table A1.

A.2 Experiment setting
We train CORAL with 1M cells on a single GeForce RTX 2080 Ti GPU. The model has
four attention heads and four layers of dimension dmodel = 256. We set the number of top-
ics (Sect. 4.2) to 50. We set λ1 = 0.1, λ2 = 0.3, λ3 = 1 and λ4 = 1. We train the model by
minimizing L in Equation (14), using the SGD optimizer with a learning rate α = 1 × 10–5,
β = 0.9. Training is done on mini-batches of size 16, for up to 8 epochs with an early
stopping criteria if validation error had not improved for 3 epochs. Each epoch takes
about 2.5 hours to train. Hyperparameters were selected with a randomized search across
α ∈ [10–6, 10–3], β ∈ (0, 1], λ ∈ (0, 1], dmodel ∈ {16, 32, 64, 128, 256, 512}, and the number of
topics ∈ [1, 100]. Similarly, the choice of appending markdown within the previous three

Table A1 Seed functions with associated data analysis stages used in weak supervision heuristics
(Sect. 4.3)

Stage Seed Functions

Wrangle pandas.read_csv
pandas.read_csv.dropna
pandas.read_csv.fillna
pandas.DataFrame.fillna
sklearn.datasets.load_iris
scipy.misc.imread
scipy.io.loadmat
sklearn.preprocessing.LabelEncoder
scipy.interpolate.interp1d

Explore matplotlib.pyplot.show
matplotlib.pyplot.plot
matplotlib.pyplot.figure
seaborn.pairplot
seaborn.heatmap
seaborn.lmplot
pandas.read_csv.describe
pandas.DataFrame.describe

Model sklearn.decomposition.PCA
sklearn.naive_bayes.GaussianNB
sklearn.ensemble.RandomForestClassifier
sklearn.linear_model.LinearRegression
sklearn.linear_model.LogisticRegression
sklearn.tree.DecisionTreeRegressor
sklearn.ensemble.BaggingRegressor
sklearn.neighbors.KNeighborsClassifier
sklearn.naive_bayes.MultinomialNB
sklearn.svm.SVC
sklearn.tree.DecisionTreeClassifier
tensorflow.Session
sklearn.linear_model.Ridge
sklearn.linear_model.Lasso

Evaluate sklearn.cross_validation.cross_val_score
sklearn.metrics.mean_squared_error
sklearn.model_selection.cross_val_score
scipy.stats.ttest_ind
sklearn.metrics.accuracy_score
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Figure A.1 CORAL Algorithm

Table A2 Summary statistics for our unlabeled dataset

Number of Notebooks 118,762
Mean Number of Cells per Notebook 19.12
Mean Number of Lines of Code per Cell 3.81
Mean Number of Functions Used per Cell 2.08

cells (as opposed to some other number; Sect. 4.1) was selected with a random search in
the range [1, 9].

A.3 Algorithm
The CORAL Algorithm is shown in Fig. A.1.

A.4 Qualitative rubric
The qualitative rubric used for labeling the Expert Annotated Dataset (Sect. 3.3) used for
final model evaluation is listed in Table A3.

A.5 Confusion matrix
The confusion matrix for CORAL’s predictions on the data analysis stage prediction task
is shown in Fig. A.2.

A.6 Regression details
The following details apply to both regression(R1) and regression(R2). We chose to use
a negative binomial for zero-inflated counts regression because we observed that the mean
number of citations (8.52) was substantially less than the variance (1308). We expect that
a paper’s year of publication will influence its citation count, and therefore we control for
this variable. We also expect each paper’s domain to be related to notebook characteristics,
so we limit our analysis to the three most common domains in S2ORC and control for this
factor using indicator variables. We note that our analysis does not substantially change
with the inclusion of the top five, 10, or 20 domains. If a paper is linked to more than
one notebook, for the purpose of these regressions, we concatenate the notebooks and
calculate statistics across this concatenation.
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Figure A.2 Confusion matrix for CORAL’s predictions on the data analysis stage prediction task, with marginal
distributions for hand labels and model predictions shown
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