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contextual nature of speech has also led to minoritized users, especially
African—Americans, to be unfairly detected as ‘hateful’ by the very algorithms
designed to protect them. To resolve this problem of inaccurate and unfair hate
detection, research has focused on developing machine learning (ML) systems that
better understand textual context. Incorporating social networks of hateful users has
not received as much attention, despite social science research suggesting it provides
rich contextual information. We present a system for more accurately and fairly
detecting hateful users by incorporating social network information through
geometric deep learning. Geometric deep learning is a ML technique that
dynamically learns information-rich network representations. We make two main
contributions: first, we demonstrate that adding network information with geometric
deep learning produces a more accurate classifier compared with other techniques
that either exclude network information entirely or incorporate it through manual
feature engineering. Our best performing model achieves an AUC score of 90.8% on a
previously released hateful user dataset. Second, we show that such information also
leads to fairer outcomes: using the ‘predictive equality’ fairness criteria, we compare
the false positive rates of our geometric learning algorithm to other ML techniques
and find that our best-performing classifier has no false positives among a subset of
African—American users. A neural network without network information has the
largest number of false positives at 26, while a neural network incorporating manual
network features has 13 false positives among African-American users. The system
we present highlights the importance of effectively incorporating social network
features in automated hateful user detection, raising new opportunities to improve
how online hate is tackled.
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1 Introduction

The massive expansion in social media over the last two decades has brought unprece-
dented connectivity and communication. Unfortunately, such communication is some-
times characterized by harm and abuse, such as hate speech. This hate not only negatively
impacts users of online platforms and their communities [54], it can also stir up social
tensions and affect the reputation of the platforms who host them [56]. Online hate can
have implications in the offline world: it has been linked to youth suicides, mass shootings,
violent hate crimes, and extremist recruitment [26].

Yet, the problems of accuracy and bias faced by hateful content detection also plague
hateful user detection. Hate, by its very nature, is context-dependent: it depends, at a min-
imum, on the intention of the potential perpetrator and the reception of the alleged target
[38]. Language, moreover, can be ‘polysemous; with different meanings in different con-
texts, increasing the vulnerability of machine learning (ML) systems to bias if they lack
adequate context-awareness [48]. Words, such as ‘queer’ or ‘nigga; can be used hatefully
in some contexts. In others, however, they may be used to describe one’s own identity,
i.e. self-referentially, or serve as an innocuous part of a group’s dialect [3]. While more
contextual Natural Language Processing (NLP) methods like Bidirectional Encoder Rep-
resentations from Transformers (BERT) have helped alleviate some problems, automated
hate detection still suffers from being inaccurate and biased towards minoritized groups,
especially African—Americans [45, 55]. Despite the wealth of social science research on
how hateful users online are embedded in larger network structures, the incorporation
of network information in hate detection has been extremely limited. Hateful users have
been shown to operate in close-knit networks online [13, 53], while such homophily also
exists on racial and ethnic lines [35]. By enabling models to incorporate more informative
network-level signals, more accurate hate detection may be possible. At the same time,
including network-data may also help ML models better situate text in its social context,
leading to fairer outcomes for minority group users who may share similar linguistic char-
acteristics with hateful users.

We examine how different approaches to incorporating network information affect both
the accuracy and fairness of ML models to detect hateful users. We use a partially anno-
tated retweet network dataset containing up to 200 tweets per user for 100,000 unique
users, provided by Ribeiro et al. [53], and use geometric deep learning to incorporate
network-data in a learned end-to-end manner. We compare this technique to other algo-
rithms that either ignore network data or use manually engineered network-level features.
We find that our geometric deep learning based systems result in fairer and more accurate
hateful user classifications. Our work suggests that network information, when incorpo-
rated effectively, can provide the additional context required for fairer and more accurate
automated hate detection.

In Sect. 2 we explain the benefits of incorporating social network features by reviewing
research on the social dynamics of hateful behaviour online. We also appraise existing au-
tomated approaches for hate detection, highlighting their context-blindness and the chal-
lenges they face in producing fair and accurate outcomes. We then review the concept
of fairness in machine learning, and the particular issues of bias for automated hate de-
tection. In Sect. 3 and Sect. 4 we outline the data and methods, describing the labelled
dataset from Ribeiro et al. [53] and methods for detecting hateful users and identifying
African—Americans. In Sect. 5 we present and compare the results of various classifica-
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tion models for their overall performance, as well as their performance on the subset of
African—American users. We also conduct a detailed error analysis to diagnose the best-
performing model’s weaknesses. In Sect. 7 we discuss our findings and the limitations of
the research.

2 Related work

Hate is a social phenomenon whose characteristics we highlight in Sect. 2.1, with empha-
sis on how its complexities relate to the difficulties faced in accurately and fairly detecting
online hate using ML systems. Existing research on automated hate detection systems is
next described in greater depth in Sect. 2.2, with progress and persistent challenges in
the accuracy of such systems underlined. Finally, background is provided into the fair-
ness challenges faced by such systems in Sect. 2.3, with relevant research on the nature,
implications, and possible solutions of these challenges highlighted.

2.1 The social dynamics of online hate

Online hate is a contested and context-dependent concept, and despite growing concerns
about its harmful effects, platforms, governments and researchers have been unable to
reach a common definition [60]. Academic work displays a fragmented understanding of
online hate [37], although most definitions share three common elements: content, intent,
and harm [38]. Content relates to the textual, visual or other modes used to proliferate
hate. Intent and harm are more difficult to discern, and relate to the thoughts and experi-
ences of the perpetrator and victim [47, 49]. In line with much previous work, we define
online hate in line with Davidson et al. [12] as ‘language that is used to expresses hatred
towards a targeted group or is intended to be derogatory, to humiliate, or to insult the
members of the group!

Social psychological work on prejudice and abuse proposes that the expression of hate is
strongly affected by intergroup dynamics, such as contact and conflict between competing
social groups [9]. Following Crandall and Eshelman’s Justification—Suppression model of
prejudice, Day [13] finds racism on Twitter flourishes when the offender is motivated by a
group of like-minded racist peers, when prejudice against targets can be socially justified,
and when capable guardians are not present to suppress their activities. It has been sug-
gested that community ties also operate within far-right online communities, motivating
and deepening individuals’ commitment to extremist politics [5, 15].

Hateful users are often homophilous and organize themselves into densely connected
and clustered networks where hateful ideas and content proliferate quickly [26, 53]. John-
son et al. [26] argue that content removal proves largely ineffective in such settings: the
sources of the content—hate-spewing, highly resilient clusters of users who are committed
to their goals—live on, growing larger with time due to consolidation of smaller groups or
attraction of new recruits. Further, the growing user bases of platforms that have lenient
content moderation policies and/or were created with the stated goal of protecting free-
dom of expression, such as Gab, Parler, and Bitchute, reflects the need to understand hate-
ful networks and communities, rather than hateful individuals in isolation. Other forms of
homophily also exist online, which could be used to understand the spread of online hate.
Wimmer and Lewis [66] find that African—American individuals, for example, are more
likely to associate themselves with other African—Americans on social media platforms,
creating a “high degree of racial homogeneity” in social networks [66].
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2.2 Automated methods of online hate detection

Hateful content detection has been extensively studied, with numerous papers presenting
new datasets, models and architectures for hateful content detection, including several
subtasks, such as multilingual, multimodal and multi-target hate detection [29, 61, 68].
Notably, incorporating sentence-level context has been shown to improve hateful content
detection, with several papers deploying transformer-based models such as Bidirectional
Encoder Representation from Transformers (BERT) to better distinguish between hateful
and non-hateful content, even when they have lexical similarities [37, 57]. Indeed, as Mul-
lah and Zainon [46] write in their comprehensive review of ML methods for automated
hate speech detection, deep learning techniques leveraging such language models can con-
siderably improve how context-dependent hate speech is detected. Liu et al. [36], for ex-
ample, leverage transfer learning by fine-tuning a pre-trained BERT model to produce the
most accurate classifier for offensive language in the SemEval 2019 Task 6 competition.
The model, however, was less effective in identifying the type of the offence or the target.
Chiril et al. [8], meanwhile, focus more on the target-oriented and topical focus of hate
speech using a multi-target perspective, building classifiers to simultaneously categorize
both the hateful nature of a text as well as its topical focus. They find that leveraging BERT
under such a multi-task approach outperforms single-task models for detecting both the
hatefulness of a text and its focus. Mishra et al. [43] also apply multi-task learning, back-
translation, and multilingual training to the problem of hateful content detection.

However, even with such advanced contextual language models, several problems
emerge. Liu et al. [36] cite the imbalanced nature of the target (hateful speech is much
rarer than non-hateful speech) as well as the morphological nature of language as chal-
lenges to achieving higher performance. Meanwhile, data imbalance in the form of bias
towards certain topics and targets can also hamper performance while adding the possi-
bility of unfair classification [8]. Moreover, despite improving performance overall, such
contextual language models are often still unable to distinguish complex forms of hate,
such as understanding hateful uses of polysemous words related to minority groups [45].
Part of the challenge is that the meaning of such terms depends on the identity of the
speaker and how they are used (e.g., a black person using the term “nigga” is fundamen-
tally different to a white person using it). With short text statements (e.g., tweets) it can be
difficult to capture and represent these different uses (particularly if the labelled training
dataset is small), even with transformer-based models.

Creative ways have more recently been proposed to deal with such polysemy by better
leveraging the social characteristics of online hate. Alorainy et al. [1] highlight the risk of
false negatives when detecting subtle forms of hate, as traditional embedding techniques
still depend heavily on the occurrence of certain words or phrases in classifying hate. In-
stead, they leverage social science findings around how hate is conveyed, specifically on the
phenomenon of ‘othering’ whereby “hateful language is used to express divisive opinions
between the in-group (‘us’) and the out-group (‘them’)”. By augmenting traditional embed-
ding algorithms with features specifically related to ‘othering), such as pronoun patterns
and verb—pronoun combinations, they achieve a significant improvement in accuracy [1].

Previous research also includes classifying online hate by either using traits at the user-
level or directly classifying hateful users. Given the vast body of research showing how
online hate is often propagated by a small, highly-connected group of users (see [26]),
there has been increased attention on leveraging user-level information for the task. At



Ahmed et al. EPJ Data Science (2022) 11:8 Page 5 of 22

the 2021 Conference and Labs of the Evaluation Forum (CLEF), for instance, 66 academic
teams participated in the task of directly detecting whether a Twitter user is likely to spread
hate or not [51]. While the primary focus of the participants still seemed to have been the
textual elements in the tweets of these users, some researchers also leveraged innovative
strategies to extract and use richer information directly at the user level in the classification
task. Irani et al. [24], for example, learned user-level embeddings with unsupervised and
semi-supervised techniques, before combining them with textual features to more accu-
rately classify hateful users in the provided dataset. However, few, if any, of the participants
in the task incorporated network-level information when learning user-level embeddings,
despite the inherent networked nature of social media [51].

Though still focused primarily on automated hateful content classification, a small but
growing body of research leverages users’ networks, using simple features such as in- and
out-degree or shallow-embedding methods such as node2vec [7, 41]. Fehn Unsvédg and
Gambick [17] create a classifier in which textual features are augmented with user-specific
ones, such as gender, activity and network connectivity (number of followers and friends).
They use Logistic Regression (LR), reporting a 3 point increase in the F1 score with the
addition of user-specific features. Mishra et al. [41] use a variant of the word2vec skipgram
model by Mikolov et al. [40] to create network (node2vec) embeddings of users based on
their network positions and those of their neighbours. They concatenate the generated
user network vectors with character n-gram count vectors, and use a LR classifier, achiev-
ing a 4 point increase in the F1 score compared to the same model without the network
embeddings.

One drawback of node2vec embeddings, however, is that they can only incorporate the
structural and community information of a user’s network; the textual content of tweets
written by other users in this network is not incorporated. This may, as Mishra et al. [42]
demonstrate, lead to misclassification of a normal user’s content because of their hate-
ful network neighbourhood through ‘guilt-by-association: This is a problem for use of a
node2vec model in the real world, where such mistakes would spark considerable backlash
and opposition. Most importantly, from a practical perspective, shallow embeddings such
as node2vec may be unfeasible as the embeddings need to be re-generated for the entire
graph every time a new user enters the network [21]. The large and constantly changing
user bases of social media platforms render such methods computationally impractical.

Moving from detecting hateful content to detecting hateful users, meanwhile, is not
straightforward due to challenges in sampling [12, 53, 62] and in accessing network and
other user attributes [25]. Geometric deep learning offers a very promising avenue for
hateful user detection, and has been used to leverage network features in other classifica-
tion problems. Ribeiro et al. [53] were the first to use geometric deep learning for hateful
user detection, using GraphSAGE, a semi-supervised learning method for graph struc-
tures such as networks. It incorporates a user’s neighbourhood network structure as well
as the features of her neighbours to learn node embeddings for unseen data [21]. Ribeiro
et al. [53] achieve an overall unbalanced accuracy of 84.77% and F1-score of 54%, a sub-
stantial improvement over their baseline model. However, one limitation of their work is
the relative simplicity of the baseline, which is a decision tree that lacks any network infor-
mation. This is not a like-for-like comparison as the geometric deep learning model has

access to additional features.
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Further, they do not consider the implications of geometric deep learning beyond just ac-
curacy: network-level features may, theoretically at least, be less biased towards the ‘guilt-
by-association’ sub-problem because of how they exploit homophily in social networks.
This is a key concern; if this fatal limitation of incorporating network features cannot be
overcome then the method cannot be reliably used in real-world content moderation.

2.3 Fairness in automated hate detection

Attention in online hate research has increasingly shifted from solely considering perfor-
mance to also evaluating models based on their fairness. This is particularly important
for online hate detection as biased models could risk perpetuating the very problems (of
social discrimination and unfairness) that they are designed to challenge.

Fairness in online hate detection has been addressed in several prior studies. Thus far,
fairness has largely been explored in relation to content, although it is likely that it also af-
fects hateful user detection algorithms, presenting the potential for new sources of harm.
To our knowledge fairness in hateful user detection has not been systematically studied
in previous work. Chung [10] show that Google’s Perspective toxicity classifier disparately
impacts African—American users by disproportionately misclassifying texts in African—
American Vernacular English (AAVE) as toxic. Exclusively learning from textual elements,
the model identifies relationships between words such as ‘black; ‘dope; or ‘ass’ and toxicity
as such words appear frequently in hateful posts. Given the frequent use of such words in
AAVE, African—American users bear the negative implications of such erroneous learn-
ing.

Davidson et al. [11] use machine learning to identify AAVE tweets and find substan-
tial and statistically significant racial disparity in the five datasets they investigate. AAVE
tweets are, for models trained on some datasets, more than twice as likely to be associated
with hate compared to Standard American English (SAE) tweets. They investigate how
tweets containing ‘nigga; a term re-appropriated by the African—American community
but still frequently used to perpetrate hate, are classified. They find that a tweet’s dialect,
independent of whether it uses ‘nigga, strongly influences how it’s classified: AAVE tweets
are more likely to be classed as hate-related than SAE tweets, even where both contain the
term ‘nigga’ [11].

Davidson et al. [11] argue that annotation errors in the training data, where black-
aligned language may be more likely to be labelled as hateful, may explain some of these
differences. Sap et al. [55] have confirmed this possibility, exploring two key hate speech
datasets and finding that AAVE tweets are up to two times more likely to be labelled as
offensive by human annotators compared to non-AAVE tweets. Models trained on such
datasets learn and propagate these annotation biases, amplifying disparate impact. Even
BERT-based classifiers can confuse the meaning of words such as ‘women; ‘nigga’ or ‘queer;,
falsely flagging non-hateful content that uses such words innocuously or self-referentially
[45].

Fairness, alongside other concepts such as bias and discrimination, is contested in ML
literature. Mehrabi et al. [39] provide a comprehensive review of work on ‘Fair ML, and
define fairness as “the absence of any prejudice or favouritism towards an individual or a
group based on their intrinsic or acquired traits in the context of decision-making” How-
ever, they acknowledge that fairness can have varying notions both within and across dis-
ciplines, depending on how it is operationalized. Barocas and Hardt [2] have categorized
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notions of fairness into two groups: those centred around ‘disparate treatment’ and those
around ‘disparate impact. Disparate treatment characterizes decision-making if a subject’s
sensitive attributes, such as race, partly or fully influence the outcome. In contrast, dis-
parate impact occurs where certain outcomes are disproportionately skewed towards cer-
tain sensitive groups [2]. Elsewhere, Kleinberg et al. [30] show the constraints imposed
by different definitions of fairness on ML systems are incompatible: in most practical ap-
plications ML models cannot optimize for a particular definition of fairness without also
causing unfair outcomes when considered from a different definition. Thus, it is important
to establish the notion of fairness that is being prioritized before models are optimized.

Trying to maximize algorithmic fairness can lead to a ‘fairness—accuracy trade-off,
where “satisfying the supplied fairness constraints is achieved only at the expense of ac-
curacy” [65]. However, Wick et al. [65] have also shown that theoretically and practically,
such a trade-off may be overcome in cases where systemic differences in the outcome
variable (e.g., online hate) are not caused by the sensitive attribute (i.e., race). This is a
plausible assumption in the current setting: nothing suggests that people of a particular
race are intrinsically more hateful than those of another, especially after accounting for
other factors. As such, it could be possible for both fairness and accuracy to be optimized,
given an effective model.

Fairness can be operationalized in different ways, each of which could be justified in
certain situations [39]. One notion of fairness is demographic parity, which requires that
a model’s predictions are the same across different sensitive groups [22]. While applica-
ble in certain contexts, this may be suboptimal for hate detection tasks. The social re-
ality of online hate means that certain groups are more likely to perpetrate it, such as
white supremacists compared with other users (of any race) [11]. However, because de-
mographic parity does not incorporate accuracy of classifications (i.e., whether predicted
outcomes match actual labels), it could theoretically be ‘achieved’ with many misclassifi-
cations.

The notion of ‘predictive equality’ assesses the false positive error rate balance, and can
also be used to evaluate fairness [58]. Predictive equality is very appropriate to studying
online hate, which has a history of disproportionate false positives among minority groups.
There is also a magnified harm of such errors compared to false negatives, given that it
penalizes the very groups that hate classifiers are meant to protect [14].

A previously unstudied way of effectively and efficiently addressing fairness in online
hate detection could be through incorporating user-specific information by leveraging
their social networks. Given homophily in such networks, ML models incorporating net-
work information might learn user characteristics without these being manually speci-
fied. Indeed, new approaches to ‘Fairness without Demographics’ in ML have sought to
exploit correlations between observed features and unobserved sensitive group attributes
to boost fairness [32]. When social networks are effectively incorporated into ML models,
this homogeneity can be exploited to infer contextual information around an individual’s
identity, without directly extracting and feeding such features into the model. This may
not only lead to more scalable models for online hate detection, but also fairer and more
accurate ones. For instance, the text of a user can be contextualized against their identity,
helping resolve ambiguities stemming from the analysis of text alone, such as with poly-

semous words like ‘nigga’ This approach also has the clear advantage of minimizing the
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amount of sensitive data that needs to be harvested, assessed, and stored, minimizing the

risk of privacy-invasions.

3 Data

The data used in this paper was collected and labelled by Ribeiro et al. [53]. It consists
of a Twitter retweet network, with a total of 100,386 users (nodes), and 2,286,592 edges
(including self-loops) between them. We removed all self-loops from the dataset. The net-
work is a directed graph G = (V,E). Each node u € V represents a user and a directed
edge between two users (u;, #;) € E denotes that u; has retweeted u;. As such, the edge
directions can serve as a proxy for the direction of influence flow in the graph [53]. To
construct a sampled graph of all Twitter users Ribeiro et al. [53] used a Directed Unbiased
Random Walk (DURW) algorithm. DURW avoids oversampling high-degree nodes, pro-
ducing a more representative sample [52]. The starting node was set to a Twitter account
geo-located in San Jose, California.

Ribeiro et al. [53] selected 4,972 users for manual annotation (approximately 5%). The
relative sparsity of hateful online content has led many researchers to use a lexicon-based
approach to ensure that the sample contains more hateful content than randomly found
online (e.g., [6, 12]). However, such approaches would bias sampling towards only those
users who use the words in the specified lexicon, missing other types of hateful users.
Indeed, notably, the entire dataset of 1,972 racist tweets collected by Waseem and Hovy
[64] came from only 9 users. To mitigate this, Ribeiro et al. [53] used a graph diffusion
process based on a lexicon of words mainly used to express hate, taken from databases
provided by Hatebase.org and the ADL. The graph diffusion process assigns probabilities
to each user based on their tweets and those of their nearest neighbour. It ensures a more
balanced sample between hateful and innocuously used words in the lexicon as well as
inclusion of users whose neighbours are hateful making it more likely that coded or non-
standard hate is also included.

Ribeiro et al. [53] use crowdsourcing to manually annotate 4,972 of the sampled users as
hateful or normal based on their sampled tweets and in reference to Twitter’s guidelines
on hateful conduct. Each user was annotated by at least three independent annotations.
If there was any disagreement then up to five annotations were collected [53]. 544 hateful
(10.9%) and 4,438 normal (89.1%) users were identified.

For each user, Ribeiro et al. [53] extracted textual, user-level, and network-level features.
The text of users’ tweets are represented as 300-dimensional GloVe vector embeddings,
which were provided with the dataset. Other textual features were also derived, including
sentiment and subjectivity scores. User-level features relate to their Twitter activity and
profile, and include the number of followers, followees, statuses, and favourites normal-
ized by the time since account creation. Network-level features include the in-degree, out-
degree, eigenvector, and betweenness centrality of each user, and aggregated user-level
and textual attributes of their immediate 1-hop neighbourhoods. Ribeiro et al. [53] find
large and statistically significant differences existed between normal and hateful users on
such measures, with hateful users being identified as more active, central, and with newer
accounts, likely because of previous account suspensions. In addition, we used the original
tweets for a partial set of the users, which were provided to us by Ribeiro et al. [53].} We

1\We thank the original authors for providing us with this information.
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used these tweets only to examine classification errors and for demography detection. We
did not use them for modelling as they were not available for all users.

4 Experimental setup and methodology

The research methods used in this paper can be divided into two main categories: meth-
ods for inferring users’ demographics and machine learning techniques for the automatic
detection of hateful users. Following a summary of the experimental setup, a detailed ex-
planation of each method is provided.

4.1 Experimental setup

After identifying a subset of African—American users from the dataset, as detailed in 4.2,
5-fold cross-validation is used to test both the predictive power and fairness of seven mod-
els. Four of these are baseline classifiers, chosen based on their modelling approaches (lin-
ear vs. non-linear) and their model capacities. The other 3 models were Graph Neural
Networks with different aggregation mechanisms. A fuller explanation of the choice of
these models is provided below. At each fold of cross-validation, the models were trained
on 80% of the data and tested on the other 20%. Both the overall accuracy of the model and
their fairness, measured through their performance with respect to the African—American
group, was measured at each step. The aggregate of these results from the 5-fold cross-
validation was then used to determine which classifier was the most accurate as well as
the fairest.

For accuracy, each model was evaluated using binary accuracy, the receiver operat-
ing characteristic (ROC) curve (AUC), Precision, Recall, and the F1-score. Precision
is measured as True Positives/(True Positives + False Positives), Recall is measured as
True Positives/(True Positives + False Negatives), while the F1-Score is the harmonic mean
of Precision and Recall. AUC, meanwhile, is “especially useful for domains with skewed
class distribution and unequal classification error costs” as it is insensitive to class distri-
butions [16]. The larger the AUC, the larger the probability that the classifier will rank ran-
domly chosen positive instances higher than randomly chosen negative instances. Taken
together, these metrics help evaluate the trade-offs made by models between decreasing
false positives and increasing false negatives. Fairness, meanwhile, is evaluated by consid-
ering the performance of each classifier on the subset of African—American users. Par-
ticular attention is given to false positive rate (FPR) across demographic groups, for the
reasons described above. The binary accuracy of each classifier is also reported for the
African—American user subset in order to better understand any accuracy—fairness trade-
off.

The hyperparameters of each model were tuned using a grid search approach, whereby
a search space is defined as a grid of hyperparameter values and the model is evaluated us-
ing hyperparameter combinations on each position in the grid [23]. The hyperparameters
include the L2 regularization strength parameter for logistic regression, the regulariza-
tion parameter and scaling parameter for SVM, and the learning rate, batch size, and layer
number for the ANNs. For the GraphSAGE models, the hyperparameters tuned include
the learning rate, aggregation dimension, and neighbourhood depth.

Finally, a detailed error analysis of the best performing model is performed to further
understand areas where even the fairest and most accurate classifier may still face limita-
tions.
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4.2 Detecting African-American users using a mixed-membership demographic
language model

Given the size of social media datasets, large-scale statistical tools have been developed
to automatically infer demographic attributes, which can be used to diagnose and miti-
gate potential bias in the models deployed on such data [63]. A subset of such research
is devoted to inferring the race or ethnicity of social media users based on their content,
profiles, or both (e.g., [3, 50]). For this paper, we use a distantly supervised probabilistic
topic model developed by Blodgett et al. [3]. It models dialect variation across races in the
US [18], using Latent Dirichlet allocation (LDA) to classify users into the four main cat-
egories of the US Census: non-Hispanic white, non-Hispanic black, Hispanic, and Asian.
Using this model, Blodgett et al. [3] report accuracy of 97% (AUC) for detecting users’ race
in a dataset of 26,009 users. It is appropriate for this research as the model was trained, at
least partly, on US Census data and is likely to be most effective for US-based populations.
Given that the random-walk induced strategy for creating the retweet network used here
had as its starting seed node a user in San Jose, California, our sample of users is likely to
mostly be from the USA [20].

Following a similar approach to Preot and Ungar [50], we applied the pre-trained topic
model of [3] to the messages of each user, averaging the probabilities to determine a score
for each user. If the average probability for the African—American category was above 0.8
we labelled the user as African—American. At this first step, 168 users were identified with
this approach; further manual verification was conducted at a second step, after which 32
users were identified as false positives, leaving 136 African—American users in the dataset.
Of these, eight are labelled as hateful.

4.3 Classifying hateful users using machine learning

In total we train seven models, four of which incorporate network information. 5-fold
cross-validation is used to test the predictive power and fairness of the models, with a
80/20 train—test split. All models are coded in Python using the TensorFlow2 library.

4.3.1 Baseline classifiers

We train four baseline classifiers selected based on approaches common in computational
social science research on hateful content detection [60]: regularized logistic regression,
Support Vector Machine (SVM) with a radial basis function kernel, and two fully con-
nected Artificial Neural Networks (ANNs). We compare the performance of graph neural
networks (GNNs) against these baseline models on both accuracy and fairness. The logis-
tic regression was chosen due to its linear modelling of the problem, which is contrasted
with the non-linear approach of the SVM and ANNs. The choice of models also reflects
a progressive increase in model capacity, with the logistic regression having the lowest
capacity, followed by the SVM and the ANNs. Additionally, one of the ANNS is trained
on textual, user-level, and manually engineered network-level features described above;
all other baseline classifiers are trained only on textual and user-level features. Given the
complexity of the problem and the superior model capacity of the ANN, it was considered
likely that it would have superior performance. As such, we experimented with two differ-
ent versions of the ANN: one trained on just textual and user-level data, and another with
manually engineered network-level features. The ANN with network-level features was
chosen both to see if such features had an incremental impact on its performance but also
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to better compare this model to the GNNs, which also incorporate network information

but learn network-level features in an end-to-end manner.

4.3.2 Geometric deep learning and GraphSAGE

Analysis of properties of edges, nodes and topologies of such networks has been subject
to various statistical and social methodologies (see [31]). However, predicting such prop-
erties using machine learning had been restricted to using shallow representations or en-
codings of such properties, such as through node2vec [19] or TransE [4]. Such shallow
encoders, however, cannot generalize to unseen nodes. The entire graph must be first
embedded before prediction can be performed [34]. This makes them impractical for use
on most online social networks, where new users are added to the network in a continual
stream. Moreover, they incorporate only the graph’s topology, ignoring attributes of the
nodes themselves, such as a user’s text or activity patterns in the current case [34].

Geometric deep learning, through the use of GNNs, overcomes such difficulties, result-
ing in more information-rich and predictive node embeddings fine-tuned to a given task
[67]. Spatial Graph Convolutional Neural Networks (GCNNs), a variant of which is used
here, create node embeddings by defining graph convolutions upon a node’s spatial rela-
tions: each node’s representations are obtained by convolving its embedding with those of
its neighbours, leading to information propagation across a graph’s edges while capturing
its topological structure simultaneously [67]. A spatial approach was chosen, instead of the
also popular spectral approach, due to spatial approaches’ better efficiency, more effective
generalisability to new graphs, and capacity to incorporate directed edges [67]. The latter
two properties are especially relevant for constantly evolving and directed social networks
such as Twitter.

We use GraphSAGE, an inductive spatial variant of GCNNs proposed by Hamilton et al.
[21]. As opposed to learning distinct embeddings for each node, in what would be a ‘trans-
ductive’ approach, GraphSAGE trains “a set of aggregator functions that learn to aggregate
feature information from a node’s local neighbourhood’, with each such function aggregat-
ing information from a different number of hops away from the target node in the network
[21]. The learnt parameters of these functions, shared across nodes in a form analogous
to vanilla convolutional neural networks, are then used to generate embeddings for previ-
ously unseen nodes. Such an ‘inductive’ or end-to-end approach learns both the topolog-
ical structure of node neighbourhoods as well as the optimal aggregation of node features
within them [21].

GraphSAGE can incorporate different aggregation functions, and we use three Graph-
SAGE models with different aggregation functions: mean aggregation, which takes a
weighted average of the embeddings of a node’s neighbours; max pooling, which trans-
forms these embeddings through a neural network and takes the maximum activation;
and self-attention, which uses a single attention layer to compute attention coefficients for
a node’s neighbours, better incorporating their differing importance for the target node’s
representation.

Another popular kind of GNN, Graph Convolutional Networks (GCNs), are not used
because of their high memory requirements and computational complexity. When train-
ing GCNs, usually the whole graph data and intermediate states of all nodes is required to
fitinto memory [67]. In contrast, GraphSAGE recursively samples a node’s neighbourhood
for a fixed K number of steps, providing a more memory efficient solution as the whole
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Table 1 Comparison of Complexity of GraphSAGE and Graph Convolutional Networks (GCN)
(Adapted from [67]) n is the total number of nodes. m is the total number of edges. K is the number
of layers. s is the batch size. r is the number of neighbours being sampled for each node

Complexity GCN GraphSAGE
Time O(Kmd + Knd?) O(knd?)
Memory O(Knd + Kd?) O(sr¥d + Kd?)

Table 2 Performance metrics % standard deviations (Maximum mean columnar values in bold)

Model Accuracy Precision (%) Recall (%) F1-Score (%) AUC (%)

LR 83.1+£1.78 376+ 1.16 8214132 516 £ 154 899+ 1.20
SYM 81.6+0.89 348 +£0.77 776+0.13 480+ 0.64 876+ 041
ANNtext+user 84.1 £ 2.58 406 4+ 2.39 757 £2.14 51.7 £3.21 88.2 £ 245
ANNiext+user-+network 87.2+202 453 +247 68.8 & 2.05 542 4+ 3.08 872+1.72
GraphSAGE maxpool 8424159 403 + 146 80.9 + 1.08 5344 1.16 902 4 1.34
GraphSAGE yention 84.841.11 406+ 125 8234118 5434 1.14 90.8 + 1.07
GraphSAGE, 874 +£104 46.1 +£1.15 768 £1.11 575+ 112 90.8+1.03

meanagg

graph is no longer needed [67]. GCNs, moreover have a computational time complexity of
O(m), where m represents the number of edges in the graph [67]. GraphSAGE, meanwhile,
has a time complexity dependent on the number of samples and layers; these can be tuned
to make GraphSAGE more efficient [67]. Lastly, as Hamilton et al. [21] demonstrate, on a
social network node classification task similar to the one used here, GraphSAGE gener-
ates a higher F1 score than GCN, despite its lower computational and memory burden. We
also experimented with GCN on an NVIDIA Tesla M60 GPU with 2048 parallel process-
ing cores, but found that it was too time-consuming on the present network of +2M edges.
A fuller comparison of GraphSAGE and GCN’s memory and time complexity is provided
in Table 1. Given these reasons, we did not employ GCNs, but instead experimented with
GraphSAGE and its different aggregation methods.

5 Results

Table 2 shows the performance of each model. In terms of binary accuracy as well as F1-
Score, models that incorporate network-level features perform better than those that do
not, while neural-network based approaches outperform more traditional machine learn-
ing approaches. Geometric deep learning performs best across all metrics. The Graph-
SAGE model (using mean aggregation) has the best F1-Score (57.5) and AUC (90.8).

Our results show the power of geometric deep learning for achieving higher perfor-
mance in hateful user detection. Firstly, the logistic regression model, the simplest base-
line used, still performs fairly well, even surpassing the ANNs on certain metrics. Secondly,
when incorporating network information into the ANN, its performance declines consid-
erably on some metrics such as Recall (-6.9) and AUC (-1). However, these declines do
not occur for the GraphSAGE models, which also incorporate network-related informa-
tion. Lastly, all models have relatively high recall but low precision, indicating that they
can detect hateful users well but often mistake normal users for hateful ones. The fact
that AUC is still high, despite this, indicates that this disparity may not be entirely related
to trade-offs made by the models between true positives and false positives. Instead, the
size and unbalanced nature of the dataset is likely to have played a role (despite our use of
class weights). Indeed, as Juba and Le [28] report through an investigation of 4 imbalanced
datasets, “in the presence of severe class imbalance, it is not possible to reliably achieve
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Table 3 Fairness Evaluation Metrics (African-American denoted as AA, False positive denoted as FP)

Model Accuracy FPs FPs FP rate FP rate

(AA users) (AA users) (non-AA users) (AA users) (non-AA users)
ANN¢ext+user 80.9% 26 660 20.3% 14.8%
ANNtext +user+network 86.0% 13 465 10.2% 10.5%
GIaphSAGE maxpool 91.7% 5 680 3.9% 15.7%
GraphSAGE gtention 93.9% 1 662 0.7% 15.3%
GraphSAGE, 94.2% 0 492 0.0% 11.1%

meanagg

Predicted Normal Predicted Hateful

-3500
-3000
Actual Normal
-2500
-2000

1500
Actual Hateful 1000

-500

Figure 1 Confusion matrix. Predictions from best performing model: GraphSAGE with mean aggregation

high precision and recall unless one possesses a large amount of training data” Methods
such as class weighting, over-sampling, or under-sampling are minimally effective and face
an “inherent statistical barrier” [28].

Table 3 shows the accuracy of each model on the subset of 136 African—American users,
and compares the false positive rates (FPRs) for African—American and non-African—
American users. The results show that, firstly, geometric deep learning outperforms the
neural network classifiers in producing the lowest FPR among African—American users,
with the mean aggregation based GraphSAGE model bringing this rate to zero. Secondly,
the neural network without network information (ANNiext,user) is biased against African—
American users, producing a FPR that is almost 6 percentage points higher among these
users compared to the non-African—American group. Incorporation of network informa-
tion in the ANN helps lower and roughly equalize these rates. When such network in-
formation is dynamically learnt through the GraphSAGE models, the FPR for African—
American users drops even further, becoming much lower than that of the non-African—
American group.

6 Error analysis of the best performing model
Figure 1 shows the classification confusion matrix for the best performing model, Graph-
SAGE with mean aggregation. As shown by the performance metrics reported above, the
model performs well in detecting hateful users but has problems in distinguishing normal
users from hateful ones. This is seen in the larger number of false positives in the matrix’s
upper right corner, compared to false negatives in its lower left corner.

We conduct an in-depth error analysis to further explore the nature of the model’s mis-
classifications. For both false positives and false negatives, we first identify quantitative
differences in user and network-level features between correctly classified users and their
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misclassified counterparts for the whole dataset. In a second step, in a similar vein to Vid-
gen et al. [59], we use the inductive, data-derived qualitative approach of grounded theory
to create a typology of misclassified users. Grounded theory is well suited for error anal-
ysis as it induces themes from the data, organizes them into categories, and iterates over
this process until a ‘saturated” set of mutually exclusive and collectively exhaustive cat-
egories is achieved. For this qualitative step, we select a random sample of 20 users for
both false positives and false negatives, and all their tweets (up to 200 each) are analysed.
This is done for the entire dataset, as well as the entire subset of African—American users,
reflecting the focus of each research question.

6.1 False positives

Normal users who are wrongly classified as hateful (false positives) comprise the majority
of errors (~80%). Out of these, 23 (~5%) were suspended by Twitter a few months after the
dataset’s creation, indicating that there may have been an annotation error where actually
hateful users were labelled as normal. However, we cannot verify this.

Interestingly, in many regards users in the false positive category are more similar to
correctly classified hateful users, and dissimilar to correctly classified normal users. This
may explain why the GraphSAGE model made errors in its classifications. Firstly, in terms
of their social network: only 3% of users in the correctly classified normal user group (true
negatives) had hateful neighbours but more than 50% of users in the false positive group
did. The GraphSAGE models, which rely on the networks of users, may have failed to
adequately distinguish between users whose immediate networks contained a high pro-
portion of hateful users. This indicates that the model still encodes some ‘guilt by asso-
ciation’ but this is likely far less than with other methods. Secondly, the average number
of words that users in the false positive category use from ADL and Hatebase’s hateful
lexicon is around 16% higher than correctly classified normal users. Lastly, users in the
false positive category display more negative sentiment in their tweets than even hateful
users. However, there are no meaningful differences observed in other network or user-
level categories such as degree distributions or activity metrics. This analysis indicates that
on a network and textual level, false positive users are more similar to correctly classified
hateful users than to the correctly classified normal ones.

Using a grounded-theory approach, qualitative inspection of the false positives shows
they fall into four categories: annotation errors, ambiguous content, offensive (but not
hateful) content, and negative sentiment against minorities. In no cases did the Graph-
SAGE model make a mistake that is entirely unexplainable.

Annotation errors These are cases where annotators have made errors and as such are
not attributable to the machine learning models. Five users (25% of the false positives
we reviewed) fall into this category. They include both explicit and more subtle forms of
hate. For example, one user in this category clearly expressed hate against Jews with the
statement: “Because Jewish perverts like Weinstein, Woody Allen and Roman Polanski
aren’t unique, they’re a trend”. Others, however, express hate in more subtle ways, such as
by using uncommon hateful slurs. For example, two misogynistic users often claimed that
victims of rape deserved it and used terms such as ‘soyboy, a deeply misogynistic term
used in Men’s Liberation Movement groups but relatively rare in the overall online hate
landscape [27]. Moreover, four of these five users expressed irritation with Twitter about
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moderating their tweets, for example: “Every post I make is marked sensitive. It is Twitter’s
soft censorship”

Ambiguous content This category includes errors where it is unclear whether hate was
expressed. Some users are difficult for even a human to categorize, either because further
context is needed to interpret their content or because the remarks are genuinely indeter-
minate. Examples of such content include reference to a ‘slut culture problem; attributing
something to the ‘black race’ where context is not present on what is being attributed, and
implying connections between Muslims and terrorism. Further context is often needed in
such cases to establish their hatefulness. Note that some of these ‘ambiguous’ cases could
easily be considered annotation errors by some viewers (i.e., they could be genuinely hate-
ful); however, on balance we believe there is insufficient evidence to make this stronger
claim.

Offencevs. hate  Around 18% of false positive users tweeted in an offensive but not overtly
hateful manner, although the line between these two is itself often hard to establish [12].
All such users had a considerable number of tweets with offensive words or phrases such
as ‘cunts; ‘pussies; ‘whore; ‘fuck off; or ‘faggots. Some tweeted about minority groups in an
offensive, though not explicitly hateful way. For example: “Being ethnic does not stop you
going to Sandhurst, being as thick as pig poo does. Positive discrimination is dumbing
down” or “My ex boss would not employ women or coloureds because he thought they
were lazy”

Negative sentiment but not hate against minorities Almost 30% of all false positives ex-
pressed negative sentiment but not hate against minorities, and were possibly misclassi-
fied by the model partly due to this factor. LGBT groups, immigrants, and Muslims feature
prominently in such cases. Examples include: “She’s illegal you dipshit. A felon. She has no
rights in this country, nor do you in hers. Gtfoh” or “Liberals: Lets use Islamic teachings
to protect women. Islam: Lets make women property. Weird world we live in”.

6.2 False negatives

Hateful users who are wrongly classified as normal (false negatives) comprise the minority
of errors (~20%). In contrast with the false positives, these users are not highly dissimilar
to users from their true class (here, hateful). That said, they exhibit some notable similar-
ities with users in their wrongly predicted class (i.e., normal), which may partially explain
why the model misclassified them. A far lower proportion of false negatives had normal
neighbours compared with an average hateful user: on average, around 80% of correctly
classified hateful users had a normal neighbour, compared to only 51% of false negative
users.

Even on a textual level, the average number of hateful words used by the hateful users
(true positives) and the false negatives is nearly equal, and 37.5% higher than the average
for normal users. Yet, in other areas such as sentiment and subjectivity, false negatives are
systematically dissimilar to hateful users. False negatives show, on average, 25% greater
positive sentiment in their tweets versus hateful users.

Qualitative analysis of false negative users reveals three major categories: annotation
errors, hate against uncommon targets, and non-explicit hate.
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Annotation errors A large portion of false negatives (40%) were due to annotation er-
rors. Firstly, hateful labels were often wrongly assigned to users who were, in fact, op-
posed to hateful groups and used strongly-worded language to defend minority groups.
For example, a user who was against the genocide of Rohingya Muslims in Myanmar and
expressed vigorous opposition to its regime was annotated as hateful. Secondly, a quar-
ter of these wrongly annotated users used either obscene or offensive language, but in
self-referential and non-hateful ways. Lastly, a third of these annotation errors were for
African—American users. They showed frequent use of words such as ‘nigga; ‘bitch; or
‘ass’ but always in non-hateful ways and likely in community contexts. Such errors reflect
previous findings that even annotators focus strongly on words only, often ignoring the
context of language use and thus mislabelling users as hateful [45]. Note that no such er-

rors were identified with African—American users for the false positives.

Hate against uncommon targets Of the remaining 60% of false negatives that can be
directly attributed to the model, a quarter contain users who express hate against un-
common targets. Such users were indeed hateful, but directed their hate against Native-
Americans, old-aged people, or Christians. These categories of victims are uncommon on
social media: research by Mondal et al. [44] on categorizing hate speech on Twitter by its
targets finds that hate directed against religion or ethnicity make up less than 2% of all hate
speech. Hate against old people does not feature at all in their data. Given the scarcity of

such examples, ML models may not adequately learn to identify such forms of niche hate.

Implicit hate A third of the model-attributable false negatives were for implicit hate:
hateful users who did not explicitly use hateful words or phrases in their texts but relied
on contextual references. For example, two users praised ISIS’s actions and someone who
“beat up the black guy on the bus in that video” respectively. Another favourably referenced
what Hitler would do in a particular situation to express racist sentiment. This category
also featured users who use subtle but still hateful words when diminishing women, such

as ‘broad.

6.3 Errors among African-American users

For African—American users the GraphSAGE model only produced false negatives, with
no false positives. 50% of these were annotation errors where words, phrases, and other
linguistic features common to AAVE were likely mistaken by annotators as signals for
the hateful nature of a user, a source of annotation error common in many other popular
hate detection datasets (see [14, 55]). Users with tweets such as “That’s flint nigga not De-
troit. Dumbass” or “God damn your bitch ass backup account do numbers like this?” were
mislabelled as hateful. From an analysis of all their available tweets, however, it is clear
that they use offensive or otherwise hateful terms such as ‘nigga’ or ‘bitch’ in community
contexts only, without any overt intention of harming a potential target. Out of the other
half, which comprised errors produced by the model, one user had been suspended from
Twitter. They expressed anti-LGBT hate, albeit more subtle varieties. The others either
had content that could be characterized as offensive, for example “I like nasty bitches’, or

expressed hate implicitly.
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7 Discussion

In this section, we discuss the results in the context of our objective of producing more ac-
curate and fairer hateful user classifications. We divide the discussion into two subparts:
Sect. 7.1 focuses on the accuracy of our proposed system while Sect. 7.2 examines fair-
ness. The strengths and limitations of the system are discussed, and some potential future
research areas are highlighted.

7.1 Towards more accurate classification

Our results show that the incorporation of dynamically learnt network representations
along with user-level and textual information through geometric deep learning produces
more accurate classification of hateful users. Across all metrics, GraphSAGE performs
the best. From a social science perspective, our results help support existing theories
about homophily among hateful users by demonstrating how network-level insights can
be leveraged successfully to boost classification accuracy. The most accurate results are
only achieved when users’ network-related information is dynamically learnt. The recall
for the ANN incorporating static network features is actually the lowest among all models.
We showed that normal users often had a considerable proportion of hateful neighbours.
Even so, models including network information have the highest precision scores, indi-
cating that they are best able to distinguish between the two classes of users by using their
networks. Leveraging such features more efficiently and effectively could demonstrably
improve flagging of hateful users in the real world.

Despite the advances that geometric deep learning offers, precision remains fairly low
overall, with the best classifier having a score of 46.1. While this may be because of the
nature of the retweet network, where normal users do not show particularly strong assor-
tative mixing, it may also arise due to training data scarcity, which is a concern here given
that the dataset is an order of magnitude smaller than most labelled hate speech training
datasets [59]. Furthermore, as the error analysis demonstrates, annotation errors com-
prised a substantial proportion of both false negatives and false positives and could also
contribute to this, artificially depressing the model’s performance. Further work should
probe the underlying tensions faced by human annotators in labelling such content. As
Vidgen et al. [59] write, for “complex and often-ambiguous content even well-trained an-
notators can make decisions [that] are inappropriate”. Disagreement metrics between an-
notators, such as Kappa scores, are essential for understanding whether the model’s errors
are related to annotator uncertainty (i.e., the ‘ground-truth’ label is contested in the first
place). Unfortunately, no such metrics were collected by the datasets’ creators, preventing
such analysis in this case.

The model performs poorly when users’ content is ambiguous or where hate is not ex-
plicitly expressed. It is unable to adequately distinguish between offence and hate, pos-
sibly because it focuses on hateful words without fully understanding the nuanced con-
text in which they are used. This is partly because of the nature of the data itself. Tweets
are short-form content, often implicitly reference other entities, and can be ambiguous,
even when considered by humans [37]. A way to ameliorate this problem may be through
the consideration of heterogeneous graphs, where users and their tweets are considered
as heterogeneous but connected nodes, and different types of edges are placed between
users and between their tweets if a tweet references another one (for example, through a
retweet or reply). Indeed early experiments by Facebook Al in using heterogeneous graphs
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combined with graph convolutional networks for hateful content detection have shown
promising results [42]. Another way to help address this problem may be by using a better
representation of each user’s content. We used GloVe embeddings (provided by the origi-
nal authors) but contextual word embeddings, such as BERT, have been shown to achieve
better performance in classifying hateful content [45].

7.2 Geometric deep learning: A fairer approach?

Alongside boosting accuracy, we showed that incorporating learnt network representa-
tions of users into the classification task also reduces longstanding biases against African—
Americans in automated hate detection. This boosts fairness as far as ‘predictive equality’
is concerned, where non-discrimination towards the minority group is required only for a
particular outcome of interest, which in this context is being classified as hateful. Without
the inclusion of network information, the ANN classifier produced disparate impact on
African—American users, who had an FPR almost 6 percentage points higher than users
from other demographic groups. The inclusion of network information within the ANN
itself helped somewhat to equalize the FPRs between the minority and majority groups.
When such network representations are learnt end-to-end, the FPR declines further for
the African—American group, dropping to zero for GraphSAGE with mean aggregation,
which is also the most accurate classifier overall. Thus, it appears that the selection of the
‘predictive equality’ fairness criteria, which unlike other criteria such as ‘demographic par-
ity’ does not place strict limits on classification accuracy, has the desired effect: the fairest
classifier is also the most accurate one.

These results, however, should be interpreted with some caution. Firstly, the subset of
African—American users identified is small, and testing on a larger group is required to
fully establish the fairer nature of geometric deep learning classifiers. Secondly, the an-
notation errors observed in the error analysis complicate what conclusions can be drawn
from the results. Half of the ‘false-negatives’ among African—American were users labelled
as hateful despite being, in fact, normal.

Additionally, geometric deep learning methods decrease the FPR among African—
American users to a rate that is Jower than that of the non-African—American group. From
a purely technical perspective, where ‘predictive equality’ is concerned, the FPR between
the two groups should be close to, if not exactly, equal. The large gap in the FPR rates, de-
spite addressing historical bias against a minority group, thus poses a problem from this
viewpoint. From a political and moral philosophy perspective, judgements on fairness are
often driven by broader normative principles [33]. In this regard, an unequal error rate
could be used to correct a past bias. For instance, hate detection algorithms have been
shown to be biased against African—Americans, persistently suppressing their speech un-
fairly. To remedy this, a normative decision could be made to assign greater importance
to lowering the FPR for this group than for the non-African—American group. This could
be considered more reflective of societal ideals of fairness.

8 Conclusion

We have demonstrated the promise of using geometric deep learning to incorporate
network-level information into hateful user classification, showing that it can lead to fairer
and more accurate results. This is one of the first works (to our knowledge) to both con-
sider the problem of fairness in hateful user detection and to develop a model that mini-
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mizes it while also boosting accuracy. By leveraging the rich context that network informa-
tion provides, our system dealt better with the problems of polysemy that have often led
automated hate detection to be inaccurate and biased. It allowed our system to distinguish
between hateful and non-hateful users who otherwise shared many linguistic character-
istics.

In completing this study we have leveraged both social science theories and recent ad-
vances in ML research. The task of automated hate detection is, despite the widespread use
of ML models, an inherently social one. Combining social science insights on homophily
between hateful users with geometric learning techniques, this paper has enabled creation
of a more effective classifier. It has evaluated this classifier, moreover, by choosing an ap-
propriate notion of fairness that is guided by broader concerns in society about historic
algorithmic bias against African—Americans (predictive equality).

With this contribution, we hope to inspire future work in this nascent but important
area of research. A fruitful area for future research would be to explore further ways and
situations in which network-information can enhance automated hate detection, testing
the generalisability of such methods to more contexts.
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