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Abstract

Finding the origin location of an infectious disease outbreak quickly is crucial in
mitigating its further dissemination. Current methods to identify outbreak locations
early on rely on interviewing a�ected individuals and correlating their movements,
which is a manual, time-consuming, and error-prone process. Other methods such as
contact tracing, genomic sequencing or theoretical models of epidemic spread o�er
help, but they are not applicable at the onset of an outbreak as they require highly
processed information or established transmission chains. Digital data sources such as
mobile phones o�er new ways to “nd outbreak sources in an automated way. Here,
we propose a novel method to determine outbreak origins from geolocated
movement data of individuals a�ected by the outbreak. Our algorithm scans
movement trajectories for shared locations and identi“es the outbreak origin as the
most dominant among them. We test the method using various empirical and
synthetic datasets, and demonstrate that it is able to single out the true outbreak
location with high accuracy, requiring only data ofN= 4 individuals. The method can
be applied to scenarios with multiple outbreak locations, and is even able to estimate
the number of outbreak sources if unknown, while being robust to noise. Our
method is the “rst to o�er a reliable, accurate out-of-the-box approach to identify
outbreak locations in the initial phase of an outbreak. It can be easily and quickly
applied in a crisis situation, improving on previous manual approaches. The method is
not only applicable in the context of disease outbreaks, but can be used to “nd
shared locations in movement data in other contexts as well.

Keywords: Human mobility; Mobile phones; Epidemic spreading; Outbreak
detection

1 Introduction
The threat of infectious diseases and epidemics is rising, with new diseases emerging at
a seemingly increasing rate [1…3]. The rapid spread of the Sars-Cov-2 virus has recently
demonstrated how quickly a communicable, human-to-human transmissible infectious
diseases can spread globally [4…6], facilitated by national and international travel patterns.
For yet emerging infections, a swift response is crucial to combat a widespread infection,
while slow and ine�cient measures risk losing control of the event [7].

Many infectious diseases initially spread in aspatially localized point-sourceoutbreak.
This means that a group of individuals is infected within a short period of time (typically
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within one incubation period) in a limited spatial area„often associated with a speci“c

point of interest„rather than in many separate, decentralized transmission events spread

out over time [8]. For the COVID-19 pandemic, the majority of early cases can be linked

to a seafood market in the city of Wuhan, China [9], which has been described as a lo-

calized point-source outbreak [10]. Later clusters often emerged from speci“c locations

where super-spreading events took place, such as dance clubs [11], church services [12] or

choir practices [13]. Similarly, past outbreaks of viruses such as Mers, Sars, and Ebola have

been linked to super-spreading events or have been centered on speci“c locations [14…16].

Moreover, there are many other types of diseases where cases occur in a spatially localized

point-source outbreak. These include non-communicable infectious diseases, food-based

illnesses, environmental hazards (chemical or biological), or even the deliberate release of

a biological agent such as anthrax in the context of bioterrorism [17…22].

However, in real scenarios the location of a point-source outbreak is often unknown

in the initial phase of the outbreak, and current methods that intend to rapidly identify

the outbreak location are tedious in many regards. The predominant method consists

of a team of epidemiologists conducting interviews with the infected patients as well as

their family, friends or other contacts, trying to manually correlate their movements to

“nd commonalities [23…25]. Such an extensive investigation poses many disadvantages:

It is very resource-intensive, requiring a great number of highly-trained sta�; It is time-

consuming, spanning well over 24 hours, while a swift reaction is paramount at the onset

of an epidemic; and “nally the highly manual process is error-prone and bears the risk of

oversights or false identi“cations.

There are other established epidemiological approaches to determine the origin of dis-

ease outbreaks, including interview-based contact tracing [26…28], transmission chain

tracking using virus genomic data [29…31], or tracking of the phylogeographic spread of a

virus using genomic sequencing data [32,33](see [25] for a recent review of methods). Yet,

these approaches are in general not applicable immediately after an outbreak occurred, as

they rely on the existence of secondary transmissions and established transmission chains,

and/or use advanced data sources such as genomic sequencing data, which are not avail-

able shortly after an outbreak.

Theoretical models of epidemic spreading on contact networks o�er tools for analyzing

infectious spreading processes [34…36]. The speci“c problem of identifying the source

of spreading has only been formulated recently [37], leading to a burst of studies on the

topic ([38…45], see also [46] for a recent review). However, the proposed methods generally

assume a communicable disease and analyze the transmission path to “nd the source of

transmission. They are thus not applicable at the beginning of an outbreak or for non-

communicable diseases or hazards. Moreover, many proposed methods require highly

processed information, such as the contact network or transmission network, or rely on

the computation of complex quantities such as centrality measures or shortest path tress,

which are not readily available in a crisis situation [46].

Digital sources of information on human mobility o�er a promising new way to auto-

mate outbreak location detection [47…50]. Many people carry a mobile phone or similar

devices that passively or actively record their movements, o�ering a reliable account of

their recent movement history. Accessing this wealth of data with novel computational

methods promises a fast, reliable way of extracting relevant information, such as the ori-

gin of an infectious disease outbreak. In the wake of the COVID-19 outbreak, many studies
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have focused on using smartphones to track transmission chains, and app-based solutions
have been implemented in several countries [51…55]. However, these solutions often also
rely on the existence of secondary infections and transmission chains by measuring con-
tacts between individuals. In [56], it was instead shown that GPS mobility data can be used
to identify the outbreak location in a simulated exercise by correlating the movement of
individuals. However, the study used a team of trained specialists manually analyzing the
data, and to our knowledge no systematic, computational method has been proposed yet.

Here, we propose a novel method to identify outbreak locations of point-source out-
breaks from geo-located GPS movement data of a�ected individuals as recorded from
mobile phones. Our method searches for locations that have been visited by multiple in-
dividuals within a short time span and identi“es the outbreak locations as the most promi-
nent among them. To the best of our knowledge, this is the “rst method that only requires
unprocessed GPS data to identify the outbreak location. We test the method with regards
to its accuracy and robustness to noise, using several datasets of human mobility. The
method can easily be extended to the case of multiple outbreak locations, as well as used
to estimate the number of outbreak sources if it is unknown. Our method o�ers a reliable,
fast way to locate the origin of an outbreak using otherwise unprocessed data, and can
thus be rapidly applied in a crisis situation.

2 Inference method
2.1 Scenario definition
The goal of our method is to determine the outbreak origin (both location and time) using
the mobility data of a�ected individuals. We assume that an outbreak has taken place at
an outbreak originm∗ = (x∗, t∗), wherex∗ is the outbreak location andt∗ the outbreak
time. The outbreak has infected a group ofN individuals, which are all those individuals
in the population that were present at the outbreak location at the outbreak time. These
are the only individuals a�ected by the outbreak. Speci“cally, we assume that no human-
to-human transmission and thus no secondary infections have occurred.

The method aims to identify the outbreak location, given only the GPS movement data
of the a�ected individuals in a time frame including the outbreak. For each a�ected indi-
vidual i = 1, . . . ,N, we are given a movement trajectory{xi (t)}, consisting of pairs of lati-
tude and longitude coordinates measured at discrete time pointst ∈ {t0, . . . ,tmax}, where
the time frame includes the outbreak time,t0 ≤ t∗ ≤ tmax. In practice, this movement tra-
jectory can be retrieved from mobile phone GPS or similar data sources. The aim of the
method is to determine the outbreak originm∗ given solely the movement trajectories of
the a�ected individuals.

2.2 Objective function
The main idea of our method is to identify the outbreak event as the time when most
individuals were in close proximity to each other (see illustration in Fig.1). We assume
that the most prominent common feature of allN a�ected individuals is that they were
present at the outbreak location at the same time. Thus, the •closenessŽ of all individuals
reaches a maximum at the outbreak event.

To formalize this notion of closeness, we de“ne the objective function

F(x, t) =
N∑

i

fi (x, t), (1)
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Figure 1 Illustration of the inference method. The input is a sample of GPS trajectories of individuals that
have visited the outbreak origin (blue circle). The input sample may also include trajectories of other,
una�ected individuals (grey, dashed lines). The method aims to infer location and time of the outbreak from
GPS data. To this end, the algorithm identi“es occurrences when individuals have been in close proximity of
each other by searching for local maxima in the spatial distribution of individuals. The most prominent of
these maxima is then identi“ed as the estimated outbreak location

which consists of the sum of individual spatial probability densities

fi (x, t) =
1√

2πσ 2
exp

(
…

(x …xi (t))2

2σ 2

)
. (2)

The spatial probability densityfi (x, t) is a normal distribution centered around the position

xi (t) (a vector of longitude/latitude coordinates) of individuali at time t. If individuals are

in close proximity to each other, their spatial probability densities overlap and the value of

the objective function increases. The objective functionF(x, t) thus measures the close-

ness of all individuals, or how shared a location is among them, and reaches its theoretical

maximum if all individuals are at exactly the same locationxi (t) = xc. In practice, we expect

it to reach a maximum at the true outbreak location and time.

To make the scaling of the objective function more intuitive, we instead use thescore

S(x, t) =
1
Z

F(x, t), (3)

which lies in the rangeS∈ [0, 1] using the normalization constantZ =
√

2πσ 2/N. The

maximum of S= 1 implies that allN individuals were present at exactly the same coor-

dinates at a given time, while a vanishing score would imply that all individuals were far

apart from locationx. A useful property of this de“nition is that we can read the estimated

number of individuals present at a location from the score,Nest(x, t) = NS(x, t).

The standard deviationσ is the only free parameter in Eq. (3), which signi“es the

strength of the spatial error in the location measurement, or, alternatively, the leeway we

give in the desired overlap of the spatial kernels. We “nd that this parameter has little
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in”uence on the inference accuracy and that a wide range of values work well. Here, we
use a value ofσ = 1.57e…5 in radians, which corresponds to approximately 100 m (see
Additional “le 1 Sect. 2 for more details).

2.3 Inference of the outbreak origin
Finally, the outbreak origin can be inferred by “nding maxima of the score functionS(x, t)
in both space and time. As described above, the scoreS has local maxima if individuals
were close to each other spatially at one point in time, and we expectS to have a global
maximum at the true outbreak locationx∗, which all individuals visited at the timet∗.
Thus, the estimate for the outbreak origin,̂m = (̂x ,̂ t ), is given by the global maximum of
S(x, t) over space and time,

m̂ = (̂x ,̂ t ) = arg
(

max
t

(
max

x
S(x, t)

))
. (4)

We determine the global maximum ofS(x, t) using a numerical optimization algorithm:
For each time pointt , we construct the functionS(x, t) from the given locationsxi (t) of
individuals, calculate the maximum ofS(x, t) numerically using a grid search, and “nally
determine the global maximum̂Sand the corresponding estimated outbreak origin̂m =
(̂x ,̂ t ) as the maximum over all time pointst (see Additional “le1 Sect. 1 for a de“nition of
the algorithm).

The assumption that the outbreak origin is the unique global maximum ofS is only
true if there is no other location that was visited by all individuals simultaneously„which
might happen by chance, or due to errors in the data. Such other gatherings would then
•maskŽ the true outbreak location and are the main limiting factor of the accuracy of our
approach. We investigate their in”uence in detail in Sect.4.

2.4 Extension to multiple outbreaks
The inference method can easily be expanded to the case of multiple outbreak origins.
In this extended scenario, we assume that multiple outbreak eventsm∗

1,m∗
2, . . . ,m∗

M took
place, which are spatially and temporarily independent of each other. Each of theN af-
fected individuals in the sample were present at either one (or multiple) of the outbreak
events.

In this case, we expect that there are multiple distinct maxima in the scoreS(x, t) corre-
sponding to the di�erent outbreak origins, as at those times a considerable subgroup of the
N individuals were in close proximity of each other. To detect these origins, we change the
algorithm to not only save the global maximum ofS(x, t), but all local maxima, and rank
them by their scoreS, which yields a list of location sorted by their likelihood to be an
outbreak origin (see illustration1). If the number of outbreak eventsM is known, these
are estimated as the top locationM locations sorted by score. If the number of outbreak
events is unknown, the scores can be used to estimate it, see Sect.4.4.

Creating this list is useful in case of only one outbreak origin, as well, because it allows
experts to easily check the results of the method manually. In cases where the estimate of
the outbreak origin is wrong, the true outbreak origin is still very likely to be among the top
scoring locations. Lastly, note that when saving all local maxima, the resulting list often
contains the same location (or locations very close to it) multiple times. To account for
this, we cluster and aggregate maxima that are spatially close (see Additional “le1 Sect. 1
for details).
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2.5 Extension to include non-simultaneous visits
In many scenarios, an outbreak does not only occur at one point in time, but can be
stretched over a prolonged timespan and may cause infections at di�erent points in time.
An example would be diseases that are transmitted by shared surface contact and smear
infections. Infected individuals then do not have to have been present at the outbreak loca-
tion at the same time, but might have visited it at di�erent times. In our framework, we are
then interested in “nding movement trajectories that visited a certain location sometime
in their movement history.

We can easily extend our method to include such non-simultaneous visits by adjusting
the objective function in Eq. (1) to consider locations at multiple points in time, resulting
in the •time-smearedŽ objective function

F′(x, t) =
Tmax∑

t ′=0

N∑

i

fi (x, t) · g
(
t , t ′), (5)

with the temporal kernel

g
(
t , t ′) = exp

(
…

(t …t ′)2

2σ 2
t

)
, (6)

which means that at each point in timet, not only are the locations of all individuals at this
time considered in the search for possible outbreak origins, but also their positions at ad-
jacent times. The temporal varianceσ 2

t determines how many time points are considered,
and should be set depending on how long one expects the outbreak to have lasted.

3 Datasets
3.1 Data format
The inference method uses a set of individual mobility trajectories{xi (t)} as input, in
the format of time-stamped location measurements. The data can stem from a variety
of sources as long as it follows this basic format.

Although there are no speci“c requirements on the data source, there are some soft
requirements regarding the data resolution to ensure an adequate performance of the
method. The spatial resolution of the data should be “ne-grained enough to distinguish
separate locations. GPS data derived from smartphone devices is best suited as it o�ers
high accuracy [48]. Data derived from cell tower logs can also be used, especially in ur-
ban environments where cell tower locations are close, although the spatial accuracy is
lower in general. Regarding the temporal resolution, it is clear that a “ner resolution im-
proves the performance of the method. In this study, we use a resolution of 15 minutes for
all datasets. As a minimum, the temporal resolution should be high enough to record all
subsequent stationary locations of an individual.

3.2 Empirical datasets
We test the method using a variety of empirical and synthetic datasets (detailed descrip-
tions of the dataset can be found in the Additional “le1 Sect. 3). We use two empirical
datasets that were obtained from GPS devices: The datasetsCNS andGEOLIFE.

The “rst empirical datasetCNS was gathered as part of the Copenhagen network study
[57]. It includes the GPS movement data of 689 students in Copenhagen, recorded using
smartphones and cell tower location data, at an interval of 15 minutes.
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The second empirical datasetGEOLIFE was collected by Microsoft Research Asia in

the Geolife project by [58…60]. After pre-processing (see Additional “le1 3.1 for details),

the resulting dataset contains trajectories ofN = 75 individuals. Due to the relatively small

size of this dataset, we limit the outbreak size to a maximum ofN = 5 individuals in our

measurements. We found that a larger outbreak size leads to fewer and fewer valid out-

break scenarios (whereN people were present in the same location), introducing strong

systematic biases (see Additional “le1 for a more detailed explanation).

3.3 Synthetic datasets
In addition to the empirical datasets, we generate movement trajectories using three well-

known human mobility models, covering di�erent modeling approaches. We use algo-

rithms published in previous studies and take care to use the default parameters whenever

possible (see Additional “le1 Sect. 4). We thus generate the datasetsdEPR,sOD anddOD.

First, we create thedEPR dataset by implementing a gravity-law like mobility model,

namely a variation of the exploration and preferential return (EPR) model [61]. In the EPR

model, individuals explore new locations or return to previous locations. At each time

step, individuals will either explore a new location or return to a previous location. When

choosing which location to return to, locations with a high visitation frequency are chosen

preferentially. This mechanism results in a realistic individual location frequency distri-

bution when compared to real data. We use an extension of the original model known as

the density-EPR (d-EPR) model described in [62], where individuals choose new locations

from a given set of locations, depending on the distance to the current location (following

a gravity-like law) and the weight of the new location. Accounting for this location density

has been shown to result in a more heterogeneous, realistic spatial distribution. The set

of locations we use for the d-EPR model is extracted from geolocated Twitter data from

the Berlin area (see Additional “le1 Sect. 5.1).

Second, we implemented two variants of an agent based simulation of mobility based on

origin-destination (OD) matrices to generate the datasetssOD anddOD. At its core, the

model uses an OD matrix containing the recorded statistical ”ows of individuals between

spatial cells to simulate individual movements between spatial cells. We use a set of OD

mobility ”ows aggregated by a mobile phone provider from cell tower logs in the area of

Berlin, Germany (see Additional “le1 Sect. 5.2). When an individual travels, it chooses its

target spatial cell proportional to the ”ows from its current cell at the given time.

To determine the location of individuals within those spatial cells, we use two di�er-

ent approaches. In one variant, we use the common approach of choosing the location

randomly in the space of each cell, leading to thesOD (spatial-OD) dataset. In the other

variant, we choose the location within each cell from the location density extracted from

the Twitter data, similar to the d-EPR model, thus creating thedOD (density-OD) dataset.

For each synthetic dataset, we simulate the movements of 10,000 individuals over the

course of one month. In total, we use the three synthetic datasetsdEPR, sOD and dOD

together with the empirical datasetsCNS andGEOLIFE.

4 Results
4.1 Generation of outbreak scenarios
To test the accuracy of our method, we “rst simulate an outbreak scenario with an out-

break origin m∗ and then apply the inference method to it. The task of the inference
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method is to estimate the outbreak origin̂m. We assess the methods• accuracy by com-
paring the inference result̂m to the true outbreak originm∗.

To generate an outbreak scenario for a given movement dataset, we “rst choose a ran-
dom outbreak originm∗ = (x∗, t∗) among all locations and times present in the dataset.
Then, we choose a sample ofN individuals from the dataset which have been within 50 m
of the outbreak locationx∗ within 30 min around the outbreak event timet∗. If none or less
than N individuals have been to the outbreak origin, we choose a new random outbreak
origin.

The input for the inference method is then the set of movement trajectories{xi (t)}i=1...N

of the N sampled individuals. We limit the trajectories to a time span of 7 days, centered
around the outbreak event time. This a realistic time span in a practical scenario, where
one can assume that the timespan where the outbreak might have occurred can be nar-
rowed down to 7 days. We found the length of the time span to have limited e�ect on the
accuracy of the method, although in general the accuracy decreases with increasing time
span.

4.2 Inference accuracy depending on sample size
The “rst question we examine is: How much data is necessary to identify the outbreak
origin m∗ among all possible locations with su�cient accuracy? We expect that with larger
sample sizeN, the outbreak originm∗ is easier to identify as it is always visited by allN
individuals, while other locations are visited only when individuals meet by chance. In the
words of our methodology, we expect the global maximum of the score functionSto be
more distinct with increasingN. To test this hypothesis, we choose a single outbreak origin
m∗ = (x∗, t∗), select a sample ofN trajectories, estimate the outbreak origin̂m = (̂x ,̂ t ) as
the location with the highest scoreS, and compare it to the actual outbreak originm∗.

To quantify the methods• accuracy, we calculate thedistance error�x = ‖̂x …x∗‖ be-
tween the true and estimated location. We deem the inference correct if the distance er-
ror is smaller than 100 m, so that thelocation accuracy(i.e. the probability of correct
location inference) isPloc = P(�x < 100 m). Similarly, we de“ne thetemporal error�t as
the di�erence between the true and estimated outbreak times,�t = |̂t …t∗|, and deem the
inference correct if the temporal error is smaller than 1 hour, so that thetime accuracyis
Ptime = P(�t < 1h).

We “nd that the method is very accurate in “nding the true outbreak locationx∗, even
for small sample sizes (see Fig.2). The distance error�x decreases rapidly with growing
sample sizeN, as expected. ForN = 4, the method already identi“es the outbreak location
with close toPloc ≈ 100% accuracy on all datasets.

Similar to the outbreak location, the method is able to infer the outbreaktime t∗ with
good accuracy (see Fig.2), although a higher sample sizeN is required in general. In partic-
ular, we observe a distinct di�erence between the synthetic and empirical datasets: While
the temporal error �t decreases fast for the synthetic datasets, it decreases noticeably
slower on the empirical datasetsCNS andGEOLIFE. Similarly, the accuracy of the time
inferencePtime saturates at lower levels for the empirical datasets.

Overall, we “nd that inferring the outbreak time is more di�cult as individuals tend to
revisit locations in their trajectory (which are part of their routine, or their set of com-
monly visited locations) multiple times. These repeated gatherings can mask the true out-
break event, so that more data is required to pinpoint the •correctŽ gathering of individ-
uals. The e�ect of repeated visits is stronger in the empirical datasets, as they represent
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Figure 2 Accuracy of the outbreak detection, depending on the number of individualsNin the sample. In
these and further plots, results are averaged over 1000 measurements for each dataset and sample sizeN.
Error bars indicate the standard error.A The distance error�x between true and estimated location decreases
quickly with growing sample sizeN.B The method is able to infer the correct outbreak location with high
accuracyPloc, even for a small number of input trajectories.C The temporal error�t decreases fast for the
synthetic datasets, but less so for the empirical datasets, which we attribute to repeated behavioral patterns in
the datasets• populations (see main text). The dashed line at�t = 42h marks the expected error for a random
guess of the outbreak time within the sample interval of 7 days.D The accuracyPtime of the time inference
increases more slowly, and the accuracy is generally lower for the empirical datasets, which we again attribute
to repeated behavioral patterns

subpopulations (students and lecturers) with many shared locations and shared, repeating

time schedules; see a more detailed discussion in Sect.5.

4.3 Accuracy for multiple outbreak locations
The inference method can easily be expanded to the case of multiple outbreak origins

m∗
1,m∗

2, . . . ,m∗
M by not only looking at the location with the highest scoreS, but at a list of

top-scoring locations, as detailed in the method Sect.2.

To test the method for multiple locations, we adapt our scenario generation setup: We

choose the “rst outbreak originm∗
1 as usual, and all further outbreak originsm∗

i with i =

2, . . . ,M in the same way with the added condition that their outbreak time has to lie within

the 7 day time window around the “rst outbreak, in order to be part of the input sample.

The input sample then consists of a total ofN =
∑

Ni trajectories, with Ni trajectories

chosen from each of the outbreak originsmi .

To judge the accuracy of the method when inferring multiple outbreak origins, we look

at the M ′ estimated origins with the highest scoreS, m̂j with j = 1, . . . ,M ′. We deem the

inference correct if all true outbreak origins are included in the set of estimated locations,

{m∗
i } ⊂ {m̂j}. Note that we relax the criterion for accuracy for multiple locations by de“n-

ing M ′ := 2M, i.e. theM true outbreak locations have to be among the top 2M estimated

locations. Otherwise, if we would chooseM ′ = M, the true outbreak origins would have

to correspond exactly to the topM estimated locations, which would be increasingly un-

likely for higher M and thus introduce an error that grows withM, stemming only from

this unrealistically strict requirement. The relaxed criterion means that we allow forM
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Figure 3 Accuracy of the inference method for multiple outbreak origins.A For multiple origins (hereM= 2),
the location accuracyPloc increases with sample sizesN1 andN2, especially if a similar number of samples is
available for all origins (N1 ≈ N2, dotted line). However, if more trajectories stem from one origin instead of the
other (N1 
= N2, o�-diagonal entries), the accuracy actually decreases as the overrepresented location masks
the other locations.B The accuracy of the location prediction is approximately independent of the number of
outbreak locationsM, while the time accuracy decreases. Sample size isNi = 4 for all originsi. Results are
shown for thedEPR dataset

false positives among the output, which we in practice expect to be identi“able in a man-

ual inspection of the 2M locations proposed by the algorithm.

We test the inference method for multiple outbreak origins with varying sample sizesNi .

In Fig. 3, we show the results forM = 2 outbreak origins, but the qualitative features stay

the same if extended to more outbreak origins. We “nd that the method is able to detect

multiple outbreak origins with high accuracy, similar to the result for a single outbreak

origin. In general, the accuracy increases with bigger sample sizesNi , analogous to the

result for one location. ForN1 = N2 = 4, the inference is able to “nd both origins in 99%

of cases. Results are shown for thedEPR dataset, but we “nd no qualitative di�erences to

other datasets.

Interestingly, if we “x the sample size for one location and increase the sample size of

the other location, the accuracy actually decreases, despite more data being available for

the inference. For such unbalanced datasets, where most trajectories belong to one of the

locations, the dominant location masks the other gathering sites, making them more dif-

“cult to “nd for the algorithm.

4.4 Estimating the number of outbreak locations
In a practical scenario, it is likely that the number of outbreak originsM is unknown

initially„if, for instance, the outbreak events are undetected, but at a later time a�ected

individuals show up in medical care facilities. In this case, it is important to “rst “nd out

how manyoutbreaks took place, in addition to their location and time.

We “nd that our method can reliably estimate the number of outbreak originŝM from

the distribution of scoresS by utilizing characteristic features of the distribution. Here,

we assume that the outbreaksmi are of the same size, i.e. a�ecting the same number of

individualsNi = c, adding up to the total sample sizeN = c∗ M.

Following from the de“nition of the scoreS, the expected scoreE(Si) of an outbreak

origin mi is the fraction of individuals in the sample that visited that outbreak origin,

E(Si) = Ni/N. If the outbreak sites were visited by an equal amount of individuals, all ori-

gins thus have the expected scoreE(Si) = 1/M. In our scenarios, we indeed “nd that the

M highest-scoring locations, which correspond to the actual outbreak origins, have a very
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Figure 4 Estimation of the number of outbreak origins from the score distribution.A The scoresSi of the 10
highest-scoring locations, for a varying number of outbreak originsM. We “nd that the topM locations
corresponding to the true outbreak origins have a distinctly high score (hollow symbols), at around the
expected values ofE(Si) = 1/M (dotted lines). The scores of further locations follow an exponentially decaying
distribution. Error bars indicate the standard deviation.B Based on the characteristic form of the score
distribution, we de“ne an estimation heuristic for the number of outbreak locations,P(̂M= M) (see main text).
The heuristic correctly identi“es the true number of outbreak sourcesM, where the accuracy decreases with
rising number of outbreak origins and tends to overestimate the number of outbreak origins

similar score of around the expected value 1/M (see Fig.4A). The remaining locations
with i > M follow an exponentially decaying distribution.

We can exploit the characteristic and predictable structure of the score distribution to
estimate the number of outbreak originsM in a sample using a simple heuristic. As we see
in Fig.4A, the empirical distribution of scoresSi has a discontinuity at the true number of
outbreak locationsi = M, where the second derivative of the distribution is negative while
otherwise being positive. Using this observation, we estimate the number of outbreak ori-
ginsM̂ as

M̂ = argi

(
min

i
�2Si

)
,

with the second order di�erence quotient

�2Si = Si…1… 2Si + Si+1.

The heuristic fails for the special edge case ofM = 1, where the second order derivative is
non-negative. However, we “nd that we can reliably test for this case by settinĝM := 1 i�
S1 > 0.8, i.e. when one location clearly dominates the score distribution.

We “nd that the heuristic well predicts the number of actual outbreak origins, see
Fig.4B, where the accuracy decreases with rising number of outbreak originsM.

4.5 Robustness to noise and secondary infections
Finally, we tested the robustness of the inference method with regards to various sources
of noise in the datasets, as well as to the in”uence of secondary infections. The simplest
and most likely form of potential noise in our scenario is a statistical error in either the
location or time measurement of the movement trajectoriesxi (t). In practice, we don•t ex-
pect a signi“cant error in thetime measurement, as data collection devices such as mobile
phones are able to measure time with high precision (compared to the much longer time
scale of the outbreak event itself ), and we will therefore neglect this error source here. In
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Figure 5 Robustness of the method to noise in the input data and secondary infections.A We apply
Gaussian noise with standard deviationεnoise to the location data ofN= 4 individuals. The accuracy decreases
only after unrealistically high levels of noise are applied, compared to the mean smartphone GPS accuracy of
4.9m [63].B We test the robustness to individuals in the sample that were not present at the outbreak origin,
for example due to secondary infections. Starting with a sample ofN= 10 individuals, we replace a fraction of
rnoise trajectories with random individuals from the dataset. The inference method is robust to high amounts
of noise or secondary infections for the synthetic data, and moderate amounts for the empirical datasets

contrast, thelocationmeasurement is likely to be in”uenced by noise, considering for in-

stance that the average error of a smartphone GPS signal is 4.9 meters [63]. Regarding the

location measurement, we tested the method by applying a Gaussian noise with a vary-

ing standard deviationεnoise to the locations in the input data forN = 4 individuals (see

Fig. 5A). We “nd that the accuracy of the method only noticeably starts to decrease at

noises greater than aboutεnoise > 50 m, which is a magnitude greater than the error that

is realistically to be expected. For a greater sample size thanN = 4, we expect the error to

be even smaller.

We also test the robustness of the method to secondary infections and falsely labelled

input data. When given a sample of trajectories, so far we implicitly assumed that all indi-

viduals actually visited the outbreak origin, which might not be the case in practice. Over

time, the number of secondary infections in the population will increase, and we can ex-

pect that increasingly fewer individuals in the sample have actually been present at the

original outbreak. In addition, misdiagnosis of a patients symptoms or other processing

errors can lead to individuals being erroneously included in the sample. To test the ro-

bustness of our method to these sources of error, we run simulations for one outbreak

origin with N = 10 trajectories where we include a varying fractionrnoise of noise trajec-

toriesin the input data, i.e. trajectories of random individuals from the dataset that have

not necessarily been present at the outbreak origin (such noise trajectories are displayed

in Fig.1).

We “nd the method to be robust to moderate amounts of noise trajectories such as in-

troduced by secondary infections, see Fig.5B. For theCNS and GEOLIFE datasets, the

inference method is able to determine the correct outbreak location with 50% probabil-

ity for a fraction of rnoise ≈ 65% noise trajectories. For the simulation data, we observe a

more distinct threshold for a higher amount of noise atrnoise≈ 80%. The high robustness

to noise input demonstrates that the inference method is able to pick up the outbreak sig-

nal reliably, especially for the synthetic data, where the inference only breaks down when

the true signal itself becomes too weak. Again, we attribute the di�erent behavior of the

synthetic and empirical datasets due biases in the populations depicted in theCNS and

GEOLIFE datasets that hinder the inference, see discussion.
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5 Discussion
In this paper we have introduced a novel method to identify outbreak locations of point-

source outbreaks of infectious diseases, using GPS mobility data of a�ected individuals.

We have shown that the method is able to identify the outbreak location reliably, requiring

only as little data as trajectories ofN = 4 individuals. The rapid applicability is a consider-

able improvement on the currently used method of manual data analysis, for which it has

been found to take up to 6 hours to identify the outbreak location if conducted by a team

of epidemiologists focused on the task [56]. Even if the location identi“ed by the method is

not the correct outbreak location, it is very likely that the true outbreak location is among

the top-scoring locations, such that a manual inspection can quickly con“rm the results

of the algorithm. We have also shown that the method is robust to noise in the input data.

Noise in the GPS signal does not have a signi“cant e�ect on the accuracy, at least at levels

that can be expected in real data. Falsely labelled input data, for example due to inclusion

of not-a�ected individuals in the data sample, can decrease the accuracy of the method at

moderate to high levels of noise.

In multiple instances we “nd interesting di�erences in the algorithms• performance be-

tween the synthetic and empirical datasets, which we attribute to speci“c characteristics

of the empirical datasets. In the empirical datasets, it is harder to determine the correct

outbreak time, and including falsely labelled input data lowers the accuracy sooner than

for the synthetic datasets. We attribute these observations to the makeup of the popula-

tions in the CNS andGEOLIFE datasets: Both datasets contain the data of narrow sub-

populations of students and faculty at the same universities (a detailed description of the

datasets and their spatial distributions can be found in the Additional “le1 Sect. 3). The

shared schedule and repeated visits to common locations in these datasets make it more

di�cult to determine the precise outbreak time. Likewise, choosing a random person from

the dataset as a •falseŽ input trajectory is likely to choose an individual whose movement

history overlaps with other individuals in the sample, more so than that of an individ-

ual from the general population would. Thus, we expect that the synthetic datasets better

represent the algorithms• performance in a general population, but note that outbreaks

occurring in narrow subpopulations can hinder the inference.

Our approach requires high-resolution GPS data of individuals a�ected in the outbreak.

This type of data is by its nature highly sensitive and di�cult to obtain. Di�erent ap-

proaches to gather the required data might include: Asking a�ected individuals to •do-

nateŽ their data, using emergency protocols to legally request the data in the context of

the epidemiological response, and/or setting up necessary agreements with data providers

beforehand. The approach also hinges on the fact that enough a�ected individuals have a

device that records their movements, which might not be the case. This limitation could be

circumvented by using movement data collected by the telecommunication providers it-

self, such as cell tower logs, which only requires the individuals to possess a mobile phone,

but not to actively record their data. We expect that the method can be applied to data ex-

tracted from cell tower logs without modi“cation, although the spatial accuracy can be

expected to decrease.

On the methodological side, we point out that our method neglects secondary infec-

tions and is thus mostly applicable in the early stages of an infection event, although we

show that the method is still reliably for a moderate amount of secondary infections in the
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population, see Sect.4.5. However, as time passes and more secondary infections occur,

other epidemiological methods become available as discussed in the introduction.

The inference method could potentially be extended by including secondary and fur-

ther infections and by taking into account contacts between individuals and models of

epidemic transmission. Further, we applied our method only to outbreaks occurring at

one point in time here, but as shown in Sect.2.5 the method can easily be extended to

outbreaks occurring over a span of time. Lastly, we think that there are promising ways

in which our method could enhance other methods of outbreak detection. For instance,

bluetooth-based contact tracing„which has found widespread usage during the COVID-

19 pandemic [64]„could potentially be improved by incorporating spatial GPS informa-

tion as processed by our method, for example by correlating bluetooth-contacts with spa-

tial proximity as measured here.

Our method is the “rst to o�er an out-of-the-box, simple approach to identify outbreak

locations in realistic scenarios. It can be easily and quickly applied in a crisis situation,

improving greatly on previous manual approaches. Moreover, the method does not rely

on any disease dynamics. It is thus not only applicable in the context of infectious diseases,

but can be used to “nd shared locations in movement data in other contexts as well. We

hope that future work further improves on the capabilities of the proposed method, and

that more novel methods are developed with harness the potential of digital data sources

for epidemic control.
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