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Abstract
The complementarity and substitutability between products are essential concepts in
retail and marketing. Qualitatively, two products are said to be substitutable if a
customer can replace one product by the other, while they are complementary if
they tend to be bought together. In this article, we take a network perspective to help
automatically identify complements and substitutes from sales transaction data.
Starting from a bipartite product-purchase network representation, with both
transaction nodes and product nodes, we develop appropriate null models to infer
significant relations, either complements or substitutes, between products, and
design measures based on random walks to quantify their importance. The resulting
unipartite networks between products are then analysed with community detection
methods, in order to find groups of similar products for the different types of
relationships. The results are validated by combining observations from a real-world
basket dataset with the existing product hierarchy, as well as a large-scale flavour
compound and recipe dataset.

Keywords: Product relationships; Network modelling; Role extraction; Sales data;
Market basket analysis

1 Introduction
Understanding the hidden relations existing between products is fundamental in both
economics and marketing research as well as in retail [1]. This question lies at the core
of market structure analysis and finds numerous applications. Retailers must regularly
make decisions taking product relationships into account [2], for instance to design their
product catalogue and to determine the number of products to offer in each category [3].
Brick-and-mortar retailers seek to identify the best way to arrange the product layout in
aisles and stock their shelves [4], and online retailers also strive to optimise the grouping of
products in their online shops [5]. Furthermore, they must decide which products to bun-
dle or promote together. These assortment-related decisions have significant influence on
customers’ choices, sales of products, and finally, profits [2, 3, 6].

Complements and substitutes are two central concepts to characterise relationships be-
tween products, with well-established definitions in economics [7]. Complementary prod-
ucts are sold separately but used together, each creating a demand for the other, such as
hot dogs and hot dog buns. Substitute products serve the same purpose and can be used in
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place of one another, such as Brand A tomatoes and Brand B tomatoes. In the economics
literature, the degree of complementarity (substitutability) is formally defined through the
negative (positive) cross-price elasticity of demand, where the rise in the demand of one
product is recorded after the price of the other product is reduced (increased) by a unit.
The mechanisms of complements and substitutes are also referred to as the halo effect and
demand transfer, respectively, in the retail context [8].

Despite its practical importance, the algorithmic problem of identifying the relationship
between products in retail is not well known. For a long time, researchers and practitioners
have selected the set of possible complementary or substitute products by means of, for
instance, field expertise and simple statistics, and the analysis has usually been restricted
to a fairly small number of products [9, 10]. Recent development and application of nat-
ural language processing and machine learning (ML) algorithms, especially those based
on word embedding, bring in new visions and opportunities, which makes it possible to
analyse thousands of products [11–13]. These methods use the transactions, some require
customer information, as the original feature space, and apply ML algorithms to essentially
reduce the dimension of these feature vectors. The resulting embeddings can then be used
to identify the relationship between products and also in customer choice models.

However, there are several limitations in these applications. Firstly, the interpretation of
the selected features in the related ML algorithms is difficult. This makes it challenging
to develop metrics in this space, in particular to verify the property of triangle inequal-
ity, and further use metric invariants to define measures between products. In practice,
these methods often rely on the definition of similarity measures (not necessarily metrics)
for complementarity and exchangeability1 [12, 13]. Secondly, these methods lack specific
criteria to determine whether two products are complements, substitutes, or just inde-
pendent, despite trying to quantify the effects by their similarities. Thirdly, they do not
explore the connection between complements and substitutes, which is of great signifi-
cance to improve the understanding of the relationships and their further applications.
Furthermore, these methods are based on co-purchase patterns, but the other valuable
information in the sales data remains unused.

In our study, we propose an alternative to the classic approach based on cross-price
elasticity, and take instead a network perspective in order to define complementarity and
substitutability between products. As a starting point, we model the sales data as a bipar-
tite product-purchase network, with both transactions (or baskets) and products as nodes.
We then perform our analysis directly on the network, without having to rely on low-
dimensional embeddings which may lead to uncontrolled loss of information. We use the
connectivity patterns between products to characterise complements and substitutes. To
do so, we define null models on the bipartite network to determine significant relation-
ships between products, and propose measures induced by random walks on networks
to quantify the intensity of these relationships. This approach can be seen as a general-
isation of the classic bipartite network projection where we focus on different notions of
connectivity induced by the bipartite structure. We also take an initial step to explicitly in-
corporate noise effects in our measures. As we show later, the resulting projections onto
unipartite networks, based both on complementary and substitute connections, allow us
to find groups of similar products with standard tools like community detection.

1Exchangeability is an additional concept in order to verify whether two products are substitutes, and researchers postulate
that they are if they have low complementarity and high exchangeability.
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The aim of our work is to provide insights into product relationships from a network
perspective with simple assumptions, and to further extract both complements and sub-
stitutes efficiently from easily accessible sales data. It is our belief that a network approach
opens up a promising new angle on this problem due to its flexibility, e.g. in determining
significant relationships, and the vast network science toolbox. The insights derived from
our methods have applications in assortment-related decision making, not only for retail-
ers but also general firms with long product lines. Furthermore, our set of methods can
also be applied to other contexts, such as trading networks, ecological systems and social
networks, where both the identification of cooperative and competitive relations are of
interest.

2 Data
In this section, we present the different datasets that we use to perform our analysis, the
sales data in Sect. 2.1 to extract the product relationships, the product hierarchy data in
Sect. 2.2 and the flavour compound and recipe data in Sect. 2.3 to validate the results.

2.1 Sales data
We used anonymised grocery sales data from Tesco, the UK’s largest supermarket chain.
The data consists of timestamped transactions of stores, and it has been anonymised for
general research purposes, i.e. each customer’s personal identifiable information has been
removed. For each store, the transaction data comprises a transaction ID, which gives a
unique code to each shopping trip, the date when the transaction was made, the product
IDs, and their purchased quantities; see the top of Fig. 1.

The data used for this study is from a generic convenience store in an urban area, and
spans a three-month period avoiding major holidays such as Christmas and Easter. The
time window is chosen to be long enough to be representative of the underlying customer
population’s product purchase patterns, but also sufficiently short to avoid seasonal effects
as well as change of behaviour over time. Furthermore, to facilitate the interpretation of
the results, we restrict our analysis to fresh fruit, vegetables and salads where we believe
complementary and substitute products commonly exist. We also exclude products that
are purchased less than once a month, and those in almost every transaction. These result
in the final dataset of 43,837 transactions and 253 products.

2.2 Product hierarchy data
In retail, it is common to organise products in a hierarchy, where similar products are
grouped into increasingly generic categories. Products that are close together in the hier-
archy are typically sold next to each other in a store. At the lowest hierarchical level, each
unique code corresponds to a different product, including the same products of different
sizes or flavours. Overall, we have 4 levels, from L1 to L4 (excluding the product level).
The higher a level is, the more generic the corresponding category. For example, “apple”
is a category in the L1 hierarchy, and “fruit” is a category in the L3 hierarchy. Hence, a
natural way to validate our product relationships and to explore their features would be to
compare them to the corresponding product hierarchy.

2.3 Flavour compound and recipe data
Ahn et al [14] provide a systematic list of 1107 flavour compounds and their natural
occurrences in terms of 1525 ingredients overall from Fenaroli’s handbook of flavour
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Figure 1 Schematic diagram showing the data structure of the sales data in Sect. 2.1 and the flavour
compound and recipe data in Sect. 2.3, and their corresponding bipartite networks, together with the
matching between the products and the ingredients, where the “Matching” step is required because of the
different names that can appear in different datasets

ingredients [15]. They also provide 56,498 recipes belonging to geographically distinct
cuisines (North American, Western European, Southern European, Latin American and
East Asian), which were obtained from epicurious.com, allrecipes.com and menupan.com;
see the bottom of Fig. 1. Hence, to validate our results from the features in both flavour
compounds and recipes, we match our products to their ingredients.

To construct the correspondence between our products and the flavour compounds,
we match each product to as many ingredients as possible. For example, “Loose Pep-
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pers” is matched to all possibly equivalent peppers including “bell pepper” and “green
bell pepper”; see the middle left of Fig. 1. This results in our ingredients of interest to
be 140, with their corresponding flavour compounds being 865, and each ingredient is
linked to 57 flavour compounds on average. Note that there are 11 products which do
not have exactly matched ingredients, hence we match them to generic ones.2 For exam-
ple, we match the product “Single Pomegranate” to the ingredient “fruit”. There are also
44 complex products whose ingredients cannot be directly inferred from their names,
thus we match them to their main ingredients on the website. For example, we match the
product “Cheddar Coleslaw” to the ingredients “cheddar cheese”, “cabbage”, “carrot” and
“onion”.

For the recipe data, we match each product to as few and simple ingredients as possi-
ble. For example, “Loose Peppers” is now only matched to “bell pepper”; see the middle
right of Fig. 1. We then restrict to products only corresponding to one ingredient, and
also remove products that are matched to unrepresentative generic ingredients (e.g. “veg-
etable”). We take a (generic) ingredient to be unrepresentative, if it shares less than half
of its flavour compounds with the ingredients in the same category. As an example, if the
product “Loose Aubergine” were only matched to the generic ingredient “vegetable” which
shared less than half of its flavour compounds with all other vegetable ingredients, such
as “asparagus”, “lettuce” and “onion”, we would exclude this product. This further reduces
the number of products and ingredients of interest to be 175 and 69 respectively, with
47,222 corresponding recipes, and each recipe being expected to contain 3 such ingredi-
ents.

3 Methods
3.1 Product-purchase network
We model the structure in the sales transaction data as a bipartite network, where we
have two subsets of nodes, one corresponding to transactions and the other to products.
A transaction node and a product node are connected, if the product is purchased in that
particular transaction; see Figs. 1 (top) and 2. We call it the product-purchase network, and
aim to extract product relationships from how product nodes are connected to each other

Figure 2 Example of a product-purchase network, where blue squares are transaction nodes, red circles are
products nodes and these two sets of nodes are connected if the product is purchased in the corresponding
transaction, with the underlying sales data containing both complements (e.g. hot dog3 and hot dog bun1)
and substitutes (e.g. taco seasoning1 and taco seasoning2)

2In the recipe data, there are both specific ingredients, e.g. “apple”, and generic ones, e.g. “fruit”.
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in the network. This problem is generally related to the projection of bipartite networks to
unipartite ones [16]. Different strategies exist depending on the nature of the relationship
that one wants to infer [16–21]. While a majority of works look for assortative relations,
in the sense that two nodes are connected in the unipartite network if they tend to share
many neighbours in the bipartite one, more general types of projections can be defined,
which are associated to the role played by the nodes in the bipartite network, and are par-
ticularly relevant to extracting complements and substitutes. In the following section, we
will specify our assumptions about the product relationships, which can be further inter-
preted as the specific connectivity patterns in the product-purchase network; see typical
examples in Fig. 2.

We use the biadjacency matrix A(b) = (Ali) ∈ {0, 1}nt×np to represent the product-
purchase network, where nt is the number of transaction nodes, np is the number of prod-
uct nodes, and Ali = 1 if product i is purchased in transaction l and 0 otherwise.

3.2 Key assumptions
To characterise the product relationships, we consider the purchase patterns of products.
Specifically, in the context when prices change frequently, complements can be identified
through sufficient co-purchases [22], while substitutes have almost no co-purchases. The
feature of substitutes that have similar interactions with other products is commonly used
in practice [12, 13], and combined with the almost-no-co-purchase characteristics, it can
be used to determine the substitute relationship. Note that the formal definition through
cross-price elasticity is expected to emerge from such purchase patterns, where, for exam-
ple, two products always purchased together implies that the decrease in one’s price will
result in an increase of the other’s demand.3 Based on these arguments, we propose the
following assumptions 1–4 to characterise complements and substitutes in the product-
purchase network.

1 Complements are products that are in the same transactions significantly more
frequently than expected.

2 The degree of complementarity between complements is positively correlated
with how frequently they are in the same transactions.

3 Substitutes are products that share the same complements but are in the same
transactions significantly less frequently.

4 The degree of substitutability between substitutes is positively correlated with
how similar their complements are.

In addition, we define noise to be the purchase patterns that are caused by other, of-
ten unknown, factors and cannot be explained by complementarity and substitutability.
Thus to capture the product relationships and their degrees, it is essential to control the
noise effect. In networks, local structure usually refers to the information around a node,
and global structure characterises the whole network. For intermediate scales, one often
refers to the notion of mesoscale structure, which is associated to groups of nodes that
share similar connectivity patterns. Here, we consider particularly the community struc-
ture, where groups of nodes are densely connected internally but sparsely connected ex-
ternally. Within our context, we exploit the fact that the mesoscale structure is much more

3The demand of a product is generally a decreasing function of its own price. This statement is true for the products
analysed here.
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robust to noise than the local information [23] Hence, we further propose the following
assumptions 5 and 6 to restrict the noise effect.

5 Noise will not change the community structure of complements and substitutes,
i.e. groups of products that are mostly complements and substitutes respectively.

6 Noise can be explained by some random models so that its effect on the local
structure of the network can be removed accordingly.

Hence, in Sect. 3.3, we will determine whether each pair of products are complements or
substitutes by applying significance tests on the number of common neighbours between
each pair of nodes in the product-purchase network (i.e. the same transactions they are
in, assumptions 1 and 3). This step corresponds to projecting the bipartite network on the
product side to form two unweighted unipartite networks, showing the existence of the
two relationships. Further, in Sect. 3.4, we will quantify the degrees of complementarity
and substitutability by local measures based on the product nodes’ neighbourhood struc-
ture in the bipartite and projected networks, respectively (assumptions 2 and 4). This step
further adds weights to the corresponding unipartite networks.

3.3 Null models
We propose the following null models on the product-purchase network, to determine
whether the number of common neighbours, cnij, between each pair of product nodes i
and j, is significantly more or significantly less, with significance levels αm or αl , respec-
tively. Accordingly, two unweighted unipartite networks only consisting of product nodes
can be obtained: (i) A(m) = (A(m)

ij ) ∈ {0, 1}np×np where A(m)
ij = 1 if and only if cnij is signif-

icantly more; (ii) A(l) = (A(l)
ij ) ∈ {0, 1}np×np where A(l)

ij = 1 if and only if cnij is significantly
less. Finally, by assumptions 1 and 3 in Sect. 3.2, two networks indicating the existence
of product relationships can be constructed: (i) A(c) = (A(c)

ij ) ∈ {0, 1}np×np where A(c)
ij = 1 if

and only if products i, j are complements; (ii) A(s) = (A(s)
ij ) ∈ {0, 1}np×np where A(s)

ij = 1 if and
only if products i, j are substitutes.

3.3.1 Variant of bipartite Erdős–Rényi (ER) models
The ER model assumes a fixed probability for each edge to appear, independently of the
others [24], while bipartite ER models only allow edges between the two subsets of nodes.

In our variant, we assign a different connecting probability pi for each product i. Then,
the probability that a transaction node is connected with both product nodes i and j is pipj;
the number of their common neighbours, cnij, is a random variable Xij, s.t. Xij ∼ B(nt , pipj).
We further assume nt is sufficiently large, and approximate the distribution by N(μij,σ 2

ij ),
where μij = ntpipj, σ 2

ij = ntpipj(1 – pipj), from the Central Limit Theorem [25]. Hence, cnij

is significantly more if

cnij > ntpipj + �–1(1 – αm)
√

ntpipj(1 – pipj),

and is significantly less if

cnij < ntpipj – �–1(1 – αl)
√

ntpipj(1 – pipj),
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where �–1(·) is the inverse cumulative function of N(0, 1), and the maximum likelihood
estimate for each pi is

p̂i =
d(p)

i
nt

,

where d(p)
i is the degree of product node i.

3.3.2 Bipartite configuration models (BiCMs)
The configuration model creates a network with a given degree sequence {di}, by assigning
di half-edges (or stubs) to each node i and joining two chosen stubs uniformly at random
until no more stubs are left [26, 27]. The BiCM takes the bipartite features into account,
where two degree sequences are given, dividing the nodes into two subsets, and edges are
only allowed between the two subsets of nodes. Note that multi-edges are allowed here,
but since we assume finite variance in both degree distributions, they are negligible in
large networks (see Sect. 1 in Additional file 1).

The probability of product nodes i, j sharing a transaction node l is

pilj =
d(p)

i d(t)
l d(p)

j (d(t)
l – 1)

m2 ,

where the superscripts t, p stand for transaction nodes and product nodes, respectively,
d(·)

h is the degree of node h, and m =
∑nt

l=1 d(t)
l =

∑np
i=1 d(p)

i is the number of edges (see Sect. 1
in Additional file 1 for details). The variant of bipartite ER models in Sect. 3.3.1 can be seen
as an approximation of this model, where we assume that the degree of each transaction
node is constant.

The number of common neighbours between product nodes i and j, cnij, is the sum of
Bernoulli(pilj) over l, where pilj possibly varies for different transaction node l. We assume
independence between different transaction nodes to connect with them both. Hence, cnij

is a Poisson binomial random variable, Xij, with the mean value

μij =
nt∑
l=1

d(p)
i d(t)

l d(p)
j (d(t)

l – 1)
m2 =

d(p)
i d(p)

j

m
〈d(t)2〉 – 〈d(t)〉

〈d(t)〉 ,

where 〈d(t)〉 = (
∑nt

l=1 d(t)
l )/nt , and 〈d(t)2〉 = (

∑nt
l=1 d(t)2

l )/nt .
The Poisson binomial distribution can be well approximated, with an exact error bound,

by a Poisson distribution with the same mean, if the composing Bernoulli probabilities, pilj,
are sufficiently small [28]. Since real networks are sparse, the piljs are generally small (see
our particular case in Appendix A). Hence, we use Yij ∼ Poisson(μij) for the significance
tests here, and determine cnij to be significantly more if

1 – Fij(cnij) < αm,

and to be significantly less if

Fij(cnij) < αl,

where Fij(y) = e–μij
∑�y�

k=0 μk
ij/k! is the cumulative distribution function of Yij.



Tian et al. EPJ Data Science           (2021) 10:45 Page 9 of 27

The two null models are proposed to explain the purchase patterns purely from noise;
with more information about the noise factors, one can propose more customised null
models to explain more of such patterns. Currently, our null models are only based on
difference in product popularity, and the BiCM also uses the heterogeneity in basket sizes:
both are sufficiently general to incorporate additional noise factors, but could possibly not
be sufficient in their current form, as hidden factors, e.g. correlated preference, could cause
more common neighbours between product nodes in the product-purchase networks.
Hence, by assumption 5 in Sect. 3.2, we accompany these null models with extra rules of
significance-level selection: (i) αm is chosen to be the smallest value that maintains the
same community structure as that obtained from a baseline significance level, to exclude
the above spurious signal; (ii) αl is chosen to be the largest such value, in order not to
accidentally filter out genuine patterns.

Finally, we can obtain the unweighted network of complementary relationship, A(c), and
that of substitute relationship, A(s). By assumption 1,

A(c) = A(m);

by assumption 3,

A(s) = I{A(m)T A(m)>0} � A(l),

where I{·} is the element-wise indicator matrix, and � represents element-wise (Hada-
mard) matrix product.

3.4 Measures
The degrees of complementarity and substitutability matter. A significant relationship is
not necessarily a strong relationship, and stronger relationships should be given higher
weights to be more dominant in the networks. By assumption 2 in Sect. 3.2, the degree of
complementarity is not directly correlated with how significant the co-purchase pattern
is, but its relative frequency; by assumption 4 in Sect. 3.2, neither is the degree of sub-
stitutability, which causes the results in Sect. 3.3 not to be applicable here. Hence, in this
section, we further propose measures to quantify both degrees, in order to convert the un-
weighted unipartite networks, A(c) and A(s), to weighted ones, W(c) and W(s), respectively,
where W(c), W(s) ∈ [0, 1]np×np .

3.4.1 Measures for complementarity
We propose several measures for the degree of complementarity by interpreting assump-
tion 2, where the more similar their neighbours in the product-purchase network are, the
more complementary they are.

We start from an enhanced version of assumption 6 in Sect. 3.2: the noise factors change
frequently and erratically so that their bias on the relative number of co-purchases be-
tween pairs of products can be neglected. We then propose the following measures, de-
rived from the weighted cosine similarity between random walkers starting from pairs
of nodes after one step. Specifically, for each product node i, suppose that an impulse
yi(0) = ei ∈ {0, 1}np , with value 1 only in its i-th element, is injected on the product
side at time t = 0. We record the response of the system after a one-step random walk
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yi(1) = PT yi(0), where P = D(p)–1A(b)T , A(b) = (Ali) is the biadjacency matrix from the trans-
action nodes to the product nodes, and D(p) = Diag(d(p)

i ) is the diagonal matrix with the
degrees of product nodes on its diagonal [29]. We set the relative importance of each trans-
action l as the inverse of its degree d(t)

l , hence the weighted cosine similarity between the
responses yi(1) and yj(1) is

sim(i, j) =
yi(1)T Wcosyj(1)

‖yi(1)‖Wcos‖yj(1)‖Wcos

=
nt∑
l=1

Ali∑nt
k=1 Aki

1
d(t)

l

Alj∑nt
k=1 Akj√

(
∑nt

h=1
Ahi∑nt

k=1 Aki

1
d(t)

h

Ahi∑nt
k=1 Aki

)(
∑nt

h=1
Ahj∑nt

k=1 Akj

1
d(t)

h

Ahj∑nt
k=1 Akj

)

=
nt∑
l=1

AliAlj

d(p)
i d(t)

l d(p)
j

√
(
∑nt

h=1
Ahi

d(p)2
i d(t)

h
)(
∑nt

h=1
Ahj

d(p)2
j d(t)

h
)

=
nt∑
l=1

AliAlj

d(t)
l

√
(
∑nt

h=1
Ahi
d(t)

h
)(
∑nt

h=1
Ahj

d(t)
h

)
,

where Wcos = Diag(1/d(t)
l ) is the weight matrix for the cosine similarity, and ‖y‖W =√

yT Wy = ‖W1/2y‖2 with W (symmetric) positive-definite. This introduces the first mea-
sures we propose, the original measure,

simo(i, j) =
nt∑
l=1

AliAlj

d(t)
l

√
(
∑nt

h=1
Ahi
d(t)

h
)(
∑nt

h=1
Ahj

d(t)
h

)
, (1)

where A(b) = (Ali), {d(t)
l }nt

l=1 and nt are the same as before. Hence, each common neigh-
bour AliAlj between each pair of product nodes i, j in the product-purchase network is
discounted by the degree of the corresponding transaction node l, and this quantity is fur-
ther scaled so that each product is at the maximum level of complementarity to itself, i.e
value 1, in a symmetric manner. A higher value means relatively more common neigh-
bours of lower degrees. Naturally, we also propose the original directed measure,

simod(i, j) =
nt∑
l=1

AliAlj

d(t)
l (

∑nt
h=1

Ahj

d(t)
h

)
, (2)

where each (i, j) entry measures the degree of complementarity of product i to product j.
Compared with those in the literature, our measures are globally comparable, where node
pairs with no common node can also be compared.

The above enhanced version of assumption 6 is reasonable for our choice of fresh food,
since the price has been changed frequently and erratically, as required, during the cho-
sen time period. For a general product, in contrast, it would be necessary to implement
assumption 6, in order to properly remove the noise effect from our measures. However,
most literature followed the direction of filtering out insignificant edges, rather than re-
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moving noise from network measures. In this article, we take an initial step in the latter
direction by deducting the mean value with some noise models.

First, we should determine which quantity to subtract the mean from. If we consider the
original measure as the geometric mean,

simo(i, j) =

√√√√√√

∑nt
l=1

AliAlj

d(t)
l∑nt

h=1
Ahi
d(t)

h

∑nt
l=1

AliAlj

d(t)
l∑nt

h=1
Ahj

d(t)
h

=

√√√√√√

∑
l∈�(i)∩�(j)

Ali
d(t)

l∑
h∈�(i)

Ahi
d(t)

h

∑
l∈�(j)∩�(i)

Alj

d(t)
l∑

h∈�(j)
Ahj

d(t)
h

,

where �(i) = {l : Ali = 1} is the set of node i’s neighbours in the product-purchase network,
then we can propose the corresponding randomised measure,

simr(i, j) =

√√√√√√√√

∑
l∈�(i)∩�(j)(

Ali
d(t)

l
– E[ A(r)

li
d(r)

l
])

∑
h∈�(i)(

Ahi
d(t)

h
– E[ A(r)

hi
d(r)

h
])

∑
l∈�(j)∩�(i)(

Alj

d(t)
l

– E[
A(r)

lj

d(r)
l

])

∑
h∈�(j)(

Ahj

d(t)
h

– E[
A(r)

hj

d(r)
h

])
, (3)

where A(b) = (Ali), A(r) = (A(r)
li ) is the corresponding biadjacency matrix of a random

product-purchase network with each A(r)
li being a random variable, and d(r)

l =
∑np

i=1 A(r)
li .

The randomised directed measure naturally follows to be

simrd(i, j) =

∑
l∈�(j)∩�(i)(

Alj

d(t)
l

– E[
A(r)

lj

d(r)
l

])

∑
h∈�(j)(

Ahj

d(t)
h

– E[
A(r)

hj

d(r)
h

])
. (4)

Next, we should determine the noise model. For example, assuming fixed basket sizes
(transaction node degrees) and product purchase frequencies (product node degrees), nat-
urally leads us to the BiCM (cf. Sect. 3.3.2) as our noise model. In this particular case,

E

[
A(r)

li

d(r)
l

]
=

d(p)
i
m

, (5)

where d(p)
i is the degree of product node i, and m is the number of edges in the product-

purchase network. With Equations (3), (4) and (5), we accordingly introduce the ran-
domised configuration measure and the randomised configuration directed measure.

Since the measures can be computed for any product pairs, but by assumption 2, only
product pairs with value 1 in A(c) can be assigned positive degrees. Hence, the weighted
adjacency matrix of complement unipartite network is obtained by

W(c) = A(c) � sim†,

where the subscript † can be o, r, od or rd, and sim† = (sim†(i, j)) ∈ [0, 1]np×np . We call
the values in W(c) the complementarity scores, and determine a pair of products to be
complements if they have a positive complementarity score.



Tian et al. EPJ Data Science           (2021) 10:45 Page 12 of 27

3.4.2 Measures for substitutability
We propose measures for the degree of substitutability by assumption 4, where the more
similar their complements are, the more substitutable they are. Here, we characterise each
product by a vector of its complementarity scores with the other products, and use the (un-
weighted) cosine similarity between these vectors to indicate the degree of substitutability
between pairs of products. Specifically, for a pair of nodes i, j,

sims(i, j) =
np∑

k=1

W (c)
ik W (c)

jk√
(
∑np

p=1 W (c)2
ip )(

∑np
p=1 W (c)2

jp )
, (6)

where W(c) = (W (c)
ij ) is the weighted adjacency matrix of complement unipartite network,

and np is the number of products. The substitutability measures are named after the com-
plementarity measure used in W(c). For example, with the original measure, we have the
original substitutability measure; with the randomised configuration measure, we have
the randomised configuration substitutability measure. Naturally, we also propose the di-
rected version, where for a pair of nodes i, j,

simsd(i, j) =
np∑

k=1

min(W (c)
ik , W (c)

jk )W (c)
jk∑np

p=1 W (c)2
jp

, (7)

where the minimum function is used to guarantee that the measure reaches its maximum
value when the complementarity degrees of product i to others are no less than the cor-
responding degrees of product j.

Since these measures can also be computed for any product pairs, but by assumption 4,
only product pairs of value 1 in A(s) can be assigned positive degrees. Hence the weighted
adjacency matrix of substitute unipartite network is obtained by

W(s) = A(s) � sim†,

where the subscript † stands for s or sd, and sim† = (sim†(i, j)) ∈ [0, 1]np×np . We name the
values in W(s) the substitutability scores, and define a pair of products to be substitutes if
they have a positive substitutability score.

Note the measures of substitutability are based on those of complementarity and we do
not apply extra noise removing strategies here, thus it is critical that the complementar-
ity degree is thresholded appropriately so that the substitutability degree is not biased by
low-complementarity-degree products. Hence, by assumption 5 in Sect. 3.2, we accom-
pany these measures with the following rules of threshold selection in analysing real data:
(i) the threshold of the complementarity measures, θc, is chosen to be the largest value
that maintain the same community structure as that obtained from a baseline threshold
value; (ii) the threshold of the substitutability measures, θs, is chosen to be the smallest
such value, for general noise removing purpose.

3.5 Role extraction
Since both the null models in Sect. 3.3 and the measures in Sect. 3.4 are based on local
patterns in the product-purchase network directly or indirectly, so are the complement
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unipartite network, W(c), and the substitute unipartite network, W(s). It is then interest-
ing to go beyond local patterns and explore the features between the node level and the
whole network, the mesoscale structure, in such networks, i.e. groups of complements
and groups of substitutes.

One important type of mesoscale feature is the community structure, as in Sect. 3.2,
where communities are groups of nodes that are densely connected internally but sparsely
connected externally [30–32]. Various algorithms exist by virtue of interdisciplinary ex-
pertise [33–37], generally aiming to optimise a quality function with respect to different
partitions of the network. Here, we choose the information-theoretic (hierarchical) map
equation [36], which aims to describe the trajectory of random walkers on the network
most efficiently, thereby capturing the right community structure of the underlying net-
work, and is known for being not affected by a common problem of community detection
algorithms, the resolution limit [38]. From the detected structure, we will also examine
the underlying assumption that groups are clique-like.

Considering the problem of extracting these two kinds of product groups in the bipar-
tite product-purchase network, it corresponds to a more general problem, role extraction.
Roles are general versions of communities, where nodes inside the same role share similar
connectivity patterns across the network [39–41]. Hence, it contains both classic assorta-
tive communities, as described before, and disassortative communities, where nodes are
loosely connected internally while densely connected externally. We define the role adja-
cency as B = (Brs), where

Brs =
∑

i∈Cr ,j∈Cs

Wij

n(r)n(s) ,

Cr , r = 1, 2, . . . , are the roles, n(r) = |Cr| for each role r, and W = (Wij) is the (weighted)
adjacency matrix of the underlying network. The matrix B is induced by the maximum-
likelihood estimate of the expected weights between nodes inside the corresponding
role(s) in the standard stochastic block model [42]. Then, Cr is an assortative community if
Brs � Brr , ∀s 
= r; Cr is a disassortative community if Brs � Brr , ∃s, i.e. community r is much
more densely connected with at least one other community s than itself. Thus, our set of
methods establishes an indirect solution to the role extraction in bipartite networks. We
call our detected groups of complements, the complement roles, and our detected groups
of substitutes, the substitute roles.

3.6 External validation: product hierarchy, flavour compound and recipe data
We start from the product hierarchy information to characterise both complement roles
and substitute roles, and then check if the characteristics are consistent with the com-
mon understanding of complements and substitutes. Specifically, we exclusively use the
L3product hierarchy, consisting of fruit (F), organic produce (OP), prepared produce (PP),
salad (S), and vegetable (V).

Next, we use the correspondence between flavour compounds and products to compute
the Jaccard index, i.e. the relative number of shared flavour compounds, rfij, between each
pair of products i and j,

rfij =
|C(i) ∩ C(j)|
|C(i) ∪ C(j)| ,
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where C(i) is the set of all flavour compounds in product i. We then consider the cases in
which rfij = 0 and rfij = 1, and check if the complementary pairs have a higher probability
to share no flavour compounds and if the substitute pairs have a higher probability to share
all their flavour compounds. Furthermore, we examine the relationship between rfij and
W (c)

ij , W (s)
ij , in terms of the Pearson correlation, as well as the Spearman correlation.

Subsequently, we use the recipe data to evaluate the relative number of shared recipes,
rrij, between each pair of products i and j,

rrij =
|R(i) ∩ R(j)|
|R(i) ∪ R(j)| ,

where R(i) is the set of all recipes including product i, and we set rrij = 0 if products i
and j are matched to the same ingredient. We then assess if the complementary pairs and
substitute pairs have significantly higher and lower probabilities to co-appear in relatively
more recipes, respectively. This is achieved by the Mann–Whitney–Wilcoxon (MWW)
tests, where

⎧
⎨
⎩

H0 : P(X > Y ) = P(Y > X),

H1 : P(X > Y ) 
= or > or < P(Y > X),

and X, Y are two independent random variables [43, 44]. For example, let X be the relative
number of shared recipes from all product pairs {rrij}, and Y be that from only comple-
mentary pairs {rrij : W (c)

ij > 0}. Then, we will use the alternative hypothesis H1 : P(X > Y ) <
P(Y > X). Similarly, we also explore the relationship between rrij and W (c)

ij , W (s)
ij .

Finally, we apply our overall framework to the recipe data, where we treat recipes as
transactions and ingredients as products. This stems from the hypothesis that customers
purchase products to cook dishes following recipes, and thus the recipe data should be a
restriction of the sales data. We compare the values of complementarity scores by recipes,
the recipe complementarity scores W(cr) = (W (cr)

ij ), with those by sales, W(c), and similarly,
the recipe substitutability scores W(sr) = (W (sr)

ij ), with W(s). Note that we set W (cr)
ij = 0 and

W (sr)
ij = 1 if product i and j are matched to the same ingredient. We finish the validation

stage by comparing the role assignments (of products) from both datasets, where l com-
plement roles and l1 substitute roles (from the recipe data) are obtained from applying
community detection on W(cr) and W(sr), respectively. We construct extra l0 substitute
roles by grouping together products that are matched to the same ingredients, for refer-
ence; see Fig. 3 for details.

4 Results
4.1 Illustrative example
Before investigating noisy real data, we first validate our overall framework in a controlled
“ideal world” where the relationship between products is known. Specifically, we simu-
late a consumer population characterised by a set of rules in this world, and ask whether
our null models capture the right relationship between each pair of products, whether
our measures give the right degree between them, and finally, whether our complement
and substitute roles provide insights into the groups of complements, and the groups of
substitutes, respectively.

The simulated world is summarised as follows, similar to the one in [12].
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Figure 3 Illustration of the process to compute the product roles from the recipe data, where cyan squares
are recipe nodes, orange circles are ingredient nodes, red circles are product nodes, the line thickness
corresponds to how high the corresponding scores are, and l0 substitute roles, l complement role(s) and l1
substitute roles are shown as groups of product nodes in the purple dashed circles, green dashed polygon(s)
and blue dashed circles, respectively

• There are 13 different products: coffee, wipes, ramen, candy, hot dog1, hot dog2, hot
dog3, hot dog bun1, hot dog bun2, taco shell1, taco shell2, taco seasoning1, taco
seasoning2.

• coffee, wipes, ramen, candy are independent products, but are popular with the
customers, so are bought frequently. This corresponds to one possible source of noise,
correlated preference, where the items are preferred by some customers but purchase
decisions are made independently from one another, based on their features, e.g. price.

• The other products form substitute groups and complementary pairs. Products of the
same names ignoring the number at the end are groups of substitutes; pairs in {hot
dog1, hot dog2, hot dog3}×{hot dog bun1, hot dog bun2} and {taco shell1, taco
shell2}×{taco seasoning1, taco seasoning2} are complementary pairs. In this world,
customers never buy just one item in a complementary pair, and they always buy at
most one of all such pairs.

• Customers are sensitive to price. When the price of a popular product is low, they buy
it with probability 0.8; otherwise, they buy it with probability 0.2. Each customer
purchases each preferred product independently.

Sensitivity to the price of complementary pairs is different, since the probability to
purchase a pair will decrease even if only one item in the pair has a high price. Hence,
each pair is treated as a whole here. When all complementary pairs are of low price,
customers buy one of them evenly; the case when all pairs are of high price is similar,
except that customers have a 0.5 chance not to buy any of them; when one of the pairs
has a lower price than the others, they buy this one with probability 0.85, and have
0.15 probability to buy others evenly; see Fig. 4 for details.

With these specifications, we simulate 1000 transactions from this customer population.
For a single transaction, each independent product has an 80% chance of being marked
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Figure 4 Illustration of how each customer chooses a complementary pair (cp), where cp1 and cp2
correspond to the hot-dog-and-hot-dog-bun and taco-shell-and-taco-seasoning complementary pairs,
respectively

Figure 5 Measures on the products, from co-purchases (cnij) whose diagonal shows the purchase frequency
(left), the complementarity scores W(c) induced by the original measure (simo(i, j)) (middle) and by the
randomised configuration measure (simr (i, j)) (right), where x-axis, y-axis are products in the same order as
being listed in the simulated world assumptions

up to a high price; there is a 50% chance that all complementary pairs are of low price, a
10% chance that all are of high price, and accordingly a 40% chance that some are marked
up, where the lowest priced one is chosen uniformly at random.

We provide the complementarity scores, W(c), induced by the original measure, simo,
and by the randomised configuration measure, simr , together with the number of co-
purchases, (cnij), in Fig. 5. We choose the variant of ER model as the underlying null
model, since it better explains the noise here.4 Note that independent products are bought
more frequently, and their numbers of co-purchases with other products are fairly sim-
ilar to those within complementary pairs. However, our extracted complementary pairs
{(i, j) : W (c)

ij > 0} successfully retrieve the ground-truth complementary pairs. Accord-
ingly, our extracted substitute pairs {(i, j) : W (s)

ij > 0} successfully retrieve the ground-truth

4Hence, the significance level for the significantly more co-purchases, αc , for the variant of ER model can be chosen as
high as 0.9 with the same results. While for the BiCM, a much lower significance level (e.g. 10–4 for αc) is needed in order
to extract the true product relationships.
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Figure 6 The unipartite network in the illustrative example, with product nodes connected by both the
complementarity scores (W (c)

ij ) (in black) and the substitutability scores (W (s)
ij ) (in orange) induced by the

original measure, where the line thickness corresponds to how high the scores are, and products in the same
substitute role are shown in the same colour

substitute pairs. Furthermore, the complementarity scores of the hot-dog-and-hot-dog-
bun complementary pairs is between 0.3 and 0.5, and those of the taco-shell-and-taco-
seasoning complementary pairs is around 0.5. These values are approaching the inverse of
the number of products in the corresponding substitute groups, which is consistent with
the assuming complete substitution.

Finally, our substitute roles exactly agree with the ground-truth substitute groups; see
Fig. 6. Our complement roles reproduce the ground-truth complementary pairs including
their corresponding groups of substitutes. Note that there are no groups of complements
beyond the pairwise relationship.

This example demonstrates the ability of our overall framework to determine both prod-
uct relationships and their corresponding degrees, which paves the way for us to continue
the analysis on real-world data. From a mesoscale perspective, our complement roles and
substitute roles have much overlap with the groups of complements and those of substi-
tutes, respectively. Furthermore, the fact that we already have complement roles involving
substitutes indicates that the interaction between the two relationships is not negligible.
For instance, it is entirely possible that we may find substitute roles including complements
in real data.

4.2 Sales data
Hereafter, we use the variant of ER model as the underlying null model, since its assump-
tions are generally applicable in real-world purchases, and we only show the results from
the original measure, because both have very similar behaviour; see Appendix B for the
parameter calibration and Sect. 3 in Additional file 1 for the results from the randomised
measure. We first examine the ranking power of our scores, W(c) and W(s), by checking the
top complementary pairs and substitute pairs for each product. This is done by choosing
several query products j at random, and output the products of the three highest com-
plementarity scores W (c)

ij and the ones of the three highest substitutability scores W (s)
ij ; see

Table 1 for one run. The substitute pairs of scores > 0.1 largely agree with common sense.5

For example in Table 1, the top substitute of organic blueberries is blueberries, and the top
substitutes of salad tomatoes are other types of tomatoes. Additionally, the ranking indi-
cates that common-sense substitutes have high complementarity scores with the same

5Here we refer to the notion that products that are essentially the same are substitutes, for example, Brand A apples and
Brand B apples.



Tian et al. EPJ Data Science           (2021) 10:45 Page 18 of 27

Table 1 Products of the three highest complementarity scores and substitutability scores with the
query products

Query product Complement Substitute

Organic Blueberries 0.14 Organic Raspberries 0.50 Blueberries
0.059 Organic Strawberries 0.13 Green Seedless Grapes
0.048 Organic Cherry Tomatoes 0.070 Tomatoes on the Vine

Loose Cucumbers 0.098 Salad Tomatoes 0.54 Organic Loose Cucumbers
0.089 Baby Plum Tomatoes 0.21 Courgette Spaghetti
0.079 Tomatoes on the Vine 0.18 Sliced Runner Beans

Salad Tomatoes 0.098 Loose Cucumbers 0.83 Tomatoes on the Vine
0.063 Iceberg Lettuce 0.79 Baby Plum Tomatoes
0.046 Mixed Peppers 0.74 Cherry Tomatoes

Figure 7 Role adjacencies B, of the complement roles on the complement unipartite network W(c) (left), and
of the substitute roles on the substitute unipartite network W(s) (middle) and on the complement unipartite
network W(c) (right), where isolated product nodes have been removed

products. For example salad tomatoes, baby plum tomatoes and tomatoes on the vine are
the top three complements of loose cucumbers. These findings justify our assumption 3
in Sect. 3.2. There are also some nontrivial substitutes, of lower score values, from general
understanding, which we will discuss in Sect. 5.

We proceed for the mesoscale structure, i.e. the complement roles and substitute roles.
From an averaged perspective, the complement roles and the substitute roles constitute
assortative communities in the unipartite networks W(c) and W(s), respectively; substi-
tute roles form disassortative communities in W(c); see Fig. 7. The latter observation also
justifies the assumption 3. Furthermore, the overlap between the two roles is not neg-
ligible, with the normalised mutual information (NMI [45]) 0.49. Hence, as mentioned
in Sect. 4.1, substitutes may appear in the same complement role by their strong com-
plements, and complements may be assigned to the same substitute role for their strong
substitutes.

Finally, we explore the internal structure of complement roles and substitute roles. Gen-
erally, strong complements6 do not tend to form complete graphs in the complement uni-
partite network W(c), where there are many products that are complements of the same
products but are not complements of each other. For example, blueberries (Blueb) and
organic blueberries (Or Blueb) in the complement role of berries (3) are substitutes, but
both are complements of raspberries (Raspb), stawberries (Strawb), etc; see Fig. 8. There
are also cases in which they constitute some complete graph, and further exploration in-
dicates that these products are highly likely to be consumed together. For example, mush-
room stir fry (Mushroom SF), vegetable and beansprout stir fry (V Beansprout SF), and

6Note we determine two products i, j as complements if W (c)
ij > 0, and measure their degree of complementarity (from weak

to strong) by the value of W (c)
ij ; substitutes are treated similarly.
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Figure 8 Internal structure of the complement roles of berries (3) (left) and of stir-fry (9) (right), with product
nodes connected by both the complementarity scores (W (c)

ij ) (in black) and the substitutability scores (W (s)
ij )

(in orange), where the line thickness corresponds to how high the scores are, and products in the same L1
category are shown in the same colour

Figure 9 Internal structure of the substitute roles of onions (4) (left) and of apples (23) (right), with product
nodes connected by both the complementarity scores (W (c)

ij ) (in black) and the substitutability scores (W (s)
ij )

(in orange), where the line thickness corresponds to how high the scores are, and products in the same L1
category are shown in the same colour

egg noodles form a triangle in the complement role of stir-fry (9); see the blue polygon in
Fig. 8.

Strong substitutes are expected to form complete graphs in the substitute unipartite net-
work W(s), and our results are largely consistent with the expectation. For example, loose
Braeburn apples (LB Apples), loose Pink Lady apples (LPL Apples), and bagged organic
Gala apples (BOrG Apples) constitute a triangle in the substitute role of apples (23); see
the blue polygon in Fig. 9. Note this expectation is only valid if the substitutes are con-
sumed for the same purpose; if this assumption is violated, seemingly substitute products
may end up being complements. For example, loose brown onions (LBr Onions) and loose
red onions (LR Onions) in the substitute role of onions (4) are both substitutes of products
such as bagged red onions (BR Onions) and bagged organic brown onions (BOrBr Onions),
but are complements of each other; see Fig. 9. The difference between their quantities and
their common substitutes may be the key factor here. Likewise, even with the common
substitute bagged organic Gala apples (BOrG Apples), loose ripe pears (LR Pears) is a
complement of loose Pink Lady apples (LPL Apples), loose Braeburn apples (LB Apples)
and loose Gala apples (LG Apples). The above observations confirms the complexity of
the interaction between complements and substitutes.
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Figure 10 Proportion of the products in typical complement roles (left) and typical substitute roles (right)
that fall in each L3 category, fruit (F), organic produce (OP), prepared produce (PP), salad (S) and vegetable (V)

4.3 Validation
4.3.1 Product hierarchy
The distribution of L3 categories in each complement role is consistent with products
being complements; see Fig. 10. Most complement roles involve more than one cate-
gory, which could be explained by the complementarity across categories. For example,
the complement role of nuts & fruits (2) contains both fruit and prepared produce, the
complement roles of berries & grapes (3) and of grapes & oranges (5) consist of both fruit
and organic produce, and the complement role of potatoes, beans & carrots (6) includes
both prepared produce and vegetables. There are also complement roles only involving
one category, and the related products are either in fruit or in the prepared produce cate-
gory. Further, this is in agreement with the notion that products in prepared produce, for
instance prepared vegetables and vegetable dips, go well together; similar for products in
fruit.

The proportion of L3 categories in each substitute role also accords with products being
substitutes; see Fig. 10. Some of them only or mostly involve prepared produce, and some
others largely consist of fruit, such as the substitute role of apples (23). This agrees with
the tendency of grouping products into categories based on shared characteristics. Other
substitute roles contain more than one category, with one of them being prepared produce.
For example, the substitute role of grapes (5) includes both fruit and prepared produce,
the substitute role of carrots (13) comprises both prepared produce and vegetables, the
substitute role of peppers (19) involves prepared produce, salad7 and vegetables, and the
substitute role of avocado salad (25) is composed of fruit, prepared produce and salad.
Further investigation shows that products in prepared produce include fresh-cut fruits,
prepared salads and prepared vegetables, i.e. prepared versions of products in fruit, salad
and vegetable categories.

4.3.2 Flavour compounds and recipes
We observe that the substitute pairs have a significantly higher probability to share all their
flavour compounds with each other, i.e, rfij = 1, than all product pairs, while complemen-
tary pairs have a significantly higher probability to share no flavour compounds with each
other, i.e, rfij = 0; see Fig. 11. These characteristics are consistent with the functional def-
inition of complements and substitutes: complements are consumed together, thus tend
to have different flavours in order to accompany each other; while substitutes can replace

7Here the salad category contains products like cucumber, pepper, lettuce and tomatoes.
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Figure 11 Distributions of the relative number of shared flavour compounds of all product pairs {rfij} (“all”), of
complementary pairs {rfij :W (c)

ij > 0} (“com”) and of substitute pairs {rfij :W (s)
ij > 0} (“sub”), where probabilities of

rfij = 0 and rfij = 1 are of interest

Table 2 The correlations between the scores from sales data, (W (c)
ij ), (W

(s)
ij ), and the measures from

the flavour compound and recipe data, (rfij), (rrij) (where the superscripts (c) and (s) below denote the

values restricted to {(i, j) :W (c)
ij > 0} and {(i, j) :W (s)

ij > 0}, respectively), (W (cr)
ij ), (W (sr)

ij )

Score pair Pearson (p-value) Spearman (p-value)

(W (c)
ij ) – (rf

(c)
ij ) 0.085 (4.8× 10–4) –0.019 (4.3× 10–1)

(W (s)
ij ) – (rf

(s)
ij ) 0.50 (2.4× 10–79) 0.030 (3.1× 10–1)

(W (c)
ij ) – (rr

(c)
ij ) 0.16 (7.2× 10–8) 0.24 (1.1× 10–16)

(W (s)
ij ) – (rr

(s)
ij ) –0.040 (2.7× 10–1) –0.062 (8.8× 10–2)

(W (c)
ij ) – (W

(cr)
ij ) 0.16 (3.8× 10–8) 0.23 (2.5× 10–15)

(W (s)
ij ) – (W

(sr)
ij ) 0.60 (4.5× 10–76) 0.23 (2.5× 10–15)

Figure 12 Distributions of the relative number of shared recipes of all product pairs {rrij} (“all”), of
complementary pairs {rrij :W (c)

ij > 0} (“com”) and of substitute pairs {rrij :W (s)
ij > 0} (“sub”), where the range is

chosen for visualisation purpose, while complementary pairs also have positive probabilities at values greater
than 0.2

each other, thus tend to have the same flavours. The distributions of rfij values between 0
and 1 have roughly the same shapes for the three types of pairs.

Further, we investigate the correlations between the relative number of shared flavour
compounds (rfij) and the score values (W (c)

ij ), (W (s)
ij ); see Table 2. The Pearson correla-

tion indicates that the product pairs of higher substitutability scores have a significant
tendency to share larger portions of their flavour compounds, while the patterns when
changing the complementarity scores is more heterogeneous, with a mild negative corre-
lation between the ranking of the complementarity scores and that of the relative number
of shared flavour compounds.

We then discern that the complementary pairs have higher probability to co-appear in
relatively more recipes, {rrij : W (c)

ij > 0}, than all product pairs, {rrij}, while the substitute
pairs have lower probability to co-appear in relatively more recipes, {rrij : W (s)

ij > 0}; see
Fig. 12. Both trends are significant by the MWW test (p-values: 2.8×10–123 and 3.1×10–4

for the complementary pairs and the substitute pairs, respectively). These features also ac-
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Table 3 NMI and AMI between the partitions by the roles from the sales data (columns) and those
from the recipe data (rows), where “com” and “sub” correspond to the complement roles and the
substitute roles, respectively

NMI/AMI l0 sub l1 sub l com

com 0.54/0.16 / 0.36/0.28
sub 0.71/0.21 0.54/0.18 /

cord with the interpretation of complements or substitutes from the cooking perspective:
complements go well with one another, thus are more likely to be appear in the same recipe
together; while substitutes can be used in place of each other, thus tend to be cooked to-
gether with some others but not each other.

Moreover, we examine the correlations between the relative number of shared recipes
(rrij) and the score values; see Table 2. The Spearman correlation suggests that product
pairs of higher rankings in the complementarity scores tend to co-appear in relatively more
recipes, which agrees with the Pearson correlation. The trend when increasing the substi-
tutability ranking of product pairs is a mild propensity towards co-appearing in relatively
less recipes.

Additionally, we explore the correlations between our complementarity scores (W (c)
ij )

and the recipe complementarity scores (W (cr)
ij ), and between our substitutability scores

(W (s)
ij ) and the recipe substitutability scores (W (sr)

ij ); see Table 2. The Spearman correlations
of both score pairs indicate significant positive relationships within each pair, which is
consistent with the information suggested by their Pearson correlations.

Finally, we compare the complement and substitute role assignments from different data
sources, in particular the sales and recipe data, where we use the NMI and adjusted mutual
information (AMI [45]) to measure the consistency between role assignments; see Table 3.
Our substitute roles (from the sales data) are more similar to the complete substitution,
i.e. l0 substitute roles obtained from the recipe data. Although our complement roles are
more in agreement with the l0 substitute roles than the l complement roles by NMI, this
may be caused by the number of l0 substitute roles being larger than that of l complement
roles, since the AMI shows a significant opposite direction. To conclude, the relatively
large NMI and AMI values demonstrate the consistency between the extracted product
relationship from these two different sources, and also provide evidence that customers
buy products corresponding to ingredients in particular recipes.

5 Discussion
Extracting complements and substitutes is part of the broad family of unsupervised learn-
ing problems, since the relationship between any pair of products is unknown [46] (see
Sect. 5 in Additional file 1 for the detailed formulation). This makes the validation pro-
cess ill-defined, as there is no ground truth. Hence in our study, not only do we compare
the results with heuristic arguments based on common understanding of the product re-
lationships, but we also resort to external data sources – the product hierarchy data, the
flavour compound and recipe data. Since these datasets focus on different aspects of the
products, this is a well-grounded validation process. The seemingly heterogeneous ob-
servations from such datasets are well-explained by the product relationships, and thus
provide further validation of our results.

Our assumption that complements are products purchased together significantly more
frequently could appear simplistic, because it does not explicitly exclude other factors that
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may result in co-purchases, e.g. correlated preference. However, from a network perspec-
tive, these effects are expected to be removed implicitly by the statistical tests associated
with our null models. Moreover, we also propose a family of randomised measures to ex-
plicitly remove various sorts of noise effects. Compared with the state-of-the-art, another
advantage offered by a network perspective is the definition of exact criteria to determine
whether products are complements or substitutes. In this article, we have shown that both
relationships can be effectively extracted from the simple notions of whether two products
are purchased together significantly more frequently, or less frequently but share common
strong complements (assumptions 1 and 3 in Sect. 3.2).

Once unipartite networks of products have been built, we may proceed from pairwise re-
lationships to the mesoscale structure, via the notion of complement roles and substitute
roles. The observations justify our assumption 3 that substitutes share common strong
complements. They also indicate that complement products do not generally constitute
complete graphs, while substitute products typically do, though such complete graphs can
be destroyed, for example, by substitutes consumed for different purposes. These results
demonstrate the possibility of the complement relationship to go beyond pairwise rela-
tionship, and also the complex interaction between complements and substitutes.

Finally, let us emphasise that we only use basket data to extract the product relation-
ships, without additional information such as the customer profile and the price change,
information that are typically required for existing methods and may cause privacy issues
[47]. Our method to extract complements and substitutes is then solely based on sales
data, as stated in the assumptions in Sect. 3.2. Hence, the quality of our results is depen-
dent on the mutual information between the sales data (through our assumptions) and the
criteria, where some discrepancy may exist. For example, there may be products that are
not generally recognised as complements, but are purchased together significantly more
frequently, so are treated as “complements” from the sales angle. However, most applica-
tions of product relationships are from a sales perspective, such as stocking shelves and
marketing in sales promotions, and our validation further confirms the rationality of our
extracted complements and substitutes.

For these reasons, we believe that the network-based approach is a promising research
avenue within the field of retail. Among the research directions that this article has opened,
an important one would be to consider the bipartite network from a temporal perspec-
tive, in order to explore further the connection between structure and cross-elasticity (see
Sect. 4 in Additional file 1). It would also be interesting to design a method that directly
uncovers the degrees of complementarity and substitutability from the bipartite network,
without any intermediary steps as it is done here, and to explore more of the directed
scores, since our focus is on the symmetric ones here. Another is to characterise the prod-
ucts by their centrality in the projected networks, for instance by the average complemen-
tarity and substitutability scores of their relations. Moreover, our current analysis focused
on fresh food where prices changed frequently throughout the period. Yet, we did not ex-
plicitly include price as a factor, but either ignored its bias or removed it by some random
models [22]. In order to analyse a more general range of products in the future, it would
be necessary to incorporate price information in our framework in a meaningful way.
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Appendix A: Poisson binomial distribution
The Poisson binomial distribution is the discrete probability distribution of a sum of in-
dependent Bernoulli random variables that are not necessarily identically distributed, i.e.
with parameters p1, p2, . . . , pn that are possibly different.

Since a Poisson binomial random variable is the sum of n independent Bernoulli dis-
tributed variables, its mean and variance are simply the sums of the means and the
variances of corresponding Bernoulli distributions, respectively, i.e. μ =

∑n
i=1 pi, σ 2 =∑n

i=1 pi(1 – pi).

Theorem 1 (Le Cam’s Theorem) Let {Xj : j = 1, 2, . . . } be a family of independent random
variables. Assume Xj ∼ Bernoulli(pj), then Y =

∑
j Xj is a Poisson binomial random vari-

able. Let λ =
∑

j pj, ω =
∑

j p2
j /λ and α = supj pj. Denote by Q the distribution of Y and P

the Poisson distribution, Poisson(λ). There exist constants D1 and D2 such that
1 For all values of pj,

‖P – Q‖ ≤ 2λω,

and

‖P – Q‖ ≤ D1α.

2 If 4α ≤ 1, then

‖P – Q‖ ≤ D2ω.

The constant D1 is inferior to 9 and the constant D2 is inferior to 16.

See [28] for the detailed proof, but we can easily see that the variance of Y approaches its
mean while the Bernoulli probabilities pjs approach 0.

In our case, the composing probability is pilj, the likelihood for each pair of product
nodes i and j to both connect with transaction node l in the BiCM,

pilj =
d(p)

i d(t)
l d(p)

j (d(t)
l – 1)

m2 ,

where d(p)
i is the degree of product node i, d(t)

l is the degree of transaction node l, and m
is the number of edges in the bipartite network. Hence, we compute the maximum com-
posing probability for each pair of product nodes i and j, p∗

ij = maxl pilj, and find that most
pairs satisfy the condition p∗

ij ≤ 0.25, with the exception of only 32 out of all 31,878 pairs.
Further investigation shows that such excepted pairs all include nodes of degree higher
than 2475 (3 out of all 253 nodes), i.e. hubs, and most of their composing probabilities
piljs are much smaller than 0.25.8

Finally, we evaluate the error bound values. For the pairs satisfying the condition, we use
the tighter bound of D2ωij where ωij =

∑
l p2

ilj/(
∑

h pihj). We find that the maximum value of

8p∗
ij is obtained through the maximum degree of transaction nodes (20), but more than 99.8% of such degrees is not larger

than its half (10), and 97.0% is inferior to its quarter (5).



Tian et al. EPJ Data Science           (2021) 10:45 Page 25 of 27

Figure 13 Pairwise NMI between the partitions of W(c) varying αm (leftmost) and varying the threshold
quantile qc with αm = 0.01 (middle-left), and of W(s) varying αl with αm = 0.01, qc = 0.35 (middle-right) and
varying the threshold quantile qs with αm = 0.01, qc = 0.35, αl = 0.2 (right-most), where the original measure is
used and axis labels are shown in their titles

ωijs is around 0.021, with more than 97.2% pairs of ωij ≤ 0.003 and more than 89.3% pairs
of ωij ≤ 0.001, thus the Poisson approximation is guaranteed to perform well. For those
that do not satisfy the condition, we analyse the looser bounds 2λijωij and D1p∗

ij, where
λij =

∑
l pilj. We find that λijωijs are all larger than 2 (and p∗

ij > 0.25, as we know), thus the
Poisson approximation could be misleading for these small number of pairs. Hence, we
provide the comparison between the Poisson approximation and the Chernoff bounds, an
alternative approximation method, in Sect. 2.3 Additional file 1, in order to show that the
Poisson approximation has comparable performance in the above product pairs of worse
bounds. Together with the guaranteed good performance for most pairs, these are the
reasons to use the Poisson approximation in Sect. 3.3.2.

Appendix B: Sales data
We give details of how to calibrate the parameters here, including the significance levels,
αm and αl , and the thresholds, θc for W(c) and θs for W(s). We interpret the criterion of
maintaining the same community structure as the NMI between the two underlying par-
titions being greater than 0.8, and use the map equation to detect the communities. This
value is chosen for sufficient consistency but limited freedom of variance between parti-
tions [48]. Note our variant of bipartite ER models is used as the underlying null model,
and we choose 0.05 as the baseline significance level in both cases. We select the thresholds
θc, θs by the quantiles of the nonzero values, qc, qs, and use 0, 0.7 as the baseline threshold
quantiles for W(c), W(s), respectively. Thus by applying the extra rules of significance-level
and threshold selection, we obtain αm = 0.01, αl = 0.2, qc = 0.35 with θc = 0.011 and qs = 0,
for the scores induced by the original measure; see Fig. 13. The results for the scores in-
duced by the randomised configuration measure are exactly the same as the above ones,
(which can be inferred from the score values being very close to each other, see Sect. 3 in
Additional file 1), thus is omitted here. The complementarity scores W(c), and the substi-
tutability scores W(s), only refer to the scores after thresholding.
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normalised mutual information; MWW, Mann–Whitney–Wilcoxon.

Availability of data and materials
The flavour compound and recipe data is available from [14, 49]. The other datasets generated and analysed during the
current study are not publicly available due to the terms of use in Tesco PLC.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG Oxford, UK. 2Tesco PLC, Tesco House, Shire Park,
Kestrel Way, AL7 1GA Welwyn Garden City, UK.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 March 2021 Accepted: 22 July 2021

References
1. Elrod T, Russell G, Shocker A, Andrews R, Bacon L, Bayus B, Carroll J, Johnson R, Kamakura W, Lenk P, Mazanec J, Rao V,

Shankar V (2002) Inferring market structure from customer response to competing and complementary products.
Mark Lett 13:221–232

2. Mantrala M, Levy M, Kahn B, Fox E, Gaidarev P, Dankworth B, Shah D (2009) Why is assortment planning so difficult for
retailers? A framework and research agenda. J Retail 85:71–83

3. Kök A, Fisher M, Vaidyanathan R (2015) Assortment planning: review of literature and industry practice. In: Agrawal N,
Smith S (eds) Retail supply chain management: quantitative models and empirical studies, 2nd edn. Springer, Boston

4. van Nierop E, Fok D, Franses P (2008) Interaction between shelf layout and marketing effectiveness and its impact on
optimizing shelf arrangements. Mark Sci 27(6):1065–1082

5. Breugelmans E, Campo K, Gijsbrechts E (2007) Shelf sequence and proximity effects on online grocery choices. Mark
Lett 18:117–133

6. Briesch R, Chintagunta P, Fox E (2009) How does assortment affect grocery store choice? J Mark Res 46:176–189
7. Nicholson W, Snyder C (2012) Demand relationships among goods. In: Microeconmic theory: basic principles and

extensions, mason: cengage learning, 11th edn.
8. Ailawadi K, Harlam B, César J, Trounce D (2007) Quantifying and improving promotion effectiveness at CVS. Mark Sci

26(4):566–575
9. Song I, Chintagunta P (2007) A discrete–continuous model for multicategory purchase behavior of households. J

Mark Res 44:595–612
10. Berry S, Khwaja A, Kumar V, Musalem A, Wilbur K, Allenby G, Anand B, Chintagunta P, Hanemann W, Jeziorski P, Mele A

(2014) Structural models of complementary choices. Mark Lett 25:245–256
11. Gabel S, Guhl D, Klapper D (2019) P2V-MAP: mapping market structures for large retail assortments. J Mark Res

56:557–580
12. Ruiz F, Athey S, Blei D (2020) SHOPPER: a probabilistic model of consumer choice with substitutes and complements.

Ann Appl Stat 14:1–27
13. Chen F, Liu X, Proserpio D, Troncoso I, Xiong F (2020) Studying product competition using representation learning. In:

Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval,
SIGIR ’20. Assoc. Comput. Mach., New York, pp 1261–1268

14. Ahn Y, Ahnert S, Bagrow J, Barabási A (2011) Flavor network and the principles of food pairing. Sci Rep 1:196
15. Burdock G (2004) Fenaroli’s handbook of flavor ingredients, 5th edn. CRC Press, Boca Raton
16. Zhou T, Ren J, Medo M, Zhang Y (2007) Bipartite network projection and personal recommendation. Phys Rev E

76:046115
17. Li M, Fan Y, Chen J, Gao L, Di Z, Wu J (2005) Weighted networks of scientific communication: the measurement and

topological role of weight. Physica A 350(2):643–656
18. Newman M (2001) Scientific collaboration networks. I. Network construction and fundamental results. Phys Rev E

64:016131
19. Newman M (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E

64:016132
20. Newman M (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci USA 101(suppl

1):5200–5205
21. Leicht E, Holme P, Newman M (2006) Vertex similarity in networks. Phys Rev E 73:026120
22. Athey S, Stern S (1998) An empirical framework for testing theories about complementarity in orgaziational design.

Technical report. Nat Bur Econ Res
23. Donnat C, Holmes S (2018) Tracking network distances: an overview. Ann Appl Stat 12(2):971–1012



Tian et al. EPJ Data Science           (2021) 10:45 Page 27 of 27
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