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Abstract

Engineering projects are notoriously hard to complete on-time, with project delays
often theorised to propagate across interdependent activities. Here, we use a novel
dataset consisting of activity networks from 14 diverse, large-scale engineering
projects to uncover network properties that impact timely project completion. We
provide empirical evidence of perturbation cascades, where perturbations in the
delivery of a single activity can impact the delivery of up to 4 activities downstream,
leading to large perturbation cascades. We further show that perturbation clustering
significantly affects project overall delays. Finally, we find that poorly performing
projects have their highest perturbations in high reach nodes, which can lead to
largest cascades, while well performing projects have perturbations in low reach
nodes, resulting in localised cascades. Altogether, these findings pave the way for a
network-science framework that can materially enhance the delivery of large-scale
engineering projects.

Keywords: Activity networks; Network science; Spreading processes; Cascades;
Project performance

1 Introduction
Timely delivery of construction projects is notoriously challenging, with cost and duration
escalations being typical across the entire industry. An influential 2003 paper captures the
scale of the challenge: almost 9 out of 10 construction projects from 258 companies across
20 countries and 5 continents experienced cost overruns (average cost overrun of 28%)
[1]. Follow up work focused on 44 construction projects in North America and Europe,
reporting an average construction cost overrun of 45%; for a quarter of the projects cost
overruns were at least 60% [2]. Considering the fact that project budgets are growing at
an annual rate of 1.5%—2.5% [3], such escalations are bound to increase even further.
Poor project performance is unlikely to be the result of bad practice, since the rela-
tionship between widely recognised variables that impact performance has long been re-
searched and acted upon (e.g., how uncertainty in the duration of project’s activities im-
pacts the overall project delivery time) [4]. To explain this disparity between theory and
practice, recent work in both academia [5-10] and industry [11, 12] has proposed a new,
independent variable that impacts project performance: project complexity.
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Project complexity largely stems from the networked nature of the project [9, 10, 13, 14],
where dependencies between a project’s activities create pathways for perturbations to
propagate through. In this case, a perturbation refers to the deviation of completing an
activity from the expected plan, either earlier or later. Perturbation pathways can be explic-
itly expressed through the project’s activity network, where nodes correspond to activities
that need to be completed in order to complete the project. A directed link between two
nodes corresponds to a functional dependency between the two activities. For example,
a directed link from node i to node j indicates that activity i must be completed before
activity j begins. Paths contained within the network correspond to contractually-agreed
sequences of activities, reflecting the fixed nature of the network. This is due to functional
constraints that underpin the associated work (e.g., a wall cannot be built before its foun-
dation, and foundations cannot be built before the area is excavated) and legally binding
costs that have been agreed prior to starting said work.

The activity network can be used to better understand the mechanisms that drive poor
project performance, and eventually uncover ways to control it. For instance, the net-
worked nature of the project activities highlights the potential for minor, local events—
like a delay in completing an activity—to propagate through the activity network, delay-
ing more downstream activities, and eventually, delaying the entire project [13]. This be-
haviour is qualitatively similar to propagation effects observed across a range of complex
systems, where the underlying network controls the propensity of spreading events to take
place [14] and consequently the system’s broader fragility [15, 16] (e.g., sparse connectivity
[17], node degree [18], community structure [19], centrality [20, 21] etc.). Such spreading
phenomena have been extensively studied in biological systems [22, 23], where the clus-
tering of perturbations lead to ‘disease modules’ underlying complex pathologies [24, 25].
Transportation networks [26] are also worth mentioning due the interplay between net-
work structure and temporal properties, where time buffers are introduced by design in
order to contain perturbations spreading (e.g., air traffic networks [27], where nodes are
airports and directed links are flights, or rail systems [28], where nodes are railway stations
and directed links are scheduled trips).

In the context of projects, and though theoretically plausible [13, 29, 30], there has been
little empirical evidence to support the hypothesis of such cascades taking place within
activity networks, beyond anecdotal observations within real-world projects [7, 31-33].
As a result, there has been limited adoption of network science tools and techniques to
better understand project complexity in general, and propagation effects [16] within activ-
ity networks specifically. This lack of empirical evidence has reinforced the prominence of
optimisation-based techniques in identifying activities prone to such perturbations using
time based constraints (i.e., interpreting them as a form of resource constraints and ex-
pressed as a scheduling problem [4]; e.g., Critical Path Method [34], Program Evaluation
Review Technique [35, 36]). Though articulate, these methods rely on linear operations
[37] that forbid non-linear effects in terms of the impact that a single perturbation can
have. For example, if an activity is delayed by x days, and assuming it lies on the critical
path, the project will also be delayed by a maximum of x days. Alas, this linearity contrasts
real-world evidence of non-linear instances, where a minor delay can have a dispropor-
tionate effect on the project [7, 31-33].

This work is a first attempt to provide empirical evidence of propagation events within
an important class of sociotechnical systems—large-scale, engineering projects—and
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present a link between the structure of their underlying activity networks with the overall
project performance. We use a novel dataset that contains fine-grained information from
14 large-scale, engineering projects. Using planned and actual activity duration, we show
that large-scale perturbation cascades exist within the entire dataset. These cascades are
structurally similar across projects and tend to propagate across: a perturbation in a sin-
gle task can impact a large number of activities, and exert an influence downstream, up
to 4 activities. We then show that the cascade size distribution follows a power-law whose
exponent is a good predictor of the overall project performance (Spearman’s p = —0.68,
p = 0.0089), with extensive cascade sizes being an indicator of poor overall project perfor-
mance. Finally, we show that large spreading events occur when the largest perturbations
hit ‘fragile’ nodes with a large reach, i.e., number of downstream nodes. This paves the
way for future work on implementing strategies to detect and protect such fragile nodes
to minimize undesired large cascading events.

2 Results

Each of the 14 projects in our dataset (Fig. 1(a)) contains information about a priori
(planned) and a posteriori (actual) activity duration (see Additional file 1, Figure S1). For
each node, we define the activity perturbation of each node as the difference between
actual and planned activity duration (measured in days). As such, perturbations corre-
spond to deviations from the initial schedule. To quantify poor project performance, we
use the positive perturbation rate or ‘delay rate’: that is, the proportion of activities that
have endured a delay compared to the initial schedule. Assuming no knowledge about
the dependencies within activities, one would expect that projects with more deliverables
or higher duration would be more vulnerable to perturbations, since more things can go
wrong and they are exposed to risks for longer, respectively. Contrary to this expectation,
we find that project performance does not correlate significantly with the total number
of activities (Figure S2a, p = —0.52, p = 0.062) or the cumulative baseline duration of all
activities (Figure S2b, p = —0.39, p = 0.17). As such, the total size and total duration of a
project are not informative about the overall vulnerability of the project to endure activ-
ity delays. These results prompt us to investigate whether project complexity, embedded
in its activity network, can account for this unexplained variation and help predict the
occurrence, magnitude, and rate of activity perturbations.

2.1 Clustering of perturbations in activity networks

Each project can be represented as a directed activity network reflecting the dependence
structure of a project’s activities (Fig. 1(a)). The 14 activity networks contain a very lim-
ited number of cycles (Figure S3a), which allows us to safely assume a local tree-like struc-
ture. The networks have vastly different sizes, quantified by the number of activities they
are composed of (Figure S3b and Table 1), ranging from 282 to 29,080 activities. Accord-
ingly, their global structure varies widely, and the longest path (or ‘network diameter’)
ranges from 31 to 191 activities. Despite these differences in size, these networks exhibit
shared properties: they are sparse (densities span 1073 —107°), and while their average path
lengths are similar to random expectation, they are in general more highly clustered than
expected by chance (10 out of 14 networks, Figure S3c,d). As such, activity networks are
‘small-world’ (Table 1)—a finding in step with prior work on project networks reported in
[38, 39]. Finally, their local structure, assessed through the variation of number of depen-
dent activities or ‘degree’ of an activity, is strikingly similar: we observe that in 78% of the
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Figure 1 Perturbation clustering in activity networks. (@) Activity networks of all projects (project 1 top-left to
project 14 bottom-right). Node size denotes out-degree. The top 3 cascades (i.e connected components of
perturbed activities) in each network are shown with a red color (from dark red for the top cascade to light
red for the 3rd cascade). (b) Activity network from Project 6. Node color indicates the type of perturbation:
early for negative perturbation, on-time if there is no perturbation, late for a positive perturbation, and very
late for delays larger than 30 days. We observe a clustering of perturbations within network neighborhoods.
(c) Extent of the observed perturbations, measured by the correlation between absolute perturbation values
of activities as a function of their network distance. Network distance is computed as the outgoing shortest
path between two nodes in the directed network. In order to model random expectation, for each project we
compute the average correlation values across 50 random controls obtained by shuffling perturbations
across completed activities. The gray area corresponds to the average and 2 standard deviations of these
values across the 14 projects (see Methods)
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Table 1 Descriptive statistics of the 14 studied activity networks

Number Number Density Clustering Average Average Max Average Max Delay
of nodes  of links path degree  degree reach reach rate
length

project 1 10,734 15524 1.4e-04 9.0e-02 16.7 29 106 279 2846 0.165
project2 35618 61,199 4.8e-05 2.7e-03 14.3 34 1887 869 14,848 0.235
project3 17,160 25790 88e-05 57e-02 286 30 231 1830 7909  0.177
project 4 2458 5525  9.2e-04 5.3e-02 125 45 137 252 2457 0.244
project 5 975 1367  14e-03 1.0e-01 176 28 66 755 335 0359
project 6 544 776 2.6e-03 9.7e-02 323 29 39 141 430 0.305
project7 29080 50,101 59e-05 59e-03 205 35 1709 540 18324 0.135
project 8 641 997  24e-03 29e-02 9.7 3.1 60 139 537 0467
project 9 1287 2117 13e-03 1.2e-01 16.3 33 54 133 623 0288
project 10 17,263 19,391  6.5e-05 5.4e-02 18.7 23 114 235 6265 0.131
project 11 13,625 25034 14e-04 3.5e-02 159 37 589 541 13,501 0.201
project 12 3156 3237 33e-04 84e-02 14.7 2.1 37 464 451 0.215
project 13 282 292 3.7e-03 32e-02 9.6 2.1 17 11.1 128 0136
project 14 15,757 22,648 9.1e-05 3.8e-02 14.6 29 401 198 3417 0223

cases, the degree distributions (in-degree and out-degree) can be described with power-
law distributions with exponents close to 2 (Figure S4). This exponent is stable across the
2 orders of magnitude of differences in project sizes, and is consistent with prior results
in a pharmaceutical and a hospital construction projects [38].

In Fig. 1(b) we show an example of perturbations in an activity network. Perturbations
are concentrated in network neighborhoods, indicative of a clustering phenomenon. To
test whether perturbations are inherited, we compute for each task the proportion ppert
of its parent activities which have a perturbation. We observe that perturbed activities
have a significantly higher ppe;x than non-perturbed activities for 11 out of 14 projects
(Figure S5). This suggests a network inheritance mechanism of perturbations, where an
activity is likely to inherit a perturbation from its parents. In addition, we find that the mag-
nitude of the perturbation also follows such an inheritance mechanism. We compute for
each activity network the correlation across all activities between pper and their absolute
deviation § from baseline (Figure S6). We observe a positive and significant correlation for
the same 11 projects, further supporting the premise of perturbation inheritance within
the activity network.

To estimate the extent to which perturbations spread (spreading distance), we com-
pute for each activity network n the distance cross-correlation C,(d) between the ab-
solute values of the perturbations of activities at a distance d (see Methods). A positive
C,(d) indicates a propagation effect where perturbations spread over a distance d, while
Cu(d) = 0 corresponds to unrelated perturbations. In Fig. 1(b), we show the average cross-
correlation across all activity networks, C(d) =< C,(d) >. The correlation decays slowly
after the first downstream task, with significant positive values up to 4 activities down-
stream, indicative of a clustering of perturbations in local neighborhoods. The correlation
values then become comparable to those obtained when perturbations are assigned to
random nodes in the network (see Methods).

These findings show that activity network structures provide pathways for perturba-
tions to spread between activities, for up to 4 activities downstream. These perturbations
can spread to downstream activities, potentially unlocking large spreading events that can

impact the timely completion of the entire project.
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Figure 2 Structure of perturbation cascades predicts project performance. (a) Examples of perturbation
cascades across projects with increasing tree size and complexity. (b) Cascade size distributions across the
dataset. Color code denotes delay rate, measured by the overall proportion of delayed activities across
completed activities, from blue (lowest) to red (highest). Dashed line corresponds to power-law distribution
with an exponent of 1. We show distributions for the null model (shuffled perturbations) in Figure S8. (c)
Comparison between observed power-law exponents of cascade sizes and null model exponents (see
Methods). (d) Delay rate as a function of power-law coefficients of cascade sizes, showing a strong and

statistically significant negative association (o = -0.68, p = 0.0089, Spearman correlation)

2.2 The structure of real perturbation cascades

Perturbations for up to 4 activities downstream suggest the existence of clusters of per-
turbations, or perturbation cascades, in the activity networks. Cascades correspond to
connected components of perturbed activities in the network. We show in Fig. 2(a) a few
examples of cascades across projects, highlighting the diversity of structures and sizes. As
in the case of node degree, we find that in 85% of the cases, cascade sizes can be described
by a power-law distribution (see Methods and Figs. 2(b), S7). While the power-law nature
of the cascade size distribution is expected if the perturbations were scattered randomly
across the network (Figure S8), the exponents in observed cases are departing from ran-
dom expectation (Fig. 2(c)). In accordance with the previous results showing a clustering
of perturbations in local neighborhoods, the observed exponents are significantly smaller
(between 0.5 and 1.2) than random expectation (between 0.9 and 2.4), indicative of larger,

more extensive cascades in real-world projects.
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Figure 3 Node reach as a network fragility measure. (a) Schematics representing the two network centralities
of interest. Node reach corresponds to the number of nodes downstream a given node, representing the
maximum possible cascade size originating from that node, and is a global network measure. Node degree is
alocal network measure corresponding to the number of immediate neighbors. (b) Heatmaps showing the
Spearman correlation between perturbation strength (absolute value of the perturbation) and two network
metrics: node reach and node degree. Cell values indicate correlation values, with colors ranging from blue
(lowest) to red (highest). Rows are ordered by increasing delay rate (i.e, decreasing global performance) of the
project. Null model is obtained as in Fig. 1(c) by random shuffling of perturbation values across nodes

2.3 The structure of perturbation cascades and its impact on global performance
To further explore how the distribution of cascade sizes impacts the overall performance,
we plot the delay rate as a function of the power-law exponent of cascade sizes for each
project. We find strong-evidence (0 = —0.68, p = 0.0089, Spearman correlation) that the
more localized the cascades are, the better the project performs in terms of overall delays
from expectation (Fig. 2(b) and 2(d)). We used bootstrapping analysis to estimate the ro-
bustness of the significance with respect to sample size, showing that significance can be
reached with at least 10 projects (see Figure S9). Finally, the result holds when controlling
for the total number of perturbed nodes (p = 0.02, partial Spearman correlation), showing
that for a similar number of perturbed nodes, projects that perform well manage to keep
perturbations in local neighborhoods and avoid their spread, i.e., have a high power-law
exponent, as shown in Fig. 2(c).

2.4 Global network structure underlies perturbation strength

In order to investigate the origin of these large, extensive cascades in low performing
projects, we study network properties that might underlie such events: a local property,
the network degree, and a global property, the number of nodes reachable downstream a
given node, further coined ‘node reach’ We focus on nodes for which the degree is strictly
positive, meaning that they have at least one ancestor or offspring. We then ask how the
degree and the reach relate to perturbation strength for each project: in particular, do
large perturbations originate in nodes with specific high or low degree/reach? We show in
Fig. 3 for each project the Spearman correlation between the node properties (degree and
reach) and their absolute perturbation value. A positive (resp. negative) correlation means
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that highly perturbed nodes have a higher (resp. lower) value of the particular network
property. We rank projects from best performing (lowest delay rate, top) to worst (high-
est delay rate, bottom). We observe that perturbations target higher degree nodes in low
performing projects, while targeting both high and low degree activities in high perform-
ing projects. On the other hand, when turning to reach, we observe a positive association
with perturbation strength in low performing projects, and a negative association in high
performing projects.

The association of these network properties with global performance is significant only
in the case of reach (Figure S10, p = 0.78, p = 1.4e-3; for degree we find p = 0.4, p = 0.15).
This association remains significant when controlling for project size and number of per-
turbed nodes, both non-significant (p = 3.2e-3 for reach, linear regression).

Altogether, these results suggest that project performance is improved when large per-
turbations occur in nodes with small reach, limiting perturbation spread and eventually
leading to more localised cascades.

3 Discussion

Managing large-scale projects is a daunting challenge, as large project sizes make it in-
tractable for managers to harness project complexity. We showed that task perturbations
occur irrespective of project size or task duration. These results validate prior insights
from perturbation spreading models, where delays in project delivery were expected to be
independent from project size [9]. This suggests that other factors are at play. In this work,
we used a unique dataset of 14 large-scale engineering projects with activity networks and
delay data to study how activity network properties relate to project performance.

The networks are small-world, making them structurally prone to the fast spreading of
perturbations [9]. Here we showed that an inheritance mechanism enables large pertur-
bations to spread up to 4 activities downstream of the root node, leading to perturbation
cascades. The cascade sizes follow a power-law distribution, with smaller exponents than
expected at random, indicative of larger clustering. Moreover, not all projects are equal:
while some show localised, smaller cascades, others show extensive, larger cascades. We
introduce an observable, the cascade distribution power-law exponent, that significantly
predicts overall project performance. This exponent is predictive even when controlling
for project size or number of perturbations, indicating that the clustering, and not the
number, of perturbations is the source of poor project performance.

To investigate what network properties underlie larger cascades and poorer project per-
formance, we introduced node reach as a key global network property. Poorly performing
projects concentrate their largest perturbations in nodes with high reach, while well per-
forming projects show the opposite trend, with largest perturbations in nodes with low
reach.

It is interesting to contrast our results to previous insights gained from the applica-
tion of complex system theory to project fragility [9, 10]. Using a perturbation spread-
ing model, the authors showed that when the correlations between neighbors’ degrees
are small enough, the cascade dynamics can be related to the correlation between the
in- and out-degree of a task. A positive correlation is associated with a higher project
fragility, while a negative correlation favors in-time project completion. Consistently, we
find that neighboring nodes show small negative degree correlations, and that there is
an average positive correlation of a task in- and out-degree, indicating the structure of
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our studied project is more fragile (Figure S11a). When evaluating the importance of that
feature across projects, we observe that the in-out degree correlations and the delay rate
are moderately positively correlated at the 10% significance level (Figure S11b, p = 0.45,
p =0.1), calling for further future work to derive conclusive insights.

Scale-free networks, i.e networks for which the degree distribution follows a power-law,
are known to be tolerant against random errors, but fragile under targeted attack towards
central nodes [40]. As such, node centrality (and in particular, node out-degree, but also
other correlated measures such as closeness or betweenness centrality) was hypothesized
to play a critical role in predicting cascade size [9]. Consistently, we observe across 13
of the 14 projects studied a positive correlation between an activity’s out-degree and the
resulting cascade size (Figure S11c). When compared to degree-preserved random net-
works, the observed associations are moderately smaller than expected (p = 0.13, Mann—
Whitney test), suggesting a relative protection of central nodes from perturbations.

This study exhibits the benefit of collecting a larger number of consistent activity
datasets for validating associations with project performance, with the hope to uncover
other contributors of project performance. For example, we showed in Figure S9 how the
accumulation of a large enough number (10+) of activity networks allowed us to reach
the required significance level to associate cascade size distribution and performance. Yet
data volume is only one facet that can impact the accuracy of the analysis. Given that ac-
tivity network data are human generated, structural errors may creep in, either in the form
of missing links or redundant links. Such inconsistencies are bound to be limited, given
the mission critical nature of the data, and the subsequent effort associated with project
planners in generating and curating them. Larger volumes of data would help tackle this
challenge, where random sampling methods could be used to contain such effects. We
hope that our work will draw the attention of the community to this mission critical area
of research, attracting concentrated efforts of work for exposing larger datasets that can
enable such future work.

Our results pave a new way for elucidating the causal link between the structure of a
project’s activity network and its performance. We contribute actionable insights that can
support decision makers mitigate cascades, by focusing their efforts in successfully com-
pleting high-reach nodes. From a reactive point of view, decision makers can use an ac-
tivity’s ‘reach’ to assess the priority in containing a delay when completing that activity.
By doing so, decision makers can prioritise resource allocation in an effective and effi-
cient manner. From a proactive standpoint, decision makers can provision frequent qual-
ity checks and stricter governance frameworks for activities with a high ‘reach’ so that to
minimise the probability of delays arising in the first place. In doing so, our work partakes
in the broader movement of solution-oriented social science where computational meth-
ods and big data can be used to uncover core insights for mitigating real-world challenges
[41]. We believe that our contribution can stimulate a new wave of data-driven research
in one of the most enduring societal challenges: why do almost all modern projects fail to
be delivered on time, given that we have been delivering them for the past 80 years?

4 Methods

4.1 Data collection

Each activity network corresponds to a project schedule that was created using the Oracle
Primavera P6 software—an industry standard platform used to create and manage large-
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scale, engineering projects (>$5 m). The corresponding data denotes functional depen-
dencies between activities, spread across a timeline i.e., akin to a Gantt chart. In principle,
the existence of cycles is forbidden, as their presence would require at least one directed
link going backwards in time. As such, in the case where an existing activity needs to
be reworked after some downstream activity has been fulfilled, one would insert a new
downstream activity to indicate the additional work (instead of cycling back to the exist-
ing upstream activity). Yet, in reality some cycles may occur during the human annotation
process underlying the generation of the data, but their existence is very limited (see Fig-
ure S3a).

We note that the schedules used herein are markedly different from the similarly pur-
posed product development (PD) networks used in [42, 43], that indicate information flow
between activities. The PD networks are usually orders of magnitude smaller (~100 s of
activities), and are created using the Dependency Structure Matrix method [44].

The combination of finely aggregated information at the activity level, the large number
of activities and the minimal presence of cycles makes this data collection method ideal
for the study of long-range delay propagation that we investigate in this study.

4.2 Power-law fit

In order to compute power-law fits to the degree and cascade size distributions, we use
the poweRlaw package from [45], based on the method from [46]. This fitting procedure
uses a Maximum Likelihood approach to estimate the exponent « of a power-law fit to the
distribution:

a-1/ x \“
plx) = ( )
Xmin \ ¥min

The method then uses a bootstrap procedure to compute a Kolmogorov—Smirnov statis-

ticand a corresponding p-value quantifying the confidence that the power-law fit is a plau-
sible description of the empirical data. In the case of cascade distributions, cascade size
refers to the number of downstream nodes impacted. We excluded singletons (i.e cascades
of size 0) and set xi, equal to 1 across projects. In the manuscript, “power-law exponent”
refers to the exponent of the cumulative distribution, corresponding to o — 1 in the nota-
tion above (for o # 1, which is always the case in our data).

4.3 Network distance cross-correlation

We compute for each activity network the distance cross-correlation C(d) between the
absolute value of a perturbation §; at node i and §; at node j for all (i,j) such that j is d
steps downstream from i:

(i — )65 — py) >
O'L'O']'

Cl) == for all d(i, ) = d,

where 1; and o; correspond to the average and standard deviation of §;. A positive C(d)
indicates that perturbation spreads over a distance d, while C(d) = 0 corresponds to inde-
pendent perturbations. In Fig. 1(c) we show the average and standard error of C(d) across
projects.

In order to obtain a random model, for each project we shuffle absolute perturbation
values across all completed activities, and produce 50 randomized samples. For a project
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we then compute the random cross-correlation as C,(d) =< C,;(d) > where the average
runs over all random samples i in [1,50]. Finally we show in Fig. 1(c) the average and
standard deviation of C,(d) across all projects.

4.4 Network visualisation
For network visualisations in Fig. 1(a) we use Gephi 0.9.2 with the ForceAtlas 2 layout.

4.5 Synthetic networks

For each activity network, we generated Erds-Rényi (ER) and Barabasi—Albert (BA) ran-
dom graphs of the same density as the observed network. The ER networks were gen-
erated using the erdos.renyi.game function from the R igraph package, with parameters
n (number of nodes in the network), m (number of edges in the network), type = ‘gnm’
(use number of edges rather than edge probability), and directed = T (generate a directed
graph). The BA networks were generated using the barabasi.game function of the same
package, with parameters n (number of nodes), out.dist the out-degree distribution of the
network, and directed = T to produce a directed graph.

In the case of Figure S11, the degree preserved networks were generated using the edge
swapping method implemented in the keeping_degseq function of the igraph package.
The rewiring algorithm chooses two arbitrary edges in each step ((a, b) and (¢, d)) and sub-
stitutes them with (a, d) and (c, b), if they do not already exist in the graph. The algorithm
does not create multiple edges. We did not allow for loop edges, and ran the algorithm for
Niter = 10 x E iterations, where E is the number of edges in the graph.

4.6 Cycles

To find cycles in the networks, we computed all isomorphisms to a directed ring
graph of size k. This was done by first defining the ring graph using the function
graph.ring (k, directed = T) in the R igraph package. We then used the function graph.get.
subisomorphisms.vf2(graph, ring) between the considered graph and the ring.

4.7 Statistics

All statistics, correlations and plots are computed using R version 4.0.1. Spearman corre-
lations are used throughout this work in order to limit the effect of outliers. The partial
Spearman correlation p-value is computed using the pcor.test function of the ppcor R li-
brary [47]. Throughout the manuscript, p refers to the p-value of the statistical test for the
preceding quantity.
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