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Abstract
Mobile network data has been proven to provide a rich source of information in
multiple statistical domains such as demography, tourism, urban planning, etc.
However, the incorporation of this data source to the routinely production of official
statistics is taking many efforts since a diversity of highly entangled issues (access,
methodology, IT tools, quality, skills) must be solved beforehand. To do this, one-off
studies with concrete data sets are not enough and a standard statistical production
process must be put in place. We propose a concrete modular process structured into
evolvable modules detaching the strongly technological layer underlying this data
source from the necessary statistical analysis producing outputs of interest. This
architecture follows the principles of the so-called ESS Reference Methodological
Framework for Mobile Network Data. Each of these modules deals with a different
aspect of this data source. We apply hidden Markov models for the geolocation of
mobile devices, use a Bayesian approach on this model to disambiguate devices
belonging to the same individual, compute aggregate numbers of individuals
detected by a telecommunication network using probability theory, and model
hierarchically the integration of auxiliary information from the telco market and
official data to produce final estimates of the number of individuals across different
territorial regions in the target population. A first simple illustrative proposal has been
applied to synthetic data providing preliminary software tools and accuracy
indicators monitoring the performance of the process. Currently, this exercise has
been applied to the estimation of present population and origin-destination matrices.
We present an illustrative example of the execution of these production modules
comparing results with the simulated ground truth, thus assessing the performance
of each production module.

Keywords: Mobile network data; Production framework; Official statistics; Statistical
production process

1 Introduction
Mobile network data, i.e. digital data generated in a mobile telecommunication network
by the interaction between a mobile station (device) and a base transceiver station (an-
tenna, in loose terms) [1], constitutes a rich source of information for Social Science, in
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general, and for Official Statistics, in particular. There already exist multiple excellent ex-
amples of one-off applications [2–15] (see supplementary material 1 for a more compre-
hensive list of references), but the production of official statistics in National Statistical
Systems demands a fully-fledged production framework covering different aspects such as
access conditions, methodological and quality frameworks, IT infrastructure (both hard-
ware and software), statistical disclosure control, and identification of relevant indicators
for a diversity of statistical domains in National and International Statistical Plans, mostly
included as part of legal regulations. A number of illustrative case studies of mobile net-
work data to the production of official statistics can already be found in the literature
[16–26]. Moreover, efforts are under way to construct a production framework [27–29]
with some recent examples of an end-to-end statistical production process [30]. The need
for a process-oriented production system instead of a product-oriented or even domain-
oriented system is well-known in Official Statistics, where important initiatives have been
carried out in the last decade to avoid so-called stove pipe models driving National Sta-
tistical Offices (NSOs) to production in silos, models which reduce the cost-efficiency to
the point of endangering the future feasibility of the production of official statistics [31].

There exist two important issues which raise immediate rightful concerns when using
mobile network data for statistical purposes. These are (i) privacy and confidentiality of
network subscribers and (ii) access conditions to data by NSOs. We shall not be dealing
with these issues in the next sections, but we mention the general principles for the con-
text in which our proposed process is to be considered. Privacy and confidentiality of any
statistical information collected, processed, and disseminated by NSOs have been, are,
and will be a priority for any kind of data source. Traditional survey data is indeed iden-
tified personal data and concerns about its protection are duly accounted for with a spe-
cific production phase known as statistical disclosure control [32, 33]. All kind of survey
and administrative data about personal habits, causes of death, business revenues, VAT
and personal taxes, etc. are collected, processed, and aggregated and official statistics are
disseminated under a negligible risk of reidentification of statistical units, whatever their
nature is. Not only is this commitment present with new digital data sources in general
and mobile network data in particular, but is it also reinforced.

Regarding access, this is an intricately complex unsolved issue where many, many facets
need to be considered simultaneously. Currently, there exist concrete agreements between
some NSOs/research centres/universities and Mobile Network Operators (MNOs) for re-
search on limited data sets, but the conditions for routinely production of official statistics
are yet to be found. By and large, in our view, MNOs will need to become an active part
of the official statistical production process and this brings novel challenges. We iden-
tify at least the following restrictions to be jointly satisfied to arrive at a feasible solution.
Firstly, security, confidentiality, and privacy must be legally and technically assured during
the whole process, involving the approval by the national Data Protection Authorities. In
this sense, we underline the traditional role of NSOs in collecting and processing sensi-
tive information. Currently, we consider that any kind of mobile network data processing
must be undertaken in the original information systems of MNOs. However, notice that
further research needs to be conducted. For example, there exists both theoretical and
empirical evidence [34, 35] that privacy is not preserved even after aggregating data un-
der certain conditions. Secondly, appropriate territorial and time breakdowns for target
indicators and aggregates for the social good, potentially to be included in sectorial legal
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regulations, must be identified so that valuable information for data-based policy making
and decision taking can be produced and disseminated for free. Thus, the relevant role of
statistical offices in society according to the Fundamental Principles of Official Statistics
[36] would be strengthened. Thirdly, a new branch of economic activity is growing on the
basis of digital data and data analytics [37]. This is usually substantiated in the so-called
monetization of data generated by enterprises during their business activities. MNOs are
not an exception and due to the technologically complex data ecosystem of telecommu-
nication networks, investments are needed (mobile network data for statistical purposes
do not exist, a preprocessing stage is needed). Thus, a trade-off between public and pri-
vate interests must be found. In this line of thoughts, as we have expressed elsewhere [38],
public-private partnerships arise as an optimal solution, in which win-win agreements are
indeed feasible. The present methodological proposal, beyond the statistical contents in-
cluded hereafter, provides also an insight on aspects to be taken into account when finding
these agreements.

To our best knowledge, mobile network data can be used at least in three (complemen-
tary) ways, namely (i) focusing on geolocation of network events to analyse population
counts, displacement patterns, and mobility-related phenomena in general (see most ref-
erences above), (ii) focusing on the type of applications generating the Internet traffic from
the devices (see e.g. [39]), and (iii) investigating interactions between devices to analyse
different aspects of social networks [40]. In the following, we shall focus only on the ge-
olocation of network events.

We make a proposal for an end-to-end statistical process going from the raw telco data
generated at the mobile telecommunication networks to the final target population count
estimates. The proposal follows the principles of functional modularity adapted to statis-
tical production [41] focusing on input and output data as well as the throughput of each
production step. The proposal so far focuses on a single-MNO scenario. The next sections
describe each of the functional modules of the statistical process. In Sect. 2 we provide a
description of the (synthetic) data used to illustrate the proposal. In Sect. 3 we describe
the module to geolocate mobile devices. In Sect. 4 we propose a method to disambiguate
devices carried by the same individual. In Sect. 5 we include general considerations to
identify devices pertaining to the target population under analysis. In Sect. 6 we suggest
a method to aggregate data from the device level to the territorial unit level. In Sect. 7 we
propose to use hierarchical modelling to infer population counts in the target population
from the population counts in the network, integrating at the same time auxiliary infor-
mation. In Sect. 8 we integrate all modules in a production chain. Finally, in Sect. 9 we
close with some conclusions and future prospects.

It is important to underline that the proposal is formulated with a priority on modularity
and evolvability so that continuous improvements can be introduced adapting to concrete
restrictions from actual production conditions. The statistical methods illustrating each
module are not intended to be closed and definitive, but rather on the contrary to pave the
way for more complex scenarios.

2 Data description
Our strategy to build a production framework revolves around the use of synthetic net-
work event data. Our choice is motivated by the following reasons: (i) to have actual
ground truth figures allowing us to conduct a thorough performance assessment of meth-
ods and parameters and a better understanding by comparison between actual population
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counts and their estimates, (ii) to identify different concrete aspects of the problem by con-
figuring different scenarios in order to propose specific elements in the methodology to
deal with them, (iii) to avoid the issue about the access to real data (see above) and its con-
sequences (lack of data, confidentiality and privacy risks, legal concerns,. . . ), and (iv) to
provide a body of technical knowledge to reach informed partnership agreements with
MNOs (otherwise, how do we know what to agree upon?). Real data cannot provide these
conditions for research.

In this line, we have developed a network event data simulator. The simulator is a highly
modular software [42] implementing agent-based simulating scenarios with different ele-
ments configured by the user. The basic elements are:

• a geographical territory represented by a map;
• a population of individuals carrying 0, 1, or 2 mobile devices during their

displacement;
• several choices of displacement patterns for the individuals;
• a telecommunication network configuration and connection mechanisms between

devices and base transceiver stations (BTS) in terms of a radio wave propagation
model;

• a reference grid for analysis.
The simulator works essentially by using a radio wave propagation model to simulate

the connection mechanism between the BTSs and each mobile device during the displace-
ment of each individual. The connection mechanism is an extreme simplification of the
real world extracting the essential features for statistical analysis. The core output data
consists of a time sequence of radio cell IDs and event codes (connection, disconnection,
etc.) for each device along the duration of the simulation. Signalling data (i.e. passive data
not depending on subscribers’ behaviour) are simulated instead of Call Detail Records or
any other active data generated by individuals (call, SMS, Internet connections, . . . ). No-
tice, however, that the simulator is highly configurable and the user can adjust input pa-
rameters and impose data patterns or empirical distributions on the outputs to simulate
different conditions according to his/her needs.

Before starting to develop an entirely new tool for synthetic data generation we made an
inventory of the existing tools in this area, checking if there is one that can be used for our
purposes. The cdr-gen project [43] is a very simple Call Detail Record (CDR) generator
written in Java that allows the user to configure up to a certain extent the parameters of
the calls (duration distribution, type of call, etc.) but has no support for defining the geo-
graphical coordinates of the mobile devices, the movement of the people carrying mobile
devices or the parameters of the network. Another CDR generator [44] written in Scala
allows users to generate CDR data with different models or with a mix of models. A sim-
ulation implies several steps: generate the cells, the mobile operator, the users, the social
network of users and eventually generate the interaction between users. However, the ca-
pabilities to run complex simulations are not present, the cells of the mobile network are
generated randomly with a fixed shape. There is no support to define our own maps and
the (at least some) technical parameters of the BTS. NetSim [45] is a software that enables
users to simulate a network comprising of devices and links, and study the behavior of this
network. While this is a complex software that includes a user-friendly GUI and capabil-
ities to simulate several real mobile network communications protocols, it is a commer-
cial product with a limited version for academic institutions. An important drawback of
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this simulation software comes from the fact that it is oriented on producing data needed
for mobile telecommunication network optimizations and it does not provide the kind of
data that matches our statistical needs. Another network simulation software that we’ve
tested is OPNET Network Simulator [46]. Besides being a commercial software, it is also
oriented on producing data needed for mobile telecommunication network optimization
and it does no output the information that we need to produce population estimates. The
traffic simulation packages SUMO [47] and MATSim [48] are more similar to our needs
of modeling the population mobility but unfortunately they don’t have any support for
mobile devices and networks. Considering the minimal set of features that we defined for
our synthetic data simulator we couldn’t find any pre-existing software to entirely fulfil
our needs, and we proceeded to develop our own simulation software.

For the time being, since our priority is the simulator as a whole, the different elements
implemented so far are kept as simple as possible. Firstly, regarding the population of indi-
viduals, displacement patterns1 are basically a sequence of stays (no movement) and ran-
dom walks with/without a drift with two possible speeds (namely, walk and car speeds).
The drift, the speeds, and the shares of individuals with 0, 1, and 2 devices are easily
configured by the user. Only closed populations can be simulated so far, i.e. individuals
cannot abandon or enter into the territory under analysis. Secondly, radio wave propa-
gation models [49] are mathematical representations of the electromagnetic interaction
between mobile stations and base transceiver stations in a telecommunication network
which simplifies planning, configuration, and management avoiding numerical solutions
of Maxwell’s equations with real world complex boundary conditions. These models are
used in the simulator to reproduce the BTS-device connections. We are using two very
simple models for the connection mechanism. For omnidirectional radio cells:

• We model the so-called Received Signal Strength (RSS) for a device at a distance r
from the radio cell as

RSS(r) = 30 + 10 · log10(P) – 10 · γ · log10(r), (1)

where P stands for the radio cell emission power (in Watts) and γ is the so-called path
loss exponent (or attenuation factor). Notice that RSS is provided in dBm. Each device
connects to the BTS producing the highest signal strength in each tile until the radio
cell reaches its maximum capacity. Both the emission power and the path loss are
selected as input parameters by the user.

• In agreement with Tennekes et al. [30], we further model a so-called Signal
Dominance Measure (SDM) by making a logistic transformation on the RSS:

SDM(r) =
1

1 + exp(–Ssteep · (RSS(r) – Smid))
, (2)

where Ssteep and Smid are chosen according to characteristics of each radio cell. Each
device connects to the BTS providing the highest signal dominance measure in each
tile until the radio cell reaches its maximum capacity. Both Ssteep and Smid are selected
as input parameters by the user, too.

1During the review process of the present work, Lévy flights have been also included as a displacement pattern.
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Figure 1 Received signal strength and signal dominance measure. Received signal strength and signal
dominance measure for an omnidirectional radio cell according to models (1) and (2)

In both cases, minimal thresholds for both RSS and SDM are selected by the user below
which no connection is possible. Coverage areas are indeed computed in this simple way.
See Fig. 1 for an illustrative example of the RSS and SDM of a given radio cell.

For directional radio cells, more parameters are needed (see [30]). For simplicity, we
shall use only omnidirectional radio cells in this work. The inclusion of directional radio
cells would only increase the computational effort and parameter specifications by the
user, not introducing conceptual novelties.

For the next sections to illustrate our proposed production model, we have configured
a scenario over an irregular polygon with a bounding box of 10 km × 10 km, across which
N = 500 individuals move according to a sequence of stays and random walks with a drift,
186 of them carrying at least one device (32 of them carrying two devices). We have con-
figured 67 omnidirectional radio cells and 3 directional radio cells at the same site. See
Fig. 2 and animated gif individuals.gif in [50]. Parameters are further specified in
the supplementary material. To simulate the BTS-device connections, the RSS model has
been used in the simulation.

3 Geolocation of mobile devices
3.1 Model specification and construction
The ultimate goal of the proposed set of modules is to provide common production steps
valid for any statistical domain detaching the highly technological substratum of this data
source from the statistical analysis producing different outputs and insights. This first
module focuses on the geolocation information in the telecommunication network about
mobile devices. There already exist multiple techniques to geolocate a mobile station in
a radio telecommunication network [51–57], but they focus on providing a high-quality
telecommunication service. Instead, we focus on statistical purposes and many of these
computationally demanding techniques are not necessary. Our design is based on the fol-
lowing premises. First, following [28], the design should be as much modular as possi-
ble so that the geolocation information for statistical analyses is not directly affected by
changes in the telecommunication technology. At the same time, the design should allow
the module to evolve according to this technology. Second, we shall use data generated in
the network and shall not access data generated in the mobile devices. Indeed, we shall
use only the minimal set of information needed for the production of official statistics.
Much research is needed to agree on this minimal data set depending on case studies and
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Figure 2 Network configuration. Positions of 70 BTS (67 omnidirectional radio cells –in grey– and 3
directional radio cells – in black), positions of individuals at time t = 0. (See complementary online material for
an animated gif for the displacement of individuals [50]

simulation exercises. Basically, we focus on the digital trace left by mobile devices in the
network and not on applications actively generating data for this purpose. Third, quality
is a concern of first priority in the production of official statistics. In this sense, we shall
account for the uncertainty underlying the whole production process so that estimates
will be produced together with accuracy indicators. Fourth, the design of modules should
allow us to integrate multiple data sources such as information from the telco market (pen-
etration rates, market shares, etc.) and from Official Statistics (register-based residential
population figures, land use, etc.).

Let us illustrate these premises with a concrete example. Let us think of the evolution
from 3G technology to 4G technology. The modularity will be introduced by using a refer-
ence grid dividing the geographical territory of analysis into tiles and providing the prob-
ability for each device to be geolocated at each tile. Data abstraction is implemented just
through the statistical model providing these location probabilities: we get location proba-
bilities independently of the underlying technology. Indeed, when this technology evolves
(from 3G to 4G), the statistical model computing the probabilities may be made more so-
phisticated including more variables or more accurate data, but at the end we still have
location probabilities. Available data can be just the radio cell IDs of each connection or
can be completed using other variables such as Timing Advance, Angle of Arrival, etc. Fur-
thermore, we can naturally account for uncertainty in the geolocation information since
we have probability distributions. Indeed, the use of probability models will allow us to
integrate in a natural way information from auxiliary data sources.

Now, we formalise our approach. We begin by introducing the input data. We shall de-
note by Ed(t) the set of network event variables regarding mobile device d at time instant t.
These may be the radio cell ID, the Timing Advance (TA), the Angle of Arrival (AoA), . . .
or any network variable reflecting the digital trace of mobile device d at time t. Notice that
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these are telco variables which will certainly evolve and change according to the telecom-
munication technology. Also, notice that these contain sensitive information about each
device (hence about each individual) and thus must not leave the information systems of
MNOs (in-situ processing). NSOs do not need access to these variables, only to the design
of their processing. Next, we shall denote by θnet the parameters for the radiowave prop-
agation model such as the emission power, the path loss exponent, etc. (see models (1)
and (2) above). Although these parameters do not contain sensitive information about the
subscribers, they reveal important technological information in the competitive telecom-
munication market. NSOs do not need access to these variables either, but the models
must be jointly agreed with MNOs. Finally, we shall denote by Iaux any auxiliary informa-
tion about the geographical territory such as the land use or transport networks or any
other external data source such as a population register. This information is indeed pub-
lic, but it may also incorporate data at the micro level produced (and not disseminated) by
NSOs.

The displacement of devices across the geographical territory bears an evident dynam-
ical ingredient in which we have access to a set of observed variables (network variables
Ed(t)) and a set of unobserved variables (location at each tile i, which we shall denote by
Tdt = i, i = 1, . . . , NT ). A natural mathematical description of this situation can be provided
using hidden Markov models (HMMs) [58, 59], in which we model the time sequence of
hidden (unobserved) variables Sdt for each device d at each time instant t and a time se-
quence of observed variables Odt , which in our case will be the network variables Odt = Edt .
For simplicity, we shall assume that the state variables Sdt reduce to the tile location Tdt

(see left panel of Fig. 3).
Now, we need two models:
• A transition model, providing details about the evolution (displacement) of the

devices:

P
(
Tdt = j|Tdt–1 = i, Iaux) ≡ aij. (3)

• An emission model, providing details about the generation of network variables:

P
(
Edt = Ek|Tdt = i, Iaux) ≡ bi(Ek) (4)

Figure 3 Graphical representation of a hidden Markov model. (Left) Observed variables are network variables
Edt and unobserved variables are tile locations Tdt . (Right) Transition probabilities in the reference grid for
adjacent cells
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For the transition model we make a fairly generic proposal not imposing a displacement
pattern on the devices. We propose to choose the time regime in such a way as to have a
one-tile-long displacement at most at each time instant t. Transition probabilities θ1 and
θ2 between tiles are estimated maximising the likelihood for each device d (see right panel
of Fig. 3).

To detach the technological and statistical layers we propose to substantiate the emis-
sion model (4) as a radio wave propagation model independent of the transition model
so that bi(Ek) is computed in terms of models (1) or (2) taking the centre of the tile as
the reference point for the distance r. Notice that the emission model involves the net-
work configuration parameters θnet (emission power, path loss exponent, Smid, Ssteep in
our simple case). Notice diverse relevant points. Firstly, should we have richer raw telco
data to consider more complex radio propagation models, we could immediately improve
the accuracy with a more sophisticated computation of the emission probabilities. In case
of lacking data for these models, we could resort to geometrical considerations as with
the Voronoi tessellation. The ideal recommendation is to work together with MNOs to
identify the more feasible data set for the computation of these likelihoods. Ultimately,
this will also depend on the chosen final accuracy in our estimates. Secondly, a cautious
reader may rapidly suggest that the emission probabilities can also be modelled in terms of
unknown parameters to be estimated later on. In theory, this is always possible as in many
other applications of HMMs. However, in our case we suggest to deal with the emission
probabilities independently as a separate (sub)module in the whole process allowing us to
detach the more technological stages directly dependent on raw telco data from the more
statistical upper layers involving population count estimation. In this way, the joint work
by MNOs and NSOs around the sensitive telco data is focused on this step paving the way
for the functional modularity of the statistical process thus providing a concrete proposal
for the implementation of the ESS RMF. Thirdly, the computational cost of the emission
probabilities is fixed in time. If NA denotes the number of radio cells in the geographical
territory under analysis and the grid size is NT , at most we need to compute NT × NA

emission probabilities to conform the matrix B = [bik], i = 1, . . . , NT , k = 1, . . . , NA. This is
done once and for all t (assuming time homogeneity). Fourthly, notice that having the nu-
merical values of the emission probabilities will allow us to simplify the computation of the
likelihood for the HMMs reducing its parameter dependency only to the transition model.
Finally, if missing values are to be used according to the time padding procedure described
in the supplementary material (which guarantees the maximum one-tile distance restric-
tion), for numerical convenience later on the corresponding emission probabilities can be
conveniently set to 1, i.e. bi0 = P(Etn = ·|Ttn = i, Iaux) = 1. This will greatly facilitate the ex-
pression of the HMM likelihood and its further optimization. Remind that this probability
is not real and completely meaningless.

Lastly, the initial state (prior) distribution πi ≡ P(Td0 = i|Iaux) is provided by the statis-
tician. Currently, we consider either a noninformative uniform distribution (πi ∝ 1) or a
so-called network distribution (based on the network configuration, e.g. πi ∝ RSSi).

Once a model is fitted for each device, we can use the forward-backward algorithm [59]
to compute the (posterior) location probabilities γdti ≡ P(Tdt = i|Ed1:T , Iaux), i.e. the loca-
tion probability at each tile i and each time instant t conditional on all the network and
event information available for device d (see Fig. 4 for the location probabilities at time
t = 0 and animated gifs postLocLayer*.gif in [50]). Also, we compute the (poste-
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Figure 4 Posterior location probabilities. Posterior location probabilities at time t = 0 for a given device under
emission models RSS with uniform prior (top left), RSS with network prior (top right), SDM with uniform prior
(bottom left), and SDM with network prior (bottom right)

rior) joint location probabilities γdt,ij ≡ P(Tdt = i, Tdt–1 = j|Ed1:T , Iaux). These probabilities
γdti and γdt,ij constitute the output data for this module. Mathematical details of the whole
model construction are included in the supplementary material.

3.2 Model evaluation
To evaluate the performance of these geolocation models we shall mimic the usual ap-
proach in Official Statistics to focus on the mean squared error as the most relevant figure
of merit for accuracy, concentrating on their bias and variance components. In this line of
thought, we shall introduce the following definitions:

1. The center of location probability cpdt of device d at time t defined as

cpdt =
NT∑

i=1

γdti

(
x(c)

i

y(c)
i

)

, (5)

where x(c)
i , y(c)

i stand for the x and y coordinates of the centroid of tile i. This can be
understood as an estimation of the position of the device according to the posterior
mean. Notice that this quantity plays a similar role to a first-order spatial moment
for the distribution γdti. Then, we can view the Euclidean distance between the true
position r∗

dt and the center of location probability cpdt of a device d at time t as a
bias-equivalent indicator of the geolocation estimation procedure:

bdt =
∥
∥cpdt – r∗

dt
∥
∥. (6)
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2. The radius of location probability dispersion rddt of device d at time t with respect
to position r∗

dt = (x∗
dty

∗
dt)T defined as

rddt
(
r∗

dt
)

=

√√
√√

NT∑

i=1

γdti
[(

x(c)
i – x∗

dt
)2 +

(
y(c)

i – y∗
dt

)2], (7)

where (x∗
dt , y∗

dt) stands for the reference x and y coordinates of the device d at time t.
This can be understood as a root mean squared dispersion with respect to a
reference position. Notice that this quantity plays a similar role to a standard spatial
deviation for the distribution γdti when the reference position is taken as the center
of location probability:

rmsddt = rddt(cpdt). (8)

Notice that we can also generalize these definitions by using alternative distance func-
tions instead of the Euclidean distance such as the Manhattan distance or similar. Obvi-
ously, these figures of merit are not exhaustive and we can propose more (e.g. to measure
the kurtosis, concentration, etc.). Having the set of probability distributions γdti and the
true position values many choices arise.

In Figs. 5 and 6 we represent the distributions of bdt and rmsddt for the population of
devices in our simulated scenario. The advantage of using a simulator providing a ground
truth is that we may draw relevant conclusions. Firstly, the RSS emission model seems to
provide more accurate estimates in terms of the distance to the true position of the de-
vices, but the SDM emission model with the uniform prior provides less disperse spatial
distributions. Since the connection type (see Table 1 in the supplementary material) is
strength, i.e. the BTS-device connection mechanism establishes according to the RSS,
the RSS emission model is trivially closer to this true connection mechanism, providing
best geolocation estimates. Furthermore, according to Fig. 1, the SDM emission model is
more localized (this is the effect of the logistic transformation), thus the root mean squared
dispersion is lower. Secondly, the radio wave propagation model plays a central role in the
emission model and thus in the geolocation procedure. This underlies the importance of
the joint MNO-NSO collaboration in the design stage. The RSS emission model is too sim-
plistic for real life conditions (e.g. due to the load balancing of the network) and the SDM
emission model needs an accurate estimation of the parameters Smid and Ssteep. Thirdly,
the use of a dynamical approach with an HMM allows us to compute location probabilities
even for those time instants in which no network event is recorded. Lastly, there exist time
instants where a radio cell oscillation phenomenon is detected because the mobile device
moves in the frontier of two neighboring coverage areas. In the HMM approach, contrary
to intuition, this leads to an accurate geolocation estimate since we are having more infor-
mation (from two radio cells) than otherwise. Thus, with the dynamical approach we gain
in accuracy.

4 Device duplicity
The target populations of statistical analyses of network mobile data are populations of
human individuals (present population, domestic tourists, commuters, etc.). It is well-
known that a non-negligible fraction of mobile subscribers carries more than one device.
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Figure 5 Distance between centers of location probabilities and true positions. (Top) Distribution of distance
bdt for all times t and all devices d for models RSS and SDM with uniform and network priors. (Middle) Time
evolution of distributions of distance bdt for all devices d for the same models. (Bottom) Distribution per
device of distance bdt for all times t for the same models (only 50 randomly selected are shown)
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Figure 6 Root mean squared dispersions of location probabilities. (Top) Distribution of root mean squared
dispersions rmsddt for models RSS and SDM with uniform and network priors. (Middle) Time evolution of
distributions of distance rmsddt for the same models. (Bottom) Distribution per device of root mean squared
dispersion rmsddt for all times t for the same models (only 50 randomly selected are shown)



Salgado et al. EPJ Data Science           (2021) 10:20 Page 14 of 46

We shall call this device multiplicity. The goal of this module will be to compute a device-
multiplicity probability p(n)

d for each mobile device d, i.e. the probability that a device d
is carried by an individual carrying n devices. The input data for this module will be the
same input data as for the geolocation module, since we will make use of the same HMM.

4.1 Computation of multiplicity probabilities
For illustrative purposes we shall make the working assumption that an individual carries
at most two devices. The generalization to more devices is just a matter of computational
complexity of this same approach. We shall follow a Bayesian hypothesis testing approach.
For each device d we shall consider the disjoint set of hypotheses {Hdd′ }d′=1,...,D meaning
that the devices d and d′ are carried by the same individual. When d = d′ this reduces to
mobile device d being the only mobile device carried by its corresponding individual. We
focus on computing

p(1)
d = P

(
Hdd|Ed1:T , Iaux), (9)

where we are using the same notation as in Sect. 3. Since the entire event set �d for device
d can be decomposed as �d =

⋃D
d′=1 Hdd′ , we can make use of Bayes’ theorem to write:

p(1)
d =

P(Ed1:T |Hdd, Iaux) · P(Hdd|Iaux)
P(Ed1:T |Hdd, Iaux) · P(Hdd|Iaux) +

∑
d′ �=d P(Ed1:T , Ed′1:T |Hdd′ , Iaux) · P(Hdd′ |Iaux)

=
1

1 +
∑

d′ �=d αdd′ · exp(�dd′ – �d)
, (10)

where we have defined the prior probability ratios αdd′ = P(Hdd′ |Iaux)
P(Hdd |Iaux) and the integrated log-

likelihoods �d = P(Ed1:T |Hdd, Iaux) for a single device d and �dd′ = P(Ed1:T , Ed′1:T |Hdd′ , Iaux)
for two devices d and d′. These quantities are computed as follows. Firstly, the integrated
log-likelihood �d for a single device d corresponds to the HMM model introduced above.
Secondly, the integrated log-likelihood �dd′ for two devices d and d′ is computed according
to the HMM duplicity model represented by the graphical model in Fig. 7. Computation is
conducted in a similar way as before with the noticeable difference in the emission model:
emission probabilities are computed as the product of the original single-device emission
probabilities for d and d′ (see supplementary material for details).

For the specification of priors we reason as follows. The key ingredient is the auxiliary
information Iaux. For example, if some auxiliary information at the device level is avail-
able (for instance from the Customer Relationship Management database) showing that

Figure 7 HMM duplicity model. Graphical model for an individual carrying two devices, thus generating pair
of events Ed1:T and Ed′1:T
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devices d and any other d′ reside in far away locations, then naturally P(Hdd′ |Iaux) ≈ 0 so
that p(1)

d ≈ 1, as expected.
If no individual prior information is used, we can reason as follows. Firstly, let λd denote

the prior odds ratio λd = P(Hdd |Iaux)
1–P(Hdd |Iaux) , which expresses how much more probable is that

an individual carries a priori only one device d than another device together with d. This
quantity may be fixed using auxiliary information from an external source (e.g. the CRM
database or an external survey). Secondly, since no auxiliary information is used, a priori
any other device d′ can be the second device, so that P(Hdd′ |Iaux) is constant for any other
device d′ �= d. Since �d =

⋃ND
d′=1 Hdd′ , then P(Hdd|Iaux) + (ND – 1) · P(Hdd′ |Iaux) = 1 for any

other device d′. We arrive at

P
(
Hdd|Iaux) =

λd

1 + λd
,

P
(
Hdd′ |Iaux) =

1
(1 + λd) · (ND – 1)

,

αdd′ =
1

λd · (Nd – 1)
,

p(1)
d =

1
1 + exp(–�d)

λd ·(Nd–1)
∑

d′ �=d exp(�dd′ )
. (11)

A natural choice for λd when there are more devices ND than individuals Nnet in the
network is given by

λd =
1 – 2×(ND–Nnet,ext)

(ND
2 )

2×(ND–Nnet,ext)
(ND

2 )

,

where Nnet,ext is an estimate of Nnet from an external source (CRM database, etc.). If an
external estimate r̂2 of the fraction of individuals r2 in the network carrying two devices
is available, then we can choose

λd =
1 – r̂2

r̂2
.

If we can provide local estimates (because devices are assigned to delimited regions), then
we do not need to consider the whole set of mobile devices and we can set

λd =
N loc

D
ND

λloc
d ,

where the same reasoning as above applies to λloc
d at a local scale.

4.2 Results on simulated data
We have applied this approach to our simulated data set with N = 500 individuals in
the target population, Nnet = 186 individuals detected by the network (subscribers), and
ND = 218 mobile devices. Obviously, there exist individuals carrying two devices. We ap-
ply the formalism above to provide duplicity probabilities p(2)

d = 1 – p(1)
d for each device d.

We set the value λ
(1)
d = 0.85

0.15 assuming faithful external information (the result is robust
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Figure 8 ROC curves for the duplicity probabilities p(2)d . ROC curves for the duplicity probabilities

p(2)d = 1 – p(1)d computed according to eq. (9) for HMMs with two priors and two emission models

Figure 9 Cases for the duplicity probabilities p(2)d . True/false positive/negative cases for the duplicity

probabilities p(2)d = 1 – p(1)d computed according to eq. (9) for four different HMMs with two priors and two
emission models

enough around this value – see supplementary material for details). The duplicity proba-
bilities are computed in four scenarios combining two different emission models (RSS and
SDM) with two different prior location probabilities (uniform and network). We compare
the results with the (synthetic) ground truth to assess the performance. In Fig. 8 we rep-
resent the ROC curves for the duplicity probabilities for the four models, together with
their corresponding area under the curve (AUC). In Fig. 9 we represent the different cases
(true/false positive/negative) in each HMM model.

Taking into account that the connection mechanism in this simulation is based on the
RSS and that the initial true positions are chosen at random by the simulator (not based on
the network configuration), we conclude that the larger the mismatch between the con-
nection mechanism (the reality) and the emission model (the chosen model), the poorer
the performance of the classification of devices, as one may expect. The SDM choice for
the emission model departs from the actual handover mechanism and we observe in Fig. 9
that duplicity probabilities show lower quality. This is also observed with the priors in the
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same figure: the uniform choice is more appropriate to this simulated scenario than the
network choice. This shows the importance of the collaboration between MNOs and NSIs
in incorporating the network configuration into the emission model and the choice of lo-
cation priors using as much auxiliary information as possible (home and other anchor
points estimation).

For these results we also observe that false negative cases are generated by those pairs
of devices having exactly the same pairwise degenerate sequence of network events in
which only one BTS connects to each pair of devices. The algorithm fails to detect them
as devices carried by the same individual. This is explained by the HMM itself, since the
transition matrix is the diagonal matrix and no transition is indeed allowed. In this case
the duplicity is much less probable than the single device per individual. A complementary
test is needed when a connection to only one BTS is detected, which in turn will be less
probable as the time period of analysis is longer.

For the case of false positive cases, we observe that these arise from quasi-identical se-
quences of network events, which is an expected behaviour. With longer time periods of
observation, these cases will presumably come to be negligible.

5 Statistical filtering
This module is devoted to the identification of the target population in the mobile network
data set and derived data sets (posterior location probabilities, for example). In practical
terms this amounts to identifying domestic tourists, inbound tourists, commuters, etc. in
our data sets. We refer to this as statistical filtering, where we use the term statistical to
distinguish this filtering exercise from the preprocessing steps in which, e.g., machine-to-
machine data are previously filtered out. Notice that the latter rests mostly on technolog-
ical issues and definitions, whereas the former is a clearly statistical analytical exercise.

As in the whole approach proposed in this work, we shall be focusing on geolocation
data, i.e., on movement data discarding interaction information (e.g. calls among sub-
scribers) or Internet traffic (e.g. usage of mobile apps). In a fully-fledged production en-
vironment in real conditions, the ideal scenario would be to use as much information as
possible. Thus, we shall concentrate on analyses upon the geolocation data, i.e. upon the
network event data and location probabilities derived thereof.

Regretfully, given the problems in accessing real mobile network data, and the current
status of development of the network event data simulator, the contents of this module are
not so far developed as the preceding ones. The current displacement patterns for individ-
uals (hence also for mobile devices) in the data simulator are restricted to random walks,
random walks with drift, both with intermixing periods of stops (stays, i.e. no displace-
ment at all) for the whole population. In this sense, we lack synthetic data to test concrete
proposals, not as with the geolocation of data. We would need more complex and real-
istic individual displacement patterns and elements (Lévy flights, home/work locations,
usual environments, etc.). For this reason, we will limit ourselves to provide more generic
guidelines to be implemented in the future both on real data and on synthetic data after a
further development of the network event data simulator.

5.1 General approach
Our proposed approach for the statistical filtering of target populations is strongly based
on the geolocation outputs obtained from the preceding process modules. Different as-
pects are to be taken into account. As before, the target mobile network data is assumed to
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be basically some form of signalling data so that time frequency and spatial resolution are
high enough as to allow us to analyse movement data in a meaningful way. In this sense,
for example, CDR data only provides up to a few records per user in an arbitrary day which
makes virtually impossible any rigorous data-based reasoning in this line. Next, the use of
hidden Markov models, as described in Sect. 3, implicitly incorporates a time interpola-
tion which will be very valuable for this statistical filtering exercise. In this way we avoid the
issues arising from noncontinuous traces approaches (see e.g. [60] for home location al-
gorithms). However, a wider analysis is needed to find the optimal time scope. The spatial
resolution issue is dealt with by using the reference grid introduced in Sect. 3. This re-
leases the analyst from spatial techniques such as Voronoi tessellation, which introduces
too much noise for our purposes. Nonetheless, the uncertainty measures computed from
the underlying probabilistic approach for geolocation must be taken into account to deal
with precision issues in different regions (e.g. high-density populated vs. low-density pop-
ulated). The algorithms to be developed to statistically filter the target population will be
mainly based on quantitative measures of movement data. In particular, from the HMMs
fitted to the data (especially the location probabilities) we shall derive a probability-based
trajectory per device which will be the basis for these algorithms.

Once a trajectory is assigned to each device, different indicators and measures of move-
ment shall be computed upon which we shall apply algorithms to determine usual envi-
ronment, home/work location, second home location, leisure activity times and locations,
etc. A problematic aspect with this new data source is that traditional statistical definitions
will need some revision or refinement. For example, in the home detection problem, which
is an intermediate problem in the identification of target populations, census data (or sim-
ilar official data) are commonly used to calibrate or validate estimates. The notion of home
obtained from traditional sources is mainly an administrative concept arising from the use
of administrative registers. In this way, e.g., a University student may be registered in her
family home whereas she spends nine months in a college. What definition of home should
then be used? This has introduced subtleties like the distinction between residential and
present population in official statistics. In this line of thought, an important input for target
population identification algorithms is the establishment of a clear-cut definition for each
statistical concept involved, so that the algorithms are designed to cover these definitions.
A critical issue in the development of this kind of algorithms is the validation procedure.
On the one hand, the use of the simulator, once more complex and realistic displacement
patterns have been introduced, will offer us in the future a validation against the simulated
ground truth. On the other hand, with real data two main problems need to be tackled,
namely (i) the use of pseudoanonymised real data will prevent us to link mobile device
records with official registers, so only indirect aggregated validation procedures can be
envisaged (thus inviting the ecological fallacy to permeate the whole analysis), and (ii) the
representativity of the tested sample of devices to validate the algorithm for the whole
population needs to be rigorously assessed.

In the supplementary material we provide a generic view of quantitative measures of
movement data, together with some concrete illustrative examples, upon the probability-
based trajectories assigned to the geolocated data (location probabilities) obtained from
the application of an HMM. For our illustrative example focused on present population
counts and origin-destination matrices estimation, we shall skip this step, since the whole
population will be our target population.
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6 Aggregation of individuals detected by a network
This module focuses on providing a probability distribution for the number of individu-
als detected by a mobile telecommunication network. This module will take the posterior
location probabilities and the multiplicity probabilities as input data. After introducing
some general remarks, we shall provide a method to build the target probability distribu-
tion, which will then be adapted to provide also the probability distribution of individuals
displacing between territorial units at each time instant.

6.1 General remarks
Firstly, the aggregate information is on the number of detected individuals, not on the
number of devices. This is a very important difference with virtually any other approach
found in the literature (see e.g. [6, 10]). We take advantage of the preceding modules work-
ing at the device level to study in particular the device multiplicity per individual. This has
strong implications regarding agreements between NSOs and MNOs to access and use
their mobile network data for statistical purposes.

As we can easily see, working with the number of devices instead of the number of indi-
viduals poses severe identifiability problems requiring more auxiliary information. Let us
consider an extremely simplified illustrative example. Let us consider a population U1 of
5 individuals with 2 devices each one and a population U2 of 10 individuals with 1 device
each one. Suppose that in order to make our inference statement about the number N of
individuals in the population we build a statistical model relating N and the number of de-
vices N (dev), that is, basically we have a probability distribution PN (N (dev)) for the number
N (dev) of devices dependent on the number of individuals, from which we shall infer N .
In this situation we have PN (1) = PN (2) even when N (1) �= N (2). There is no statistical model
whatsoever capable of distinguishing between U1 and U2 (see Definition 5.2 in [61] for
unidentifiable parameters in a probability distribution). To cope with the duplicity of de-
vices using an aggregated number of devices we would need further auxiliary information,
which furthermore must be provided at the right territorial and time scale.

Secondly, we shall use again the language of probability in order to carry forward the
uncertainty already present in the preceding stages all along the end-to-end process. In
another words, if the geolocation of network events is conducted with certain degree of
uncertainty (due to the nature itself of the process - see Sect. 3) and if the duplicity of a
given device (carried by an individual with another device) is also probabilistic in nature
(see Sect. 4), then a priori it is impossible to provide a certain number of individuals2

in a given territorial unit. For this reason, we shall focus on the probability distribution
of the number of individuals detected by the network and shall avoid producing a point
estimation. Notice that having a probability distribution amounts to having all statistical
information about a random phenomenon and you can choose a point estimation (e.g. the
mean, the mode or the median of the distribution) together with an uncertainty measure
(coefficient of variation, credible intervals, etc.).

Thirdly, the problem is essentially multivariate and we must provide information for a
set of territorial units. Thus, the probability distribution must be a multivariate distribu-
tion. Notice that this is not equivalent to providing a collection of marginal distributions

2Notice that this same argument is valid for the number of devices.
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over each territorial unit. Obviously, there will be a correlation structure, the most ele-
mentary expression of which is that individuals detected in a given territorial unit cannot
be detected in another region, so that the final distribution needs to incorporate this re-
striction in its construction.

Finally, the process of construction of the final multivariate distribution for the number
of detected individuals must make as few modelling assumptions as possible, if any. In case
an assumption is made (and this should be accomplished in any use of statistical models for
the production of official statistics, in our view), it should be made as explicit as possible
and openly communicated and justified. In this line of thought, we shall strongly base the
aggregation procedure on the results of preceding modules avoiding any extra hypothesis.
Basically, our starting assumptions for the geolocation and the duplicity detection will be
carried forward as far as possible without introducing new modelling assumptions of any
kind.

6.2 Probability distribution of the number of detected individuals
To implement the principles outlined above, we shall slightly change the notation. Firstly
we define the vectors e(1)

i = ei and e(2)
i = 1

2 ei, where ei is the ith canonical unit vector in R
NT

(with NT the number of tiles in the reference grid). These definitions are set up under the
working assumption of individuals carrying at most 2 devices in agreement with the pro-
posal devised in Sect. 4. Should we consider a more general situation, the generalization
is obvious, although more computationally demanding.

Next, we define the random variable Tdt ∈ {e(1)
i , e(2)

i }i=1,...,NT with probability mass func-
tion P(Tdt|E1:D, Iaux) given by

P
(
Tdt = e(1)

i |E1:D, Iaux) = γdti · p(1)
d , (12a)

P
(
Tdt = e(2)

i |E1:D, Iaux) = γdti · p(2)
d , (12b)

where p(1)
d and p(2)

d (p(1)
d + p(2)

d = 1) are the device duplicity probabilities introduced in
Sect. 4. Notice that this is a categorical or multinoulli random variable. Finally, we define
the multivariate random variable Nnet

t providing the number of individuals [Nnet
t ]i = Nnet

ti

detected by the network at each tile i = 1, . . . , NT at time instant t:

Nnet
t =

D∑

d=1

Tdt . (13)

The sum spans over the number of devices filtered as members of the target population
according to Sect. 5. If we are analysing, say, domestic tourism, D will amount to the num-
ber of devices in the network classified with a domestic tourism pattern according to the
algorithms designed and applied in the preceding module. For illustrative examples, since
we have not developed the statistical filtering module yet, we shall concentrate on present
population.

The random variable Nnet
t is, by construction, a Poisson multinomial random variable.

The properties and software implementation of this distribution are not trivial (see e.g.
[62]) and we shall use Monte Carlo simulation methods by convolution to generate ran-
dom variates according to this distribution.
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The reasoning behind this proposal can be easily explained with a simplified illustrative
example. Let us consider an extremely simple scenario with 5 devices and 5 individuals
(thus, none of them carrying two devices), and 9 tiles (a 3 × 3 reference grid). Let us con-
sider that the location probabilities γdti = γti are the same for all devices d at each time in-
stant and each tile. In these conditions p(1)

d = 1 and p(2)
d = 0 for all d. Let us focus on the uni-

variate (marginal) problem of finding the distribution of the number of devices/individuals
in a given tile i. If each device d has probability γti of detection at tile i, then the number
of devices/individuals at tile i will be given by a binomial variable Binomial(5,γti). If the
probabilities were not equal, then the number of devices/individuals would be given by a
Poisson binomial random variable Poisson – Binomial(5;γ1ti,γ2ti,γ3ti,γ4ti,γ5ti), which nat-
urally generalizes the binomial distribution. If we focus on the whole multidimensional
problem, then instead of having binomial and Poisson-binomial distributions, we must
deal with multinomial and Poisson-multinomial variables. Finally, if p(2)

d �= 0 for all d, we
must avoid double-counting, hence the factor 1

2 in the definition of e(2)
i .

Notice that the only assumption made so far (apart from the trivial question of the max-
imum number of 2 devices carried by an individual) is the independence for two devices
to be detected at any pair of tiles i and j. This independence assumption allows to claim
that the number of detected individuals distributes as a Poisson-multinomial variable, un-
derstood as a sum of independent multinoulli variables with different parameters. There
is no extra assumption in this derivation. The validation of this assumption is subtle, since
ultimately it will depend on the correlation between the displacement patterns of individ-
uals in the population. If the tile size is chosen small enough, we claim that the assump-
tion holds fairly well and it is not a strong condition imposed on our derivations. On the
other hand, if the tiles are too large (think of an extreme case about a reference grid being
composed of whole provinces as tiles), we should expect correlations in the detection of
individuals: those living in the same province will have very large correlation and those
living in different provinces will show nearly null correlation. Thus, the size of the tiles
imposes some limitation to the validity of the independence assumption. Even the trans-
port network in a territory will certainly influence these correlations. Currently, we cannot
analyse quantitatively the relationship between the size of the tiles and the independence
assumption with the network data simulator because we need both realistic simulated in-
dividual displacement patterns and simulated correlated trajectories (probably connected
to the sharing of usual environments, home/work locations, etc.).

The issue about the size of the tile also makes us consider the computation of the distri-
bution of the number of detected individuals at a coarser territorial degree. Let us consider
a coarser territorial breakdown composed of combination of tiles called, say, regions. We
shall denote them as T̄r =

⋃
i∈Ir Ti, where Ir denotes the set of tile indices composing re-

gion r. If the independence assumption still holds (because the size of the region is still
small enough), then we can reproduce the whole derivation above just by defining the
location probability γ̄dtr at region r as

γ̄dtr =
∑

i∈Ir

γdti. (14)

The subsequent elaboration to build the final Poisson-multinomial-distributed number
of detected individuals is completely similar. Notice again that there exists a limitation in
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the sum of device-level distributions put by the size of the underlying region breakdown.
The random vector N̄net

t of individuals per region in terms of the deduplicated location
T̄dt per region would be also expressed as a sum:

N̄net
t =

D∑

d=1

T̄dt . (15)

Notice that this decomposition allows us to write straightforwardly the mean vector and
the covariance matrix for N̄net

t . Define the deduplicated location probabilities per region

as γ̄
dedup
dtr ≡ (1 – p(2)

d
2 ) · γ̄dtr for all regions r = 1, . . . , R. Then

E
[
N̄net

t
]

=
D∑

d=1

R∑

r=1

γ̄
dedup
dtr er , (16)

V
[
N̄net

t
]

=
D∑

d=1

R∑

r=1

γ̄
dedup
dtr · (1 – γ̄

dedup
dtr

)
Err . (17)

6.3 Probability distribution for the number of detected individuals moving
between territorial units

The construction of the probability distribution for the number of individuals N̄net
t de-

tected by the network can be easily generalized to the number of individuals N̄net
t,·· detected

by the network moving between territorial units. We begin by defining matrices E(1)
rs = Ers

and E(2)
rs = 1

2 Ers, where Ers are the Weyl matrices of dimension R × R. Next, we define the
matrix random variable Edt ∈ {E(1)

rs , E(2)
rs }r,s=1...,R with probability mass function given by

P
(
Edt = E(1)

rs
)

= γ̄dt,sr · p(1)
d , (18a)

P
(
Edt = E(2)

rs
)

= γ̄dt,sr · p(2)
d , (18b)

where ¯γdt,sr stands for the joint location probabilities computed in the geolocation module
aggregated to the regions r, s = 1, . . . , R. Notice that, although matrix-valued, this is still a
categorical or multinoulli random variable. Then, we can define the origin-destination
matrix between regions of individuals detected by the network by

N̄net
t =

D∑

d=1

Edt , (19)

which, as before, distributes according to a Poisson-multinomial distribution. Again, we
shall use Monte Carlo techniques to deal with it. If we define the deduplicated joint lo-

cation probabilities γ̄
dedup
dt,sr = (1 – p(2)

d
2 ) · γ̄dt,sr , then the mean origin-destination matrix is

given by

E
[
N̄net

t
]

=
D∑

d=1

R∑

r,s=1

γ̄
dedup
dt,sr · Ers. (20)
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Figure 10 Regions as aggregated territorial units of
analysis. Regions are obtained by aggregation of
tiles of the reference grid

6.4 An example with simulated data
Let us illustrate this approach with an example generated with the mobile network event
simulator. We consider again the toy scenario with a population of 186 subscribers with
218 mobile devices in a territory with a bounding box of 10 km × 10 km divided into 10
regions as in Fig. 10. The simulator provides the true position of each individual at each
time instant as well as the correspondence between individuals and devices so that we can
make a comparison with the (synthetic) ground truth.

The posterior distributions of the number of individuals N̄net
t per region detected by

the network is computed with Monte Carlo techniques and the results are represented in
Fig. 11. Once we have posterior distributions we can also compute credible intervals for
each region and each time instant (see Fig. 12). Although we can observe a good degree
of accuracy, there exists a non-negligible number of regions and time instants in which
the intervals do not cover the true values. A deeper analysis to unravel the roles of the
geolocation and the duplicity probability computation is needed and is beyond the scope
of this paper (false negative cases for duplicity has not been corrected, the HMM state
definition does not include velocity, and regions and coverage areas have no correlation at
all, thus all being very simplistic – see Sect. 9).

We can also construct origin-destination matrices for the number of individuals de-
tected by the network and compare with true values provided by the simulator. Indeed,
according to the proposed methodology we can even compute their credible intervals (see
Fig. 13).

These probabilities, together with the device duplicity probabilities and auxiliary infor-
mation from official data and the telco market, will be the input data for the last module
on inference.

7 Inference
The final module focuses on the computation of the probability distribution for the num-
ber of individuals in the target population conditioned on the number of individuals de-
tected by the network and some auxiliary information. Our first observation is that this
auxiliary information is absolutely necessary to provide a meaningful inference on the
target population due to similar identifiability reasons as those mentioned in Sect. 6.1
to introduce the deduplication module. This auxiliary information will be basically telco
market information in the form of penetration rates (ratio of number of devices to number
of individuals in the target population) and register-based population data. This informa-
tion will provide the necessary link between the number of individuals at the network level
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Figure 11 Posterior distributions for the number of individuals N̄net
t per region. Posterior distributions for the

number of individuals N̄net
t per region detected by the network compared to true values (in red) computed

according to eq. (15) using the RSS geolocation model with uniform prior. Only a sample of time instants is
shown for visibility’s sake

and at the target population level. This combination of data sources is indeed desirable not
only to produce better and more accurate estimates but also to provide more coherent in-
formation among diverse data sources. However, notice that this data integration must
avoid imposing findings from one data source on the other data source thus precluding
new insights about the target population.

In more concrete terms, register-based population figures offer information about soci-
ety from a concrete demographic perspective (residential population) with a given degree
of spatial and time breakdown. Mobile network data, however, provides the opportunity
to reach unprecedented spatial and time scales as well as a complementary view on the
population (present population). The integration of sources, in our view, must be careful
with these differences bringing similarities and contrasts at the same time into the statis-
tical analysis. In this line of thought, we propose to use hierarchical models (i) to produce
probability distributions, (ii) to integrate data sources, and (iii) to account for the uncer-
tainty and the differences of concepts and scales.

We propose a two-staged modelling exercise. Firstly, we assume that there exists an ini-
tial time instant t0 in which both the register-based target population and the actual pop-
ulation can be assimilated in terms of their physical location. We can assume, e.g., that
at 6:00am all devices stay physically at the residential homes declared in the population
register. This assumption will trigger the first stage in which we compute a probability dis-
tribution for the number of individuals Nt0 of the target population in all regions in terms
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Figure 12 Credible intervals for the number of individuals N̄net
t per region. Credible intervals (prob = 95%) for

the number of individuals N̄net
t per region detected by the network compared to true values (in red)

computed according to the distribution in eq. (15) using the RSS geolocation model with uniform prior

of the number of individuals Nnet
0 detected by the network and the auxiliary information.

Secondly, we assume that individuals displace over the geographical territory indepen-
dently of the MNO, i.e. subscribers of MNO 1 will show a displacement pattern similar
to those of MNO 2. This assumption will trigger the second stage in which we provide a
probability distribution for the number of individuals Nt for later times t > t0.

Regarding the origin-destination matrix, we can use the same assumptions to infer the
number of individuals moving from one region to another at time instant t, also providing
credible intervals as an accuracy indicator.

7.1 Present population at the initial time t0

For ease of notation we shall drop the time index in this section. The auxiliary information
is provided by the penetration rates Pnet

r of the MNO and the register-based population
N reg

r at each region r. We shall combine Nnet
r , Pr , and N reg

r to produce the probability dis-
tribution for N = (N1, . . . , NR)T . We follow the approach used in the species abundance
problem in Ecology [63]. This approach clearly distinguishes between the state and the
observation process. The state process is the underlying dynamical process of the popula-
tion and the observation process is the procedure by which we get information about the
location and timestamp of each individual in the target population. The different avail-
able auxiliary information will be integrated using different levels in the hierarchy of the
statistical model.
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Figure 13 Credible intervals for the ODmatrix of the number of individuals Nnet
t per region. Credible intervals

(prob = 95%) for the OD matrix of number of individuals N̄net
t per region detected by the network compared

to true values (in red) computed according to the distribution in eq. (19) using the RSS geolocation model
with uniform prior

The first level makes use of the detection probability pr of individuals detected by the
telecommunication network in each region r. We model

Nnet
r 	 Binomial(Nr , pr). (21)

Model (21) makes the only assumption that the probability of detection pr for all in-
dividuals in region r is the same. This probability of detection amounts basically to the
probability of an individual of being a subscriber of the given mobile telecommunication
network. This assumption will be further discussed below. As a first approximation, we
may think of pr as a probability related to the penetration rate Pr of the MNO in region r.

As an overview of the hierarchy of models, we shall firstly consider only the observation
process, i.e. no population dynamics (state process) is modelled. In the hierarchy, we shall
be introducing deeper degrees of uncertainty on the detection probabilities pr . Finally, we
shall introduce also the state process modelling Nr .

At the first level, we shall consider the detection probability pr as an external param-
eter taken e.g. from the national telecommunication regulator (not really the case). The
posterior probability distribution for Nr in terms of Nnet

r and pr will be given by

P
(
Nr|Nnet

r
)

=

⎧
⎨

⎩
0 if Nr < Nnet

r ,

negbin(Nr – Nnet
r ; 1 – pr , Nnet

r + 1) if Nr ≥ Nnet
r ,
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where negbin(k; p, r) ≡ (k+r–1
k

)
pk(1 – p)r denotes the probability mass function of a nega-

tive binomial random variable of values k ≥ 0 with parameters p and r. Once we have a
distribution, we can provide a point estimator, a posterior variance, a posterior coefficient
of variation, a credible interval, and as many indicators as possible computed from the dis-
tribution. For example, if we use the MAP criterion (the posterior mode) or the posterior
mean we can provide as point estimators

N̂MAP
r = Nnet

r +
⌊

(1 – pr) · Nnet
r

pr

⌋
, (22a)

N̂mean
r = Nnet

r +
(1 – pr) · (Nnet

r + 1)
pr

. (22b)

Let us now introduce the second level focused on the uncertainty in the detection prob-
ability pr . A priori, we can think of a detection probability pkr per individual k in the target
population and try to device some model to estimate pkr in terms of auxiliary information
(e.g. sociodemographic variables, income, etc.). We would need subscription information
related to these variables for the whole target population, which is unattainable. Instead,
we may consider that the detection probability pkr shows a common part for all individuals
in region r plus some additional unknown terms, i.e. something like pkr = pr + noise. At a
first stage, we propose to implement this idea by modeling pr 	 Beta(αr ,βr) and choosing
the hyperparameters αr and βr according to the penetration rates Pnet

r and the register-
based population figures N reg

r .
Notice that the penetration rate is also subjected to the problem of device duplicities

(individuals having two or more devices). To deduplicate, we make use of the duplicity
probabilities p(i)

d computed in Sect. 4 under the same assumptions (at most two devices
per individual) and of the posterior location probabilities γ̄dr in region r for each device d.
Notice that we have also dropped out the time subscript for ease of notation, since we are
currently focusing on the initial time t0. We define

�(1)
r =

∑D
d=1 γ̄dr · p(1)

d∑D
d=1 γ̄dr

, (23a)

�(2)
r =

∑D
d=1 γ̄dr · p(2)

d∑D
d=1 γ̄dr

. (23b)

The deduplicated penetration rates are defined as

P̃net
r =

(
�(1)

r +
�

(2)
r

2

)
· Pnet

r . (23c)

To get a feeling on this definition, let us consider a very simple situation. Let us consider
N (1)

r = 10 individuals in region r with 1 device each one, N (2)
r = 3 individuals in region r

with 2 devices each one, and N (0)
r = 2 individuals in region r with no device. Let us assume

that we can measure the penetration rate with certainty, so that Prm
r = 16

15 . The devices are
assumed to be neatly detected by the HMM (i.e. γ̃dr = 1 – O(ε)) and duplicities are also
inferred correctly (p(2)

d = O(ε) for d(1) and p(2)
d = 1 – O(ε) for d(2)). Then �

(1)
r = 10

16 + O(ε)
and �

(2)
r = 6

16 +O(ε). The deduplicated penetration rate will then be P̄net
r = 13

15 +O(ε), which
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can be straightforwardly understood as a detection probability for an individual in this
network in region r.

Let us now denote by N reg
r the population of region r according to an external population

register. Then, we fix

αr + βr = N reg
r , (24a)

αr

αr + βr
= P̃net

r , (24b)

which immediately implies that

αr = P̃net
r · N reg

r , (25a)

βr =
(
1 – P̃net

r
) · N reg

r . (25b)

There are several assumptions in this choice. Firstly, on average, we assume that de-
tection takes place with probability P̃net

r . We find this assumption reasonable. Another
alternative choice would be to use the mode of the beta distribution instead of the mean.
Secondly, detection is undertaken over the register-based population. We assume some
coherence between the official population count and the network population count. A cau-
tious reader may object that we do not need a network-based estimate if we already have
official data at the same time instant. We can make several comments in this regard:

• As stated above, a degree of coherence between official estimates by combining data
sources to conduct more accurate estimates is desirable. By using register-based
population counts in the hierarchy of models, we are indeed combining both data
sources. In this combination notice, however, that the register-based population is
taken as an external input in our model. There exist alternative procedures in which
all data sources are combined at an equal footing [64, 65]. We deliberately use the
register-based population as an external source and do not intend to re-estimate it by
combination with mobile network data.

• Register-based populations and network-based populations show clearly different time
scales. The coherence we demand will be forced only at the given initial time t0 after
which the dynamics of the network will provide the time scale of the network-based
population counts without further reference to the register-based population.

Thirdly, the penetration rates Pnet
r and the official population counts N reg

r come with-
out error. Should this not be attainable or realistic, we would need to introduce a new
hierarchy level to account for this uncertainty (see below). Lastly, the deduplicated pene-
tration rates are computed as a deterministic procedure (using a mean point estimation),
i.e. the deduplicated penetration rates are also subjected to uncertainty, thus we should
also introduce another hierarchy level to account for this uncertainty.

Then, we can readily compute the posterior distribution for Nr :

P
(
Nr|Nnet

r
)

=

⎧
⎨

⎩
0 if Nr < Nnet

r ,

betaNegBin(Nr – Nnet
r ; Nnet

r + 1,αr – 1,βr) if Nr ≥ Nnet
r .

(26)
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It is a displaced beta negative binomial distribution

betaNegBin(k; s,α,β) ≡ �(k + s)
k!�(s)

B(α + s,β + k)
B(α,β)

with support in Nr ≥ Nnet
r and parameters s = Nnet

r + 1, α = αr – 1 and β = βr . Again, we
can provide point estimates as well as posterior variances, credible intervals, etc. Under
the MAP and the mean criterion we have

N̂MAP = Nnet
r +

⌊
(1 – P̃net

r ) · Nnet
r

P̃net
r

–
Nnet

r

N reg
r · P̃reg

r

⌋
,

N̂mean = Nnet
r +

(Nnet
r + 1) · (1 – P̃net

r ) · N reg
r

P̃reg
r · N reg

r – 1
.

The uncertainty is accounted for by computing the posterior variance, the posterior
coefficient of variation, or credible intervals in the usual way. Notice that when αr ,βr �
1 (i.e., when min(P̃net

r , 1 – P̃net
r ) · N reg

r � 1) the beta negative binomial distribution (26)
reduces to the negative binomial distribution

P
(
Nr|Nnet

r
)

=

⎧
⎨

⎩
0 if Nr < Nnet

r ,

negbin(Nr – Nnet
r ; βr

αr+βr–1 , Nnet
r + 1) if Nr ≥ Nnet

r .
(28)

Note also that βr
αr+βr–1 ≈ 1 – P̃net

r so that in this case we do not need the register-based
population (this is similar to dropping out the finite population correction factor in sam-
pling theory for large populations). In this case, under the MAP and the mean criterion
for this distribution we have

N̂MAP = Nnet
r +

⌊
(1 – P̃net

r )
P̃net

r
· Nnet

r

⌋
,

N̂mean = Nnet
r +

(1 – P̃net
r )

P̃net
r

· (Nnet
r + 1

)
.

Let us now introduce a further level of uncertainty by modelling also the hyperpa-
rameters (αr ,βr) so that the relationship between these parameters and the external data
sources (penetration rates and register-based population counts) is also uncertain. We can
go all the way down the hierarchy, assume a cross-cutting relationship between parame-
ters and some hyperparameters and postulate

Nnet
r 	 Bin(Nr , pr), for all r = 1, . . . , R, (29a)

pr 	 Beta(αr ,βr), for all r = 1, . . . , R, (29b)
(

logit
(

αr

αr + βr

)
,αr + βr

)

	 N
(
μγ r

(
γ0,γ1; P̄net

r
)
, τ 2

γ

) × Gamma
(

1 + ξ ,
N reg

r

ξ

)
, for all r = 1, . . . , R, (29c)

(
logγ0,γ1, τ 2

γ , ξ
) 	 fγ

(
logγ0,γ1, τ 2

γ

) × fξ (ξ ), (29d)
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where we have denoted μγ r(γ0,γ1; P̄net
r ) ≡ log(γ0[ P̄net

r
1–P̄net

r
]γ1 ) and fγ and fξ stand for prior

distributions.
The interpretation of this hierarchy is simple. It is just a beta-binomial model in which

the beta parameters αr , βr are correlated with the deduplicated penetration rates. This
correlation is expressed through a linear regression model upon their logits with common
regression parameters across the regions, both the coefficients and the uncertainty degree.
On average, the detection probabilities pr will be the deduplicated penetration rates with
uncertainty accounted for by hyperparameters γ0, γ1, τ 2

γ . For large population cells, the
hyperparameter ξ drops out so that finally the register-based population counts N reg

r play
no role in the model.

Under the specifications (29a)–(29d), after some tedious computations, we can show
that the multivariate distribution for the number of individuals N in the target popula-
tion conditional on the number of individuals Nnet detected by the network is given by a
continuous mixture:

P
(
N|Nnet) ∝

∫

RR
dRyωobs

(
y; P̄net)

R∏

r=1

negbin(Nr – Nnet
r ; 1 – p(yr), Nnet

r + 1)
p(yr)

, (30)

where
• negbin(k; p, r) stands for the probability mass function of the negative binomial

distribution for variable k and parameters p and r;
• p(yr) ≡ eyr

1+eyr ;
• ωobs(y; Pnet) =

∫
�β

d logγ0 dγ1 dτ 2
γ fγ (logγ0,γ1, τ 2

γ )n(y;μγ (γ0,γ1; P̄net),�γ ) where
– n(x;μ,�) stands for the probability density function of the multivariate normal

distribution for variable x and mean μ and covariance matrix �.
– μγ r(γ0,γ1; P̄net

r ) = log(γ0[ P̄net
r

1–P̄net
r

]γ1 ).
– �γ = τ 2

γ IR×R.
In this derivation, again the assumption αr ,βr � 1 is taken for granted. In rigour, we

should have included Pnet as conditioning random variables together with Nnet, but we
have opted to keep the notation as simple as possible. To have an expression which can
be computed we need to further specify the prior fγ . As a first example, let us consider
γ0 = γ1 = 1 and τ 2

γ → 0+. This amounts to having certainty about the values of αr and βr ,
as above, so that ωobs(y; P̄net) =

∏R
r=1 δ(yy – log P̄net

r ), where δ(·) stands for the Dirac delta
function. Upon normalization expression (30) reduces to

P
(
N|Nnet) =

R∏

r=1

negbin
(
Nr – Nnet

r ; 1 – P̃net
r , Nnet

r + 1
)
. (31)

The marginal distribution for region r reduces to (28), which was also obtained above
through a direct reasoning.

Finally, we can also introduce the state process. The system is a human population and
we can make a common modelling hypothesis to represent the number of individuals Nr

in region r of the target population as a Poisson-distributed random variable in terms of
the population density, i.e.

Nr 	 Poisson(Arσr), (32)
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where σr stands for the population density of region r and Ar denotes the area of region r.
We choose to model Nr in terms of the population density to make an auxiliary usage of
some results already found in the literature [6]. Similarly to the observation process, we
introduce the following hierarchy:

Nnet
r 	 Bin(Nr , pr), for all r = 1, . . . , R, (33a)

Nr 	 Poisson(Arσr), for all r = 1, . . . , R, (33b)

pr 	 Beta(αr ,βr), for all r = 1, . . . , R, (33c)

σr 	 Gamma(1 + ζr , θr), for all r = 1, . . . , R, (33d)

where the hyperparameters will express the uncertainty about the register-based popula-
tion and the detection probability. The values for αr and βr are taken from (25a)–(25b).
Regarding the hyperparameters θr and ζr , notice that the modes of the gamma distribu-
tions are at τr = ζr · θr and the variances are given by V(τr) = (ζr + 1) · θ2

r . We shall parame-
terise these gamma distributions in terms of the register-based population densities σ

reg
r

as

ζr · θr = σ reg
r + �σr ,

√
(ζr + 1) · θ2

r = εr · σ reg
r ,

where εr can be viewed as the coefficient of variation for σ
reg
r and �σr can be interpreted

as the bias for σ
reg
r . This parametrization implies that

θr(�σr , εr) =
σ

reg
r

2

(
1 +

�σr

σ
reg
r

)[√√√
√1 +

(
2εr

1 + �σr
σ

reg
r

)2

– 1
]

,

ζr(�σr , εr) =
2

√
1 + ( 2εr

1+ �σr
σ

reg
r

)2 – 1
. (34)

Under assumptions (33a)–(33d) and assuming αr ,βr � 1, as above, we get

P
(
N|Nnet) =

R∏

r=1

negbin
(

Nr – Nnet
r ;

βr

αr + βr
· Q(θr), Nnet

r + 1 + ζr

)
, (35)

where Q(θr) ≡ Arθr
1+Arθr

. The interpretation of this hierarchy is also simple. It is just a Poisson-
gamma model in which the gamma parameters have been chosen so that we account for
the uncertainty in the register-based population figures N reg

r . Usual point estimators are
easily derived from (35):

N̂MAP
r = Nnet

r +
⌊

(1 – P̃net
r ) · Q(θr)

1 – (1 – P̃net
r ) · Q(θr)

(
Nnet

r + ζr
)
⌋

,

N̂mean
r = Nnet

r +
(1 – P̃net

r ) · Q(θr)
1 – (1 – P̃net

r ) · Q(θr)
· (Nnet

r + 1 + ζr
)
.
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Accuracy indicators such as posterior variance or credible intervals are computed from
the distribution (35) as usual. Expression (35) contains the uncertainty of both the ob-
servation and the state processes. In the limiting case ε+

r → 0 and �σr → 0, i.e. having
certainty about the state process, and with equations (25a)–(25b), we have the Poisson
limit of the negative binomial distribution so that

P
(
N|Nnet) =

R∏

r=1

poisson
(
Nr – Nnet

r ;
(
1 – P̄net

r
) · Arσ

reg
r

)
. (36)

The MAP estimator is trivially N̂MAP = Nnet
r + 
(1 – P̄r)Arσ

reg
r � and the mean estimator

is trivially N̂mean = Nnet
r + (1 – P̄r)Arσ

reg
r , both of which can be readily read as the sum of

the individuals detected by the network and the individuals not detected by the network
accounted for by the population register.

On the contrary, when εr → ∞ (i.e. having no information at all about the state process),
we have Q(θr) = 1 and ζr = 0 so that

P
(
N|Nnet) =

R∏

r=1

negbin
(
Nr – Nnet

r ; 1 – P̄r , Nnet
r + 1

)
, (37)

which is the same expression as (31), as expected, since having no information about the
state process is equivalent to having only the observation process. Notice that we can also
introduce more levels in the hierarchy regarding the state process:

Nnet
r 	 Binomial(Nr , pr), for all r = 1, . . . , R, (38a)

Nr 	 Poisson(Arσr), for all r = 1, . . . , R, (38b)

pr 	 Beta(αr ,βr), for all r = 1, . . . , R, (38c)

σr 	 Gamma
(

ζ + 1,
eθr

ζ

)
, for all r = 1, . . . , R, (38d)

(
logit

(
αr

αr + βr

)
,αr + βr

)

	 N
(
μγ r

(
γ0,γ1; P̄net

r
)
, τ 2

γ

) × Gamma
(

1 + ξ ,
N reg

r

ξ

)
, for all r = 1, . . . , R, (38e)

θr 	 N
(
μδr

(
δ0, δ1;σ reg

r
)
, τ 2

δ

)
, for all r = 1, . . . , R, (38f)

(
logγ0,γ1, τ 2

γ , ξ
) 	 fγ

(
logγ0,γ1, τ 2

γ

) × fξ (ξ ) (38g)
(
log δ0, δ1, δ2

δ , ζ
) 	 fδ

(
log δ0, δ1, δ2

δ

) × fζ (ζ ), (38h)

where we have denoted μδr(δ0, δ1;σ reg
r ) ≡ log(δ0[σ reg

r ]δ1 ) and fγ , fξ , fδ , fζ stand for prior
distributions.

The interpretation of this hierarchy is also simple. It is just a combined beta-binomial
and Poisson-gamma model in which the gamma parameters have been chosen so that the
mode is at exp(θr) with an uncertainty degree provided by ζ . Notice that the smaller ζ ,
the more degree of uncertainty about the value of θr . The mode is correlated with the
register-based population density σ net

r through a linear regression.
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Under the specifications (38a)–(38h), again after some tedious computation, we can
show that the multivariate distribution for the number of individuals N in the target pop-
ulation conditional on the number of individuals Nnet detected by the network is given
by

P
(
N|Nnet) ∝

∫

RR
dRyωobs

(
y; P̄net)

R∏

r=1

negbin(Nr – Nnet
r ; 1 – p(yr), Nnet

r + 1, )
p(yr)

×
∫

RR
dRzωstate

(
z;σ reg)

R∏

r=1

negbin
(

Nr ; q
(

Arezr

ζ

)
, 1 + ζ

)
, (39)

where
• negbin(k; p, r) stands for the probability mass function of the negative binomial

distribution for variable k and parameters p and r;
• p(yr) ≡ eyr

1+eyr ;
• ωobs(y; Pnet) =

∫
�γ

d logγ0 dγ1 dτ 2
γ fγ (logγ0,γ1, τ 2

γ )n(y;μγ (γ0,γ1; P̄net),�γ ) where
– n(x;μ,�) stands for the probability density function of the multivariate normal

distribution for variable x and mean μ and variance matrix �.
– μγ r(γ0,γ1; P̄net

r ) = log(γ0[ P̄net
r

1–P̄net
r

]γ1 ).
– �γ = τ 2

γ IR×R;

• q( Arezr
ζ

) ≡
Arezr

ζ

1+ Arezr
ζ

;

• ωstate(z;σ reg) =
∫
�δ,ζ

d log δ0 dδ1 dδ2
δ dζ fδ(log δ0, δ1, δ2

δ ) × fζ (ζ )n(z;μδ(δ0, δ1;σ net),�δ)
with
– n(x;μ,�) stands for the probability density function of the multivariate normal

distribution for variable x and mean μ and variance matrix �.
– μδr(δ0, δ1;σ reg

r ) = log(δ0[σ reg
r ]δ1 ).

– �δ = τ 2
δ IR×R.

Notice how this expression reveals both factors arising from the observation and the
state processes, respectively. When γ0,γ1, δ0, δ1 → 1, ζ → ζ ∗, and τ 2

γ , τ 2
δ → 0+ (i.e. when

having fully accurate information about the parameters αr , βr and θr), we have ωγ (y) =
δ(y – μγ ) and ωδ(z) = δ(z – μδ) so that after normalization equation (39) reduces to

P
(
N|Nnet) =

R∏

r=1

negbin
(
Nr – Nnet

r ; (1 – P̄r) · Qr
(
ζ ∗), Nnet

r + ζ ∗ + 1
)
, (40)

where we have denoted Qr(ζ ) ≡ q( Arσ
reg
r

ζ
), which is indeed again equation (35).

7.2 Present population at times t > t0

Now, we propose to produce probability distributions for the number of individuals Ntr

in the target population for times t > t0 at region r. Currently, we consider only closed
populations, i.e. neither individuals nor devices enter into or leave the territory under
analysis along the whole time period. This important restriction is posed to introduce
progressively the different methods in order to get a thorough assessment of every single
aspect of the procedure. It will have to be lifted in future work (e.g. considering sink and
source tiles in the reference grid).
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Our reasoning tries to introduce as less assumptions as possible. Thus, we begin by con-
sidering a balance equation. Let us denote by Nt,rs the number of individuals moving from
region s to region r in the time interval (t – 1, t). Then, we can write

Ntr = Nt–1r +
NT∑

rt=1
rt �=r

Nt,rrt –
Nr∑

rt=1
rt �=r

Nt,rtr

=
NT∑

rt=1

τt,rrt · Nt–1rt , (41)

where we have defined τt,rs = Nt,rs
Nt–1s

(0 if Nt–1s = 0). Notice that τt,rs can be interpreted as an
aggregate transition probability from region s to region r at time interval (t – 1, t) in the
target population.

We make the assumption that individuals detected by the network move across regions
in the same way as individuals in the target population. Thus, we can use

τ net
t,rs ≡ Nnet

t,rs

Nnet
t–1s

to model τt,rs. In particular, as our first choice we shall postulate τt,rs = τ net
t,rs . The probability

distributions of Nnet
st–1 and [Nnet

t ]sr = Nnet
t,rs were indeed already computed in the aggregation

module (Sect. 6).
Finally, we mention two points. On the one hand, random variables Nrt are defined re-

cursively in the time index t, so that once we have computed the probability distribution
at time t0, then we can use (41) to compute the probability distribution at later times t > t0.
On the other hand, Monte Carlo techniques should be again used to build these probability
distributions. Once we have probability distributions, we can make point estimations and
compute accuracy indicators as above (posterior variance, posterior coefficient of varia-
tion, credible intervals).

7.3 Origin-destination matrices
The inference of the origin-destination matrices for the target population is more delicate
than the present population because auxiliary information from population registers do
not contain this kind of information. Therefore, the statistical models proposed above for
the present population estimation cannot be applied. As a first important conclusion we
point out that, in our view, National Statistical Plans should start considering what kind
of auxiliary information is needed to make a more accurate use of Mobile Network Data
and new digital data, in general.

We can provide a simple argument extending the above model to produce credible inter-
vals for the origin-destination matrices. If Ntr and τt,rs denote the number of individuals of
the target population at time t in region r and the aggregate transition probability from re-
gion s to region r at the time interval (t – 1, t), then we can simply define Nt,rs = Nt–1s × τt,rs

and trivially build the origin-destination matrix for each time interval (t – 1, t). Under
the same general assumption as before, if individuals are to move across the geograph-
ical territory independently of their mobile network operator (or even not being a sub-
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scriber or carrying two devices), we can postulate as a first simple choice τt,rs = τ net
t,rs , as

before.

7.4 An example with simulated data
Let us again illustrate this approach with the same example generated with the mobile
network event simulator. We consider once more the toy scenario with a population of 500
individuals and 186 subscribers with 218 mobile devices in a territory with a bounding box
of 10 km × 10 km divided into 10 regions as in Fig. 10. The simulator provides the true
position of each individual at each time instant so that we can make a comparison with
the (synthetic) ground truth.

For the time being, we shall only provide results for the posterior distributions (26), (28),
and (35), leaving the full hierarchies for future work. Taking advantage of the simulated
ground truth we shall provide results taking as prior information different ranges of Nnet

and N reg to better appreciate how errors in the input data affect the final estimates. Firstly,
we shall consider values Nnet = (1 + rbnet) ·Nnet0, so that we can investigate the effect of the
bias in the input number of individuals detected by the network with respect to their true
values Nnet0. Secondly, similarly, we shall consider values N reg = (1 + rbreg) · N reg0, so that
we can investigate the effect of the bias in the input number of individuals according to
the population register with respect to their true values N reg0. Finally, for the model with
the process (35), we shall also consider the range of values for the coefficient of variation
of N reg given by cvNnet = 0.01, 0.05, 0.10, 0.15, 0.20. In all cases we shall only use the RSS
geolocation model with uniform prior.

In Figs. 14, 15, and 16 we represent the credible intervals for the initial number of indi-
viduals for different values of rbnet and rbreg. In the case with the process model we have
focused on the largest coefficient of variation cvNnet = 0.2.

We observe that the uncertainty grows as the bias of the number of individuals accord-
ing to the population register also grows in the positive direction (overestimation). We
can also observe that the uncertainty grows in the same fashion with respect to the bias
in the number of individuals detected by the network. The sensitivity in the case of the
model with the state process (35) is also evident, thus inviting not to model the state pro-
cess. That is, if the state process (number of individuals in the target population) is not
modelled more robustly, then errors in the register-based population figures will trans-
lated into the estimates based on mobile network data. In our view, this is a clear example
of how prior hypotheses on the generating model for target variables are dangerous in
Official Statistics (historically favouring design-based inference over the model-based ap-
proach). Now models need to be used, robustness becomes a priority. Finally, we also see
an overestimation effect (intervals displacing upwards) as the biases grow. Further anal-
ysis is needed, but in general the computed credible intervals cover the true values fairly
accurately.

For the present population at later times and the origin-destination matrices we will see
directly in the next section how to integrate all modules to produce final estimates from
the initial input data from the telecommunication network.

8 Integration of production modules
Once every module is designed and implemented, we must integrate them all into a pro-
duction chain. The basic idea is to concatenate them into a sequence so that the output
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Figure 14 Credible intervals for the initial number of individuals N0 per region. Credible intervals
(prob = 95%) for the initial number of individuals N0 per region compared to true values (in red) computed
according to the distribution in eq. (26) with the RSS geolocation model and uniform prior and different
values of rbnet and rbreg

data from each module is the input data for the next. Mathematically, for the present pop-
ulation use case this can be expressed as

P
(
Nt|E0:T , Nreg, Pnet) =

∑

Nnet
tr ≥0

P
(
Nt|Nnet

t , Nreg, Pnet)
P
(
Nnet

t |E0:T
)
. (42)

We have computed the credible intervals for the number of individuals in the target
population at each time instant t. To carry out the computation we need to specify the
geolocation model (together with the HMM prior), the number of individuals accord-
ing to the population register and the penetration rates. In Figs. 17, 18, and 19 we rep-
resent the initial set of credible intervals with the RSS model with uniform prior for dif-
ferent values for the relative bias and the coefficient of variation for the population reg-
ister figures and the three inference models above (see [50] for an animated gif with the
time sequences of credible intervals). Notice that the probability distribution for the num-
ber Nnet

tr of individuals detected by the network is computed from the aggregation mod-
ule.
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Figure 15 Credible intervals for the initial number of individuals N0 per region. Credible intervals
(prob = 95%) for the initial number of individuals N0 per region compared to true values (in red) computed
according to the distribution in eq. (28) with the RSS geolocation model and uniform prior and different
values of rbnet and rbreg

For the origin-destination matrices at times t > 0 we apply this same procedure follow-
ing the methodology described in the preceding section, with the distribution for Nnet

tr and
Nnet

t,rs again computed from the aggregation module. The sequence of origin-destination
matrices with the same choices as above is represented in Fig. 20 for cvreg = 0.01 and
rbreg = 0 and in Fig. 21 for cvreg = 0.20 and rbreg = 0.20 for the beta negative binomial infer-
ence model (see [50] for the same representation for the negative binomial and negative
binomial state process models).

The combination of choices is multiple so that the whole process can be adapted to the
complex nature of reality. For our simple scenario we have focused on how to build this
modular process. Notice that more sophisticated models can be built in each module, but
the whole structure remains the same.

9 Discussion, conclusions and future prospects
The design of a production framework based on mobile network data for Official Statistics
is not new. Already Eurostat [66] compiled a body of documents assessing the feasibility
of using this data source for producing official tourism statistics promoting research on
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Figure 16 Credible intervals for the initial number of individuals N0 per region. Credible intervals
(prob = 95%) for the initial number of individuals N0 per region compared to true values (in red) computed
according to the distribution in eq. (35) with the RSS geolocation model and uniform prior and different
values of rbnet and rbreg (cvreg = 0.20)

Big Data through the so-called VIP project ESSnet on Big Data [67]. The United Nations
Global Working Group for Big Data [68] published a first version of a handbook to incor-
porate this data source into the production of official statistics. The need for a method-
ological framework for multiple statistical domains was clearly identified and proposed
for the ESS [28], giving rise to the so-called ESS Reference Methodological Framework for
Mobile Network Data. More recently, Saluveer et al. [69] have published their proposal
based on empirical experience to produce tourism statistics for the Estonian Central Bank.
All these works clearly convince about the value and the feasibility of using these data to
gain in relevance, timeliness, and opportunity. In the European context, the international
project ESSnet on Big Data [70] has recently taken the first steps towards the detailed
construction of this methodological framework dealing with the many aspects covered in
preceding sections. The static approach for the geolocation of mobile devices proposed
by Tennekes et al. [30] for the present population count estimation is the origin of the cur-
rent HMM models, which supersedes those by including transition models. A wider scope
has been recently proposed and tested with real data by Ricciato et al. [29]. This is again
a static approach (no transition model used) and “produce simple point estimates, while
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Figure 17 Credible intervals for the initial number of individuals N0 per region. Credible intervals
(prob = 95%) for the initial number of individuals N0 per region compared to true values (in red) computed
according to the whole module integration using the RSS geolocation model with uniform prior and the beta
negative binomial inference model. See animated gif N_CI_bnb_t.gif in [50] for the full time sequence
of credible intervals and different values of rbreg and cvreg

it would be desirable to develop estimation procedures that deliver also some measure of
uncertainty” [29, page 9].

Our process aims at providing a solution for this using HMMs to construct spatio-
temporal interpolations and posterior distributions to assess uncertainty by incorporating
auxiliary information in a natural way. We do not stick to a concrete HMM but rather on
the contrary we propose a generic framework open to different instantiations of HMMs
(different state definitions, different emission models, different transition models, etc.).
A priori we cannot identify the most favourable specifications for these models and thor-
ough research with different scenarios in the simulator is recommended. Notice that the
HMMs already contain the static approach (by setting the transition probability matrix
to diagonal) and that even for the simple model proposed above, different strategies can
be followed (estimating the parameters for each device independently, for the whole set
of devices simultaneously, for a selection of devices, updating parameters at every given
time interval, . . . ). The framework is versatile enough to adapt to many different circum-
stances.

In this line of thought, Ricciato et al. [29] conducted a thorough application of four
estimation procedures upon real data and further get numerical results based on syn-
thetic data reaching at least one prominent conclusion for our proposal: “stronger atten-
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Figure 18 Credible intervals for the initial number of individuals N0 per region. Credible intervals
(prob = 95%) for the initial number of individuals N0 per region compared to true values (in red) computed
according to the whole module integration using the RSS geolocation model with uniform prior and the
negative binomial inference model and different values of rbreg and cvreg

tion should be put by the research community to the issue of methodological sensitivity”.
This is intimately connected to the use of synthetic data incorporating a ground truth to
test the methods and to the identification of procedures to assess the goodness of fit of
the models, especially those incorporating geospatial considerations (see [29] for details).
Regarding methodological sensitivity, we notice that our simulator allows the researcher
to build different scenarios to investigate the sensitivity of final estimates with regard to
multiple parameters (tile size, time range, number of BTS, population size, etc.). Indeed,
our simulation exercise in preceding sections have shown how different emission mod-
els can be used to analyse the results at different stages of the whole process (geoloca-
tion, deduplication, aggregation, and inference – the latter two not shown in the text for
brevity’s sake). A systematic and thorough sensitivity analysis should be conducted. In our
view, these geospatial considerations are fundamental and should be extended beyond the
goodness of fit to the inference module as well [71].

To generate the illustrative example included above, apart from the network data event
simulator [42], we have developed independent prototyping R packages for each mod-
ule. Package destim for geolocation [72]. Package deduplication for deduplicating
devices [73]. Package aggregation to get the probability distributions of the aggre-
gate number of individuals detected by the network [74]. Package inference to get
the probability distributions of the aggregate number of individuals in the target pop-
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Figure 19 Credible intervals for the initial number of individuals N0 per region. Credible intervals
(prob = 95%) for the initial number of individuals N0 per region compared to true values (in red) computed
according to the whole module integration using the RSS geolocation model with uniform prior and the
negative binomial state process inference model and different values of rbreg and cvreg

ulation [75]. All these packages, although in a prototyping stage, already allow us to
apply the methodological proposals above using synthetic data from the simulator or
any other real data set with similar contents. Parallelization programming techniques
have been applied in preparation for the scalability needed in more realistic scenarios
(see supplementary material for some preliminary evaluation of computational complex-
ity).

The whole methodology for the use of mobile network data in official statistical produc-
tion needs further research and testing. For example, the consideration of a multi-MNO
scenario will bring new issues that need to be tackled (data integration, use of privacy-
preserving techniques,. . . ). But also the preceding modules should be further developed.
The geolocation module uses HMMs, which provide a versatile framework to seek more
accurate geolocation either using more complex radio wave propagation models for the
emission model and using more complex definitions of the HMM state to account for
the transition pattern across the territory. The use of continuous geolocation brings an-
other avenue of research to be further explored beyond the use of a reference grid. The
deduplication module can be made more sophisticated accordingly, i.e. in parallel to the
geolocation module. The generalization for deduplication of an arbitrary number of de-
vices carried by the same individual needs to be done. The whole statistical filtering needs
to be developed with a further stage of the network event data simulator and real data. An
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Figure 20 Credible intervals for the OD matrix. Credible intervals (prob = 95%) for OD matrix compared to
true values (in red) computed according to the whole module integration with the RSS geolocation model
with uniform prior and the beta negative binomial with rbreg = 0 and cvreg = 0.01

important new ingredient regarding the identification of devices comprised by the target
population is the potential random nature of the number D of devices in our proposal.
This would introduce a new level in the hierarchy in which D will be a new integer-valued
random variable. The aggregation module should be made more general by comprising
any number of deduplicated devices. The inference module deals with the estimation in
each region r separately. This should be superseded by a truly multivariate treatment (e.g.
using a Dirichlet-multinomial model). Also, spatial correlations should also be considered
in the modelling exercise.

In our view, Official Statistics should avoid past errors and struggle for a process-
oriented approach to production. Concentrating on statistical domains with an abuse
of one-off use cases will bring the risk of growing silos again in the production. In our
view, the construction of this process-oriented statistical process with mobile network
data should be made in partnerships with MNOs in an international collaborating context
clearly identifying those critical elements in the methodology (which data to access and
how to process them). The process must be end-to-end so that the whole methodology
of the production of official statistics can be openly disseminated. Any form of private-
public partnership must involve national and international Data Protection Agencies as a
key element in privacy and confidentiality preservation.
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Figure 21 Credible intervals for the OD matrix. Credible intervals (prob = 95%) for OD matrix compared to
true values (in red) computed according to the whole module integration with the RSS geolocation model
with uniform prior and the beta negative binomial with rbreg = 0.20 and cvreg = 0.20
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