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Abstract

Human mobility is an important characteristic of human behavior, but since tracking
personalized position to high temporal and spatial resolution is difficult, most studies
on human mobility patterns rely on sparsely sampled position data. In this work, we
re-examined human mobility patterns via comprehensive cell-phone position data
recorded at a high frequency up to every second. We constructed human mobility
networks and found that individuals exhibit origin-dependent, path-preferential
patterns in their short time-scale mobility. These behaviors are prominent when the
temporal resolution of the data is high, and are thus overlooked in most previous
studies. Incorporating measured quantities from our high frequency data into
conventional human mobility models shows inconsistent statistical results. We finally
revealed that the individual preferential transition mechanism characterized by the
first-order Markov process can quantitatively reproduce the observed travel patterns
at both individual and population levels at all relevant time-scales.

Keywords: Human mobility; Mobile phone; High frequency data

1 Introduction

Due to the increasing availability of mobile-phone records, global-positioning-system data
and other datasets capturing traces of human movements, numerous statistical patterns
in human mobility have been revealed, ranging from the confined radius of gyration at
the individual level [1] to the commuting fluxes at the collective level [2]. These empiri-
cal observations suggest that human mobility are barely random, but follow predictable
rules [3—12]. Accordingly, models have been proposed to understand the observed mo-
bility patterns. Following the pioneer model which generates empirical scaling behaviors
by introducing two generic mechanisms, exploration and preferential return (EPR) [2], a
large number of models for individual human mobility have been developed. Examples
include the variants of the EPR model which describe user virtual mobility in cyberspace
[13-15] by incorporating a gravity model to simulate the returner-explorer dichotomy
[16], introducing a social circle to model the conserved number of locations an individual
visits [17], aggregating individual trajectories to generate collective movements [18], and
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On the other hand, it has been shown that there is a diversity of human mobility pat-
terns at different spatial scales. On the largest spatial scale which constitutes international
movements, they are largely constrained by the entry requirement of individual coun-
tries, leading to asymmetric international movements [19, 20]. On the spatial scale within
a country, models which describe international movements do not well explain inter-city
movements. For instance, the inter-city human mobility is claimed to be mainly driven by
the search for better job opportunities [6, 21]. The radiation model assumes that individu-
als tend to select the nearest locations with large benefits. On the spatial scale within a city,
the local movements are better predicted by a population-weighted opportunity model
where the potential area of coverage of individuals includes the whole city as a manifesta-
tion of the high mobility at the city scale [22]. Although large efforts have been devoted to
understand human mobility at different spatial scales, the studies of human mobility at dif-
ferent temporal scales are limited, due to the lack of high frequency mobility data [23, 24].
Understanding spatial-temporal human mobility patterns at different scales would lead to
numerous applications, such as suppressing epidemic spreading [25, 26], mitigating traffic
congestion [27, 28], urban planning [29, 30] and so on.

To reveal the human mobility pattern at different temporal scales, high frequency posi-
tion data are required. While most existing empirical studies on human mobility are based
on cell phone position data, these data are CDRs (Call Detail Records) where user posi-
tions are only recorded when they initiate or receive a call or a text message [31]. These
datasets can include position records of up to several million anonymous mobile phone
users, but the data has in general a low temporal resolution, as user positions are not
recorded most of the time. There is a recent work pointing out that position sampling fre-
quency may significantly alter some statistics of human mobility [32]. The missing position
data in some literature are interpolated via specific optimization algorithms or are incor-
porated from other data sources [33, 34]. Difference may exist between the interpolated
and the real data. Another usual practice to improve the temporal resolution of the data
is to filter out users with long idle periods. For instance, this approach has been applied
to extract a sample of user data with sufficient mobility records for inferring the nature of
their visited locations such as home and workplace, and their tour trajectories with start
and end point at home are investigated accordingly [28]. However, many problems still
remain. On one hand, the user filtering procedure may lead to the risk of biased sampling
of the original data. Specifically, the filtered data only include users who make frequent
phone calls and may be biased to users with specific professions. On the other hand, the
temporal resolution of the data after filtering is still insufficient (as frequent as every 10
min in existing literature), leaving many detailed user mobility traces missing from the
data. Another possible data source is global-positioning-system (GPS) data [35, 36]. Their
temporal resolution can be very high, but as GPS data are mostly recorded by navigation
devices in vehicles, it only records positions when users are driving. As a result, GPS data
are commonly used for analyzing traffic [37].

In this paper, we utilize the cell phone 4G communication data in Shijiazhuang, a city in
northern China, to identify the location of individual cell phone user to a high frequency of
every second. With this high-frequency position data, we study human mobility patterns
at different time-scales. We find that human show a low tendency to re-visit locations that
one has frequently visited. Instead, individuals exhibit origin-dependent, path-preferential
patterns in their short time-scale mobility. Finally, we consider a simple model character-
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ized by the first-order Markov process to quantitatively reproduce the observed travel
patterns at both the individual and population levels in the high temporal resolution data.
Our work reveals the heterogeneity in human mobility mechanism at different temporal
scales, opening up a new dimension for understanding human mobility behaviours.

2 Data

Our study is based on a full set of 4G communication data for 14 days between cell
phones and cell towers in Shijiazhuang, the capital and largest city of North China’s Hebei
Province. The city has population over 10 million, and its total area is 15,848 square kilo-
meters (Urban area is 2206 square kilometers). There are about 12,000 4G cell towers in
Shijiazhuang, with 7000 towers in urban area and 5000 towers in suburb area. The position
of a user is recorded when his/her cell phone connects to the closest cell towers for the
4G communication service [38]. As most applications in cell phones constantly exchange
data with the back-end servers, the position of a user can be recorded up to every second.
Compared with the traditional cell phone data (CDRs) where the position of users is only
recorded when they make phone calls, our obtained dataset is much higher in temporal
resolution for analyzing individual mobility behavior.

Due to the popularity of smart phones, our dataset actually covers a large proportion of
population in the city. For privacy reasons, the data is anonymous and each user is assigned
with a unique ID. The original data include records of 5,336,194 users. In order to obtain a
dataset describing the mobility patterns of active users with high temporal resolution, we
have implemented strict rules to exclude users who do not move at all and those whose
data is largely incomplete (i.e. those who have one or more days with less than 20-hour
daily record in the consecutive 14-day period). Finally, we single out and analyze the mo-
bility data of 55,389 users who satisfy the above criteria. The basic descriptive statistics of
this data is shown in Fig. S1 and S2 of the supplementary information (SI, see Additional
file 1).

3 Results
Empirical human mobility pattern at short time-scales. We start our analysis by construct-
ing the mobility network of a typical mobile phone user in Fig. 1a. Each node is a location
defined by an area of the geographical location of the cell tower. The network only consists
of the nodes visited and stayed more than 3 minutes by the user, with node size propor-
tional to the frequency he/she visited the location. Two nodes are connected by a link if
the user has traveled at least once between the two locations. To understand the mobility
patterns in the high temporal resolution data, we shuffle the trajectory of typical users by
randomly reordering the sequence of their visited locations. The frequency users visited
specific locations is therefore preserved. The mobility pattern constructed from the shuf-
fled trajectory of the typical user in Fig. 1a is illustrated in Fig. 1b. An obvious difference
is observed when we compare Fig. 1a and 1b, suggesting that preserving the visitation fre-
quency of locations fails to reproduce mobility networks obtained with the high frequency
dataset. Similar results of the real and the shuffled trajectories of three other randomly se-
lected users are shown in Fig. S3 of the SI.

In order to quantify the statistical difference between the mobility patterns in real and
shuffled trajectories, we consider four metrics to quantify the trajectories of individuals.

The first one is the total number of unique transited location pairs (transited pairs for

short), denoted as nEf"" for user o, which is equivalent to the number of links in the mobility
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Figure 1 Comparison of the statistical properties of the human mobility in the real and the shuffled data. An
illustration to compare (a) the real and (b) the shuffled travel trajectory of a typical cell phone user. Here each
node is a location visited by the user, with node size proportional to its visitation frequency. A link is drawn
when the user has traveled at least once between the two locations. The shuffled data is obtained by
randomly reordering the sequence of visited locations. In this way, the visitation frequency of each location
by the user is preserved while the travel trajectory is randomized. (c-f) Scatter plots comparing the statistical
properties between the real data and the shuffled data for each user « at the individual level, in terms of

(©) the total transited location pairs n& ", (d) the variance Var,, of the traveled frequency of location pairs,

(e) the covered distance dlfol’ of the maximum loop, and (f) the total traveled distance dg’tal. A box in the
standard boxplots are marked in green if the line y = x lies between 10% and 91% in each bin and in red
otherwise. (g-h) Comparison of the statistical properties of the real data and the shuffled data at the collective
level, in terms of the distributions of (g) the number of neighboring locations of each location, P(k;) (see (a) for
example), and (h) the distribution of population flux between each two locations, P(Fj)

network of user «. We then compare n5*" for all users in the real data and the shuffled data
in Fig. 1c. A box in the standard boxplots are marked in green if the line y = x lies between
10% and 91% in each bin and in red otherwise. One can see that 75" in the shuffled data is
significantly larger than that in the real data. It is because for each individual there exists a
few locations with large visitation frequency (e.g. home or office), in the shuftled data users
are attracted back to these locations regardless of the distance from the current location,
before visiting other locations. In the real data, however, users do not always return to the
frequently visited locations if they are too far away, resulting in a much smaller e a
much fewer transited pairs than that in the shuffled data.

The second metric we examined is the spread, as measured by the variance Var,, among
the usage frequency of transited pairs of user « (i.e. link weights in the mobility network).
As shown in Fig. 1d, a large Var, indicates that an individual o repeatedly uses a small
number of routes and occasionally traveled through other routes. One can see that the
values of Var, are larger in the real data than in the shuffled data, implying that users in
the real data more frequently travel between a smaller number of location pairs.

The third metric we examined is the covered distance d(lf P of the maximum loop trav-
elled by user «. Here, a loop is defined as a trajectory that an individual starts from one
location and ends in the same location. As shown in Fig. 1e, AP s computed as the total
geographic distance of the longest loop in each user’s mobility trajectory. Larger AP s
observed in the shuffled data, as users in the shuffled data always return to the frequently
visited locations even if they are far away.

Finally, the fourth metric, the total traveled distance d'°?!, is larger in the shuffled data, as
shown in Fig. 1f. As this metric is very sensitive to discrepancies in the predicted trajectory,
it is largely ignored in the existing literature. The larger d%**! in the shuffled data is also
due to the fact that users often return to the far away yet frequently visited locations in
the shuffled data. In fact, d'®?! is an important metric, capturing the geographic features
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of human mobility. All the above results suggest that although the shuffled trajectories of
individuals preserved the location visitation frequency, the patterns from the shuffled data
are significantly different from those in the real data.

We further investigate the effect of shuffling on the human mobility patterns at the col-
lective level. From each location, we compute the number of different locations that users
travel to. This quantity is essentially the number of links that a location i has in the mo-
bility network, denoted as k;. The corresponding distribution is shown in Fig. 1g. We see
that both distributions P(k;) of the real and the shuffled data resemble distributions with
a power-law tail, yet their exponents are clearly different, with the tail obtained from the
real data to be much shorter. The exponents are respectively —1.27 for the real data and
—1.05 for the shuffled data, obtained by power-law fitting to the tail of the distributions
starting from k; = 50. We see similar difference when we compare the population flux Fj;
between each pair of locations #j in the real data and the shuffled data in Fig. 1h. Both
the flux Fj; in the real data and the shuffled data follow power-law distributions. However,
the exponent for the fitted power-law function is larger in the real data, indicating that
the distribution P(Fj) of the real data has a longer tail and a larger maximum value of Fj.
The exponents are respectively —1.81 for real data and —1.91 for shuftled data, obtained by
power-law fitting to the whole distributions of P(Fj). For both P(k;) and Fj;, we have also
fitted the probability distributions after log-binning, and obtained the similar exponents
as presented above (See Fig. S4 in SI).

Other than revealing human mobility patterns in the spatial dimension, our high fre-
quency data also allow us to reveal the temporal dimension of human mobility activities.
To this end, we denote the duration of each of a user’s stay at a location as £***Y, and examine
the distribution P(t**) over all users. As we can see in Fig. 2a, P(**™) shows a power-law
head and an exponential tail. The power-law function with exponent —1.41 has been used
to fit the head of the distribution until #*% = 6 (hours). The power-law head suggests that
the duration of a stay at different locations is heterogeneous, and there are a large number
of locations with relatively short duration of each stay. Note that these values of duration
are sufficiently large, e.g. larger than 3 minutes (typical time for users to walk out of the
several hundred meters radiation range of a cell tower), and are not pass-by locations. On
the other hand, the small peak at the tail is mostly contributed by the duration when users
stay or sleep at home.

As evident from Fig. 2a, many locations visited by users for a short time may have been
neglected if the dataset do not have a high temporal resolution. Since our 4G cell phone
data record user positions in every second, this allows us to examine data with different
temporal resolution by data pruning. In order to examine how the mobility statistics are
affected by the temporal resolution of the datasets, we consider a threshold and remove
all the visited locations with £ < T, for all users. In Fig. 2b, we show the average number
of visited locations as a function of 7. One can see that the number of visited locations
decreases with an increasing T in a power-law form with an exponent —0.73, implying that
the lower the temporal resolution of the data, the more substantial fraction of the visited
locations are overlooked in the analyses. Indeed, many hidden mobility patterns at the
short time-scale may have been neglected in existing studies which are based on mobility
datasets with a low temporal resolution.

To further examine how the temporal resolution of the dataset affects the mobility statis-
tics, we show in Fig. 2c-2f the difference between the real and the shuffled data in terms of
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Figure 2 The dependence of mobility statistical properties on the data temporal resolution. (a) Distribution
P(t5%Y) of the duration 5% of a stay at each location for all users. We then conduct the statistics below by
removing the visited locations with %Y for all users. (b) The average number of visited locations as a function
of T.In fact, the threshold T can be regarded as a parameter controlling the resolution of the data. A larger
threshold T identifies less visited locations, and thus corresponds to a poorer data resolution. (c-f) The

difference between the real data and the shuffled data in terms of (c) the total transited location pairs nh™,

(d) the variance Var, of the traveled frequency of location pairs, (e) the covered distance d:,?"p of the
maximum loop, (f) the total traveled distance dg’t“l, as a function of threshold T. The insets in each figure
show the mean values of the corresponding metric under different threshold. The power-law exponents y of
the distributions of (g) the number of neighboring locations from each location, and (h) population flux
between each two locations, in the real data and the shuffled data as a function of threshold T. In both (g)
and (h), there is large difference between the exponents of the real and the shuffled data when the threshold

T is small, and the difference becomes negligible when the threshold is large

the total number of transited location pairs nb | the spread Var, of the traveled frequency
of transited pairs, the distance AP covered by the maximum loop, the total traveled dis-
tance d°?, under various data removal thresholds 7. The difference is measured by the
fraction of users whose metric values in the shuftled data are larger than those in the real
data, except for Var,. As data shuffling tends to decrease the spread of the traveled fre-
quency of transited pairs, the difference in Var, is computed as the fraction of user o with
Var, in the shuffled data smaller than that in the real data. Remarkably, when temporal
resolution is low (i.e. T is large), our results only show a small difference between the real
and the shuffled data in terms of these four metrics at the individual level. As a lower
temporal resolution which corresponds to a smaller number of links in the network, it is
important to check whether the observed small difference is an artifact of the shuffling
process which cannot alter the network structure in these small networks. We show in
Fig. S5 in SI that when T is large (e.g. even for T = 150), there are multiple nodes and it is
still possible for the shuffling process to change the structure of the network. In addition,
we generate a random network with the same number of nodes and same degree sequence
as the real network for each threshold T'. We find that the difference of the network before
and after shuffling is almost constant with respect to T, given the initial network is ran-
domly generated. In comparison, the differences between the real and shuffled network
are much higher and are decreasing with respect to 7, indicating that the difference be-
tween the original and shuffled real networks is not an artifact of increasing 7" (see Fig. S5
and note 3 in SI).

Similar results can be observed when we compare the power-law distributions in Figs. 1g
and 1h under different temporal resolutions. Figures 2g and 2h show that the difference
between the exponents of the distributions in Figs. 1g and 1h obtained from the real and
the shuffled data is large when the threshold 7T is small, then become negligible when T
is large. Another important observation in Fig. 2h is that the exponent magnitude of the
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flux distribution increases with 7', indicating that the maximum flux between locations is
higher in cases with large threshold. In other words, using datasets with a low temporal
resolution would underestimate the flux between locations. Additionally, we study motifs
in human travel trajectories [39] in Figs. S6 and S7 (see discussion in SI note 4). A de-
tailed comparison of the human travel motifs in the real data and shuffled data shows that
the shuffling process does not significantly alter the motif distribution when T is large,
yet the difference between the motif distribution in the real data and the shuffled data is
substantial when T is small.

Origin-dependent preference on the next visiting location. In order to understand the
reasons underlying the observed difference between the real data and the shuffled cases,
we compare their matrices recording the travel frequency of a typical user between each
location pair. The matrices are computed with the temporal resolution 7' = 3 min, and
are shown as heatmaps in Figs. 3a and 3b respectively for the real data and the shuffled
data. Some large values can be seen in the heatmap of the real data, which suggests that
users tend to repeatedly transit between a small number of location pairs. However, this
preference of transitions, or equivalently the preference of transited location pairs, cannot
be captured in the shuffled data.

We further examine the probability for the selected typical user to visit different loca-
tions starting from different origins in Fig. 3c. Different locations are indexed in the hor-
izontal axis, with each blue curve corresponds to the probability to visit other locations
from a specific origin; the black dashed curve corresponds to the overall visitation proba-
bility distribution. Compared to the black dashed curve, different blue curves peak at dif-
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Figure 3 Origin-dependent mobility behavior. Heat maps which show the matrices of the travel frequency of
a typical user from one location to another in (a) the real data, and (b) the shuffled data of the selected typical
user. The location visitation probability in (c) the real data and (d) the shuffled data by the selected typical
user originated from specific locations. As an example, the red curves in (c) and (d) shows the visitation
probability distribution of the selected user originated from location 1, while the black curves show the
visitation probability distribution aggregated from all starting locations. In (e) and (f), we show the probability
of locations from which the most frequent locations to be next visited is the same as the overall most
frequently visited locations (i.e. p/;k:/*)‘ The probability Py is calculated for each user in both the real data
and the shuffled data. (e) shows the scatter plot ofpj’gf:/*, indicating that in the real data the most likely

locations to be next visited from many locations are different from the overall most frequently locations to be
visited. (f) shows the distribution ofp/-*:/-* in real data and the shuffled data
I
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ferent locations, suggesting that the next location that a user visits is not always the most
frequently visited ones, but instead strongly depends on his present location. Similarly,
we show the visitation probability distribution for each starting location in the shuffled
data in Fig. 3d, of which the peaks of the blue curves are consistent with those of the black
dashed lines. The comparison between Figs. 3c and 3d shows that in the real data, users’
preference on the locations to be visited are dependent on their current location.

A more quantitative analysis can be made by computing the probability that the most
frequently visited location j; from location i is consistent with the overall most frequently
visited location j*, i.e. pj:_j+. Figure 3e shows the scatter plot and the bin average of p;:_-
for each user in the real and the shuffled data. Figure 3f shows the distribution of pj:_ for
all users in the real and the shuffled data. Both figures show that pj: s is smaller in the real
data than that in the shuffled data, again suggesting the origin-dependent preference on
the locations to be visited.

Data-integrated Models. With the comprehensive cell-phone position dataset and based
on our previous findings, we go on to examine the essential mechanisms underlying hu-
man mobility patterns. To achieve the goal, we plug various empirical quantities such as
the popularity of locations and the frequency of transition between locations into exist-
ing human mobility models, and compare the emergent behavior from the models with
empirical results.

We first start with the simplest preferential return model of which the probability for an
individual to visit a location is proportional to the frequency the location was visited in
the past [2]. We can thus write down the transition probability p,._.;() of an individual «
to travel from a location i to a location j at time £ to be

Pt (8) o fug (0), (1)

where f,;(¢) is the empirical frequency that a location j is visited by an individual « before
time ¢. We call the above the individual preferential return (IPR) mechanism. A simulated
trajectory with (1) to be the transition probability is shown in Fig. 4b, again compared with
the real empirical trajectory shown in Fig. 4a. As we can see, many transitions absent in the
empirical data are found in the simulated results. Furthermore, we consider a metric d'°%!
to examine statistically the validity of this model. We use d'**! because it is a geographic-
aware metric which captures even small inaccurate predictions of paths in the users’ travel
trajectory. As shown in the scatter plots of 4! in Fig. 4g, other than a specific individual,
many of the simulated trajectories are longer than their counterparts in the empirical data,
which may be a result of the transitions between more distant locations in simulations as
in Fig. 4b. These results imply that the IPR mechanism is insufficient to explain human
mobility patterns. Since the data of IPR are independent of origin, one may expect that
origin-dependent transitions are indeed crucial in explaining mobility patterns.

While the preferential return model is over-simplified in explaining human movement,
we then explore the significance of origin-dependent transitions in explaining mobility
patterns. Since the individual frequency of transition between two locations is difficult
to be modeled, many existing studies only utilize the average transition frequency over
the population. Related models for predicting the average transition frequency over the
population include the gravity model [40], radiation model [6], population-weighted op-
portunity model [22] and so on. We call this the population preferential transition (PPT)
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mechanism, of which the transition probability p,.;—.;() is given by
PEPL (8) o fi (), @)

where f;_,;(t) is the empirical frequency of which the population travel from location i to
j before time ¢. As shown in Fig. 4c, the trajectory of this specific individual is dominated
by paths which connect between near locations, reflecting the average behavior of the
population to go to near and attractive locations [6, 22, 40]. This trajectory in Fig. 4c is
significantly different from the real trajectory in Fig. 4a. Consistently, we see in Fig. 4h
that the simulation underestimates the real total travel distance d'°®®! for most individuals
in the empirical data. These results imply that individuals travel to fulfill specific purposes
by which short distance is not the main consideration. Although not surprising, the results
suggest that the PPT mechanism is insufficient to explain the individual mobility patterns.

Inarecent work [18], a model combining the memory effect and the population-induced
competition is proposed to simulate human mobility between locations based only on
their population. Basically, individual mobility in this model is driven by both preferen-
tial return and collective mobility between locations. In order to test whether this model
can generate realistic human mobility at high temporal resolution data, we consider a

Page 9 of 14
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population-weighted individual preferential return model (PIPR) combining IPR and PPT,
with the transition probability given by

PR (0) o fuug X fisj (). 5

This model is actually a simplified version of the model proposed in ref. [18], where the
collective mobility between locations as predicted by popularity distribution is replaced by
the population preferential transition probability. As shown in Figs. 4d and 4i, although the
trajectory and the total travel distance are more similar to the empirical data than merely
IPR or PPT, they are still different from the real data as it substantially underestimates
d@l in the high temporal resolution human mobility data.

Inspired by the empirical observation in Fig. 3 that people tend to repeatedly transit
between a small number of location pairs, we consider here another model based on the
first-order Markov process that might explain the driving mechanism in the high temporal
resolution human mobility. We call the mechanism the individual preferential transition

(IPT). In this case, the transition probability p.;—.;(£) is given by
Pt () o foei(0), (4)

where fi.;—;(¢) is the empirical frequency of which individual « travels from location i
to j before time ¢. As we can see in Fig. 4e, the simulated trajectory resembles the real
trajectory shown in Fig. 4a. Other than this specific individual, we see in Fig. 4j that the
simulated d'°! of each individual shows a more linear relation with their counterparts in
the real data, compared to the above three models (see Figs. 4g, 4h and 4i respectively).
These results imply that the IPT mechanism outperforms other factors of preferential re-
turn or population competition in capturing human mobility trajectories in high temporal
resolution.

When simulating the four models (i.e., IPR, PPT, PIPR, IPT, see Table 1), we draw the
initial configurations of these models from the real data. Specifically, f,.j(t) in IPR, f;_,;(¢)
in PPT, f,.,—.;(t) in IPT are set to be the values extracted from the empirical data. The
vectors of f.j(t) for each user o in IPR and the matrices of f;.;.—.;(¢) for each user « in
IPT are then updated during the simulation. In the IPT model, f.;—.;(¢) increases by 1 if
individual « travels from location i to j during the simulation. Similarly, in the IPR model,
Ja;j(t) increases by 1 if individual « visits location j during the simulation. We stop the
simulation for an individual « after he/she finishes the same number of travels as in his/her
real data for 14 days.

A remarkable advantage of the state-of-the-art human mobility models is that they can
reproduce collective human mobility by aggregating simulated individual mobility trajec-
tories [18]. One important metric that is usually used to examine this feature is the distri-
bution P(Fj) of the flux between locations. Figure 4f presents respectively the fitted curves

Table 1 Acronym:s for the studied human mobility models

Acronyms Full name Mechanism
IPR Individual Preferential Return Eq. (1)
PPT Population Preferential Transition Eq.(2)
3)
)

PIPR Population-weighted Individual Preferential Return Eq. (
IPT Individual Preferential Transition Eq. (4
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of the power-law flux distribution generated by IPR, PPT, PIPR and IPT models (See the
original distributions in Fig. S8 in SI). We compare these fits with that of the real data (in
high resolution, stay duration threshold T = 3 mins) and the shuffled data. The exponents
with relative errors are: —1.81 +0.03 (Real data), —1.91 # 0.04 (Shuffled data), —2.02 + 0.04
(IPR), —1.38 £ 0.02 (PPT), —1.89 £ 0.03 (PIPR), —1.81 = 0.03 (IPT). The relative errors are
the difference between the maximal and minimal exponents obtained by varying the fit-
ting curves within the 95% confidence interval (see Fig. S8 in SI for the visualization of the
zone of the 95% confidential intervals). As we can see, the exponent generated by the PIPR
model is very close to that of the real data. However, the exponent generated by the IPT
model is close to that of the real data, suggesting that IPT can best reproduce the real flux
distribution. In addition, the difference between these exponents are much larger than the
relative errors, supporting that the distribution generated by IPT is closest to the real data.

To understand more comprehensively the difference between the IPT and IPR models,
we study several additional metrics, with the results summarized in SI note 5. At indi-
vidual level, we examine three other metrics including the number ng““ of transited lo-
cation pairs, the variance Var, of the transited pairs’ usage frequency, and the distance
A of maximum loop, as presented in Fig. S9. While IPR can reproduce the number of
transited location pairs similar to that in the real data, it underestimates Var,, and over-
estimates d.°°°, In Fig. S10, we study another metric at the collective level, namely the
distribution F(k;) of the number of different locations that users travel to starting from
location i. A longer tail generated by the IPR model indicates that IPR would overestimate
the number of different locations that users travel to originated from a specific location.
IPT outperforms IPR in reproducing these metrics at both individual and collective levels.

We finally simulate respectively the IPR and the IPT models in a finite space of M lo-
cations with no initial memory, in which N = 6 x 10* individuals move s steps (with M
and s randomly drawn from [2, 350] and [50, 800] respectively). All f;.;—.;(¢) in the IPT
model and f;;(t) in the IPR model for individual & are set to be the same small value ini-
tially (i.e., fo:i;(£) = 1 and f,j(¢) = 1 for simplicity) and then updated during the process
(see details in SI note 5). The results suggest that IPT outperforms IPR in reproducing the
observed mobility patterns in the real data, even without the initial memory from the em-
pirical data, see Fig. S11. Specifically, the simulated data from IPT has a smaller number
of unique paths and a larger variance of the usage frequency of paths than the correspond-
ing shuftled data, indicating that individuals in IPT tend to use a small number of paths
repeatedly. Taken together, the IPT model, integrated with quantities extracted from the
comprehensive cell-phone position dataset, can well reproduce human mobility patterns

with high temporal distribution that other models fail to capture.

4 Discussion

To summarize, we presented a comprehensive study of human mobility patterns in differ-
ent temporal scales with a large sample of 4G cell phone data where the positions of users
are recorded in each second. We construct mobility networks of mobile phone users, and
compare real mobility networks with randomly shuffled networks. We find that the shuf-
fled networks overestimate largely the total number of transited location pairs and the
total traveled distance at short time-scale. The collective statistics such as the population
flux between locations are also overestimated. This is due to the fact that in the high res-
olution human mobility data individuals exhibit clear preference on transitions between
locations, which is determined by the frequency of the routes that have been used before.
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We finally study a simple model based on the first-order Markov process (called indi-
vidual preferential transition) where the preference of users on paths are accumulated in
a matrix and users move according to their preferred paths. The model can quantitatively
reproduce the empirical travel patterns at both the individual and population levels up to
the high temporal resolution of our empirical data.

Promising future directions include improving the model by introducing the decay of
the preference on paths with time, which will result in a more realistic model where the
frequently used paths of an individual evolve. In addition, one can empirically study the
path preference matrix of individuals, which provides clues to various human mobility
behaviors such as explorers and returners observed at the population level in the litera-
tures [16]. Other directions include extending the present work to multiple spatial scales
across cities or even countries [6, 18]. The ultimate goal is to obtain a universal model
that can be applied to explain the individual and collective human mobility patterns at
different spatial and temporal scales. From the perspective of applications, one can study
the overlap of users’ preference in traveling paths in order to understand and suppress
traffic congestion. Answering these questions would not only offer a better understanding
of the fundamental mechanisms that underpin individual human mobility, but may also
substantially improve our ability to predict and control collective traffic flux [41].

Finally, we remark that our findings can be put in the broader context of complex dynam-
ical systems. The power-law distribution of the flow along edges, and similarly, the stay-
time distribution were also studied in the preferential behaviour and scaling in diffusive
dynamical systems on networks [42]. The mathematical framework of the discrete-time
absorbing Markov chain is also connected to the production optimization in economy
[43]. We hope that our findings can inspire new observations and new models in these

complex dynamical systems.
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