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underlying street network to study, simultaneously, the structural and functional
organisation of 10 world megacities. We quantify the efficiency of flow exchange
between areas of a city in terms of integration and segregation using well defined
measures. Results reveal unexpected complex patterns that shed new light on urban
organisation. Large cities tend to be more segregated and less integrated, while their
overall topological organisation resembles that of small world networks. At the same
time, the heterogeneity of flows distribution might act as a catalyst for further
integrating a city. Our analysis unravels how human behaviour influences, and is
influenced by, the urban environment, suggesting quantitative indicators to control
integration and segregation of human flows that can be used, among others, for
restriction policies to adopt during emergencies and, as an interesting byproduct,
allows us to characterise functional (dis)similarities of different metropolitan areas,
countries, and cultures.
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1 Introduction

Cities are complex systems embedded in the physical space which process information,
evolve and adapt to their environment [1]. To understand how complex systems — and
cities more specifically — operate, it is thus important to quantify how information is pro-
cessed in terms of integration and segregation. To this aim, on the one hand many relevant
network descriptors have been introduced, based either on topological features or on dy-
namical ones, or both. On the other hand, integration has been reflected either in how
information flow is accounted for by more complex topological models where multiple
relationships co-exist simultaneously [2—5], namely multilayer systems [6, 7], or in causal
effects observed in the time course of systems’ units [8—17].

Concerning the topological analysis of classical single-layer networks, to date a clear
definition of integrated and segregated information flow is still debated and many proxies
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are used across a broad spectrum of disciplines, ranging from neuroscience to social and
urban sciences [18-33], often indicating with the same name very different concepts.

The recent availability of a large amount of human-generated data enables the analysis
of urban systems from different perspectives which could not be even considered until
a few years ago [34]. Consequently, models and analytical tools inspired by complexity
science are proliferating. More and more examples are providing convincing evidences of
their fruitful application to real cities [35—40]. Applications range from human mobility
[41-44] and traffic congestion [45-49], to energy consumption [50], air quality [51, 52]
and climate [53], health and well being [54—57], and the associated topic of accessibility to
important facilities like hospitals [58]. Indeed, the city can be seen as a growing complex
system [59, 60] whose spatial organisation [61, 62] dynamically experiences a transition
from monocentric to polycentric [63, 64].

The relative ease of accessing large and detailed data sources describing at the same time
the structure and the function of urban systems, puts them in the position of becoming a
paradigmatically example over which we can identify the right methodologies allowing us
to understand the behaviour of spatially embedded complex systems. A particularly rel-
evant perspective is offered by activity-aware information [65], such as the one provided
by users of Foursquare — a leading location intelligence platform — which allows people
to investigate human flows at different scales and thus to reconstruct the functional net-
work of cities with great level of detail [66] and to classify existing activities into a few
representative macro-categories (see Methods for details).

In this work, we stratify those human activities to build the functional networks describ-
ing the human movements across the urban space of 10 different metropolitan systems
spread over three continents. To gain novel insights about the functional organisation of
the underlying urban ecosystem, we build a multilayer network [4, 7], where the flows en-
code how users move between venues of the same macro-category (e.g., from a pub to
another one) and between venues of different macro-categories (e.g., from a pub to a cin-
ema). In the following, we will refer to intra-layer flow to indicate movements of the first
type, and to inter-layer flow to indicate movements of the second type.

Our main goal is to better characterise the functional organisation of a city through the
lens of network science. To this aim we measure to which extent different areas of the city
facilitate human flows — i.e., functional integration — and to which extent there are separate
clusters of areas characterised by within-cluster flows larger than between-cluster flows —
i.e., functional segregation — (see Methods for details) [67]. By considering those measures
simultaneously, it is possible to characterise how well human flows mix through the city
according to the existing distribution of venues and the way residents use them. In fact, the
dichotomy between integration and segregation — often improperly used as antonyms —
is relevant for improving our understanding of the interplay between the urban structure,
social relationships and human behaviour.

At the same time, to investigate the coupling between the structure of a city and the
dynamics of its inhabitants, we also study the integration and segregation of the structural
networks of these cities reconstructed from Open Street Map [68]. See Fig. 1 and Methods

for more details on the definition of the structural and functional networks.
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2 Results

2.1 Overview of the data sets

The Foursquare data made available for the Future Cities Challenge [69] describe 24

months of check-ins collected between April 2017 and March 2019 (included). The use

of these dataset faces multiple limitations, discussed in details in the Methods section.
The 10 world mega-cities included in the challenge are Chicago, Istanbul, Jakarta, Lon-

don, Los Angeles, Tokyo, Paris, Seoul, Singapore and New York City (represented as ex-

ample in Fig. 1 right). The extensive characteristics of the datasets are shown in Table 1.

The flows between different areas are derived by subsequent anonymised check-ins to the

Foursquare’s location-based services and coarse grained with a 500 m x 500 m granularity

(A) Urban Networks (B) Activity-aware Multilayer Network (C) Measured Human Flows
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Figure 1 Modelling Structure and Function of Urban Systems. Left: Urban structural backbone of the 10
megacities considered here, as described from their street networks (data obtained from Open Street Map
[68]). Middle: Urban functional networks described by the Foursquare data. The nodes are obtained by
dividing the area analysed into cells of 500 m x 500 m. The edges are subsequent check-ins that might be
between activities of the same type (intra-links: e.g. Food-Food, Tourism-Tourism) or different types (inter-links:
e.g. Food-Tourism, Food-Sport). The collection of layers and inter-layer flows defines a multilayer network
[4,6,7],i.e,a multidimensional functional representation of the urban areas. Right: The mobility flows
between areas are captured as the edges’ weights. In the example, describing New York City, we can observe
the different spatial distribution of flows between and across different activity layers (see also Fig. 5(a))

Table 1 Foursquare data set extensive characteristics. The figures here are aggregated for all layers
and comprise all 24 months. The linear size L is here estimated as the square root of the total area
covered by the data after the aggregation into squares of 500 m x 500 m. Please note that the value
of population for the city of Paris here corresponds to the Grand Paris Metropolitan areas that is the
territory roughly covered by the data. Other population correspond to the municipality area (or the
national area for the case of Singapore)

City #Venues #check-ins L (km) Population
Chicago 13,904 10,629,110 189 2,705,994
Istanbul 113,752 13,083,383 393 15,029,231
Jakarta 21,813 9,281,181 27.6 10,517,000
London 22,689 10,146,880 240 18,825,001
Los Angeles 15,868 10,362,146 236 3,990,456
New York City 32971 11,048,584 19.3 8,398,748
Paris 13,588 9,521,723 16.6 7,020,210
Seoul 15,545 9,347,489 18.1 9,806,000
Singapore 23,324 9,691,517 235 5,638,700

Tokyo 57,810 11,545,155 304 13,515,271
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(see Fig. 1 middle, and Methods). In the data provided, check-ins are already aggregated
by couple of venues (origin and destination), month.

The Open Street Map data has been obtained using the OSMNX python library [68]
(see Fig. 1 left). The urban area selected has been set to matche the cells covered by the
Foursquare venues. The structural network has been reduced to a lattice-like form of the
same granularity as the urban flow, so that all nodes in the structural network find their
correspondence in the functional network. Differently from the functional one, the struc-
tural network is purely topological, as an undirected link between two cells exists if at least
one street connects the two areas.

2.2 Quantifying integration and segregation

As previously mentioned, we characterise the organisation of the city through measures
of integration and segregation. To avoid confusion in the reader, it is worth remarking that
our measures of integration and segregation are those established in the field of network
neuroscience [28], rather than being associated to the traditional social concepts, and are
thus not related to population or cultural mixing [70], but only to how cities are lived by
their users. Integration quantifies, in terms of information exchange efficiency, the ability
of a city to favour the flow of people across its areas, and is measured by means of the
global communication efficiency GCE, specifically normalised to correctly compare the
efficiencies of weighted and un-weighted networks [71]. Segregation, on the other hand,
evaluates the strength of segregated communities, areas of the city with strong flows inside
the area and weak inter-areas flows and is estimated as the maximal modularity Q* [72]
of the network (see Methods for further details).

2.3 Structural vs functional networks

Having identified two measures suitable for comparing different cities and types of net-
works, we begin our analysis by mapping the link between integration and segregation in
both the structural road networks and the single layer flow networks, obtained aggregat-
ing for each city inter-layer and intra-layer flows over the whole temporal extension of the
dataset, which describe the functional use of the city by individuals.

The results, displayed in panels (a) and (b) of Fig. 2, suggest that, in general, higher
values of segregation are associated to lower values of integration, as common sense would
suggest. However, we also observe clear deviations from this trend, the major one being
the functional network for the city of Los Angeles appearing to be much more integrated
than what would be expected by its relatively high level of segregation.

Of particular interest is the comparison of structural and functional properties of the
same systems (panels (c) and (d) of Fig. 2). The segregation, estimated through the lens of
modularity, seems to systematically deviate, with the functional flow network being less
segregated than the structural network even if the values for the different cities are highly
correlated. The integration instead, studied with an indicator specifically developed for
allowing this type of comparisons [71] corresponds also numerically for the very different
structural and functional network, and this perfect correspondence reveals a divergence
between structural and functional properties of the city of Los Angeles.

2.4 What determines integration and segregation
In order to understand what lies behind the pattern of anti-correlation between integra-
tion and segregation observed in Fig. 2, we generate spatially embedded networks that
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Figure 2 Structural vs Functional organisation of cities measured by means of Segregation and Integration.
(a) Structural Integration vs Segregation. Analysing the measures of segregation (Q*) and Integration (GCE) for
the topological un-directed network describing the road structure of cities we observe a very strong
anti-correlation (Pearson r = -0.92). (b) Functional Integration vs Segregation. The same measures of the
weighted network describing the mobility flows display clear deviations from the anti-correlation of
integration and segregation, in particular for the city of Los Angeles. (c) Structural vs Functional Segregation.
The measures of segregation for the two types of networks are strongly correlated (Pearson r = 0.91) but differ
in value. (d) Structural vs Functional Integration. The measures of integration for the two types of networks
deviate from perfect correlation (again due to the deviation of Los Angeles) but are very similar in value. In all
panels, the dimensions of the circle is proportional to the size of the area considered

attempt at reproducing the key feature of the urban functional networks using two widely
used null models: (i) the Watts-Strograts (WS) small world networks obtained through
rewiring of a regular lattice; (ii) the Random Geometric Networks (RGN) obtained by
linking two randomly placed points if their distance falls below a fixed threshold r (see
Methods). Also for the RGNs we proceeded with random rewiring and, in both cases, the
probability of rewiring is indicated by p.

In Fig. 3 we observe that for both null models we reproduce the same anti-correlation
pattern observed for real networks, but also see that rewiring is strongly reducing seg-
regation and increasing integration in a way that breaks the linear relationship between
the two quantities. Moreover, since by generating them we can control all features of the
WS and RGN networks considered, we are able to isolate the leading factors behind this
pattern. For WS, integration grows and segregation drops as the network dimensionality
grows. The same happens for RGN as the radius r grows. Indeed, both increased dimen-
sionality and r leads to generating networks with a higher edge density, allowing us to
isolate the important role played by edge density in dictating the state of integration and
segregation of spatial networks. For topological (i.e. not weighted) networks the Global

Communication Efficiency, used to estimate integration, grows as the edge density grows.



Gallotti et al. EPJ Data Science (2021) 10:3

Watts-Strogatz "Small Worlds" Random Geometric Networks

s z [ ] »
1.0 0.8 - - -
: dim H i .
e 1 : ] e 02
2 03
0.7 .
0.8 R : ° i e 24
S e 00 e 00
c e 0.08 c 0.08
o (("Q"’. 0.16 o 0.6 AN ) 0.16
= 0.6 3 0.24 = N ‘«ir SRR i 0.24
= N B2 o (Qggee
o ?f\ 505 b pey G29%°
N N o
& 8 YO
< P Coa NN 1 R
& N 2
\\\ \\\ .
0.2 (‘) " 03 \\.\. &°
N
@) 'Qo, e o
2 N,
0.0 L 0.2 =
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Segregation Segregation
0.75 -
*. Seoul Chicago
(C) ‘aris
S 0.70 é\n\gapore
@© \\ ew York
a 3k ~. “Los Angeles
g° L
= \\1
— 0. ndo
= 0.60 -ondon
S
()] okyo
S 0.55 ‘ \\:
o N
S 050 N
N
- Istanbul
0.45 ~

4'0.05 0.10 0.1? 0.20 0.25 0.30 0.35
Topological Segregation

Figure 3 Simulating the functional organisation of synthetic urban models. Top Left: Small-world networks
according to the Watts-Strogatz model (see Methods) with different rewiring probabilities (encoded by size)
and dimensions (from 1D to 3D, encoded by color). Top Right: Random Geometric Networks (see Methods)
with different characteristic spatial scale (encoded by color) and different rewiring probabilities (encoded by
size). Clusters here fall above what observed for WS model. Bottom: The functional organisation of real cities,
observed thorough the lens of the topological networks derived from the Foursquare flows (see Methods),
follow the same trend as in the that of WS networks. In all panels, the dashed line represents the linear
regression relating integration and segregation for the WS model, whereas the solid lineis y = 1 - x and it is
shown as a reference

This is indeed what we observe in Additional file 1, Fig. 1 while a less tight correlation can
be observed for segregation in Additional file 1, Fig. 2.

However, the values observed in Fig. 2(b) deviate sensibly by those describing the net-
works we generated in Fig. 3. This because the urban functional networks are defined as
weighted networks, while our null models do not describe weights. Indeed, if we reduce
the urban functional networks to a purely topological undirected network, we see in Fig. 3
(right) that the numerical values of topological urban functional networks correspond to
those described by WS model (dashed line).

To isolate the driving factors determining a city integration and segregation we have to
expand from the ideal world of synthetic models and find instead guidance from the meth-

ods commonly adopted to investigate the physics of cities. Many properties of cities are
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Figure 4 Understanding Functional Segregation and Integration. While the functional segregation (a) and
structural integration (b) show a clear dependency over city size, functional integration (c) is not simply
determined by how big is a city. In (d), we plot the deviation between functional and structural integration,
computed as (GCEyner — GCEstrue)/GCEsyuer VS the values of flow hierarchy for the same cities computed in [74]
from another dataset

known to be power law functions of population size [59]. Here, we are not in the position
of deriving with precision the population in the area defined by the Foursquare data, and
we use instead as measure of the city size the square root of the area covered (L = +/A)
which is also a proxy for the average length of a trip in a city [63]. We therefore plot in
Fig. 4(a), (b), (c) the values of Functional Segregation and Structural and Functional inte-
gration against L (see Additional file 1, Fig. 3 to see how other network indicators scale). In
our case, the sizes of the cities considered are not diverse enough for initiating a meaning-
ful discussion based on the value of the exponents observed (that are reported in panels
(a) and (b) only to support future studies on the matter). We focus indeed on the fact that
a power law scaling is able to explain most of the variance observed for Functional Segre-
gation (R? = 0.67) and Structural Integration (R? = 0.71) but totally fails at predicting the
values of Functional Integration (R? = 0.05). In other words, size matters. In particular it
matters for functional segregation, also linked to the total flow circulating over the net-
work (Additional file 1, Fig. 2(c)): in fact, as observed in [73], it can be expected to grow
proportionally with population. However, there is something more that is strongly influ-
encing functional integration and makes it deviate from the structural integration (as seen
in Fig. 2(d))). This extra factor is determined by how flows are distributed in the network.
To show this, in Fig. 4(d) we compute how much the weighted functional networks deviate
from the values estimated from the structural network as (GCEjpc: — GCEgyuc)! GCEgtryers
and plot it against the flow hierarchy estimated for the same city from another dataset
(numerical values computed and obtained from [74]). A low flow hierarchy indicates that
larger fraction of movements are expected to be between strong mobility hubs and less
active areas. This means that, in general, excess of integration is expected when marginal
areas are more strongly connected. This appears similar to what observed in hierarchi-
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cal modular brain networks, which are locally segregated, but global neuronal operation
integrate segregated functions [75].

Lastly, using the RGN model we also measured the importance of the spatial extension of
the network. Fixing the radius below which nodes are connected, we find (see Additional
file 1, Fig. 4) that the largest the area (A = L?) covered by a square RGN the more the
network is segregated and the less it is, at the same time, integrated. Indeed, here again
integration and segregation seem to be very strongly correlated and increasing the radius
have a similar effect as reducing the spatial extension.

2.5 Cities within a city

Having understood the behaviours of integration and segregation of cities at an aggre-
gated level, is worth checking if this pattern is an intrinsic feature of urban systems or if
it is proper of some specific activity layers. Indeed, the metadata of the venues include a
category field which describes the type of venue in great detail (e.g.: Knitting Stores, Mini
Golf Courses, Rock Clubs, ...). We defined a set of macro-categories we used to aggre-
gate categories in limited number of layers (see Methods and Fig. 1 middle). Statistical
information about the number of nodes and links in the different layers are provided in
Additional file 1, Table I.

In Fig. 5(a) we can visually inspect some examples of activity-aware layers. Remarkably,
for all the cities considered in this study, the intra-layer connectivity characterizing the
transport layer provides a natural link between our functional analysis and the underlying
structure of the city. In the data, however, it can be clearly seen in cities where public
transport is well developed and largely used, such as Tokyo or Seoul, way more than cities
where private transportation is dominant, such as Los Angeles and Istanbul.

By disentangling the mobility flows into a multilayer network structure (see Methods
and Fig. 1 right), we are able to quantify the differences in the functional organisation of
human flows between different types of activities or different month (see Additional file 1,
Fig. 5) enabling the identification of different “cities within the city” which indeed shows
clear dissimilarities in terms of both functional integration and segregation.

To this aim, we perform targeted attacks on each layer of the corresponding multilayer
network and measure the response of the systems in terms of changes in segregation and
integration. In Fig. 5(b) we observe how removing those flows coming from a specific
activity type significantly changes urban functional segregation and integration. This is
especially true if the activity is Transport, whose removal yields the rightmost outliers
in the figure. An even stronger variation is observed in the integration and segregation
restricted to movements between similar layers (see Additional file 1, Fig. 6).

To better understand these differences, in Fig. 5(c) we link the average values of inte-
gration measured for flows between the same categories across all cities with the corre-
sponding weighted average of geographical distances between nodes. We observe a bulk of
correlated points and two outliers: one the natural long-range linking layer of transporta-
tion, the other the locations not associated to a macro category and left as “unknown” (see
Methods). Excluding “unknown” that does not seem to influence integration at all, we
observe a clear effect: removing the transport layer strongly disrupts integration, while
removing short range layers actually improves it. In Additional file 1, Fig. 7 we could con-
versely see how, again with the notable exception of the removal of the Transport layer, the
segregation of cities remains relatively unchanged after single layer removal. The results of
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Figure 5 Disentangling functional flows. (a) We illustrate the strikingly distinct views on the functional
organisation of a city extracted by isolating intra- or inter-layer flows. These maps outline the different “cities
within the city” which we isolate by decoupling the urban flows into activity-aware multilayer networks. (b)
We define the multilayer networks of human flows for each city (encoded by color) by stratifying flows
according to different macro-categories used in this work (see Methods). Each point corresponds to
integration and segregation measured after removing a specific layer of activities. The letter ‘T" marks values
associated to the removal of the transport layer, which strongly influence the urban functional connectivity
(see Fig. 6). (c) Average functional integration for different activity categories. We observe a relationship
between the average distance covered D in movement inside one layer and the value of integration (see
Additional file 1, Fig. 7 for segregation). The regression is done excluding the outlier the unclassified venues
“unknown” which removal appears not to influence a city’s functional integration

this analysis points out that is possible to close restaurants, leisure and commercial activ-
ities while keeping a city functional and, possibly, even more integrated. This perspective
provides new insight on the effects of restriction policies adopted during emergencies by
quantifying a hidden, systemic, social costs and benefits associated to the closure of dif-
ferent kind of activities in time of a pandemic emergency.

It is natural observing how the transport layer represents the backbone of a city or-
ganisation, but for some cities this effect is stronger than in others. To understand these
differences, in Fig. 6 we explore with more depth the difference in segregation and inte-
gration consequent to the removal of the transport layer. The effect is clear for the change
in segregation (panels (a) and (c)): the increase in segregation. consequent to layer re-
moval is proportional to how much flow pass though that layer. Things are, again, more
complicated when we observe integration: for some cities, the integration drops of ~ 50%
without the transport layer, while for others (notably Singapore, Jakarta and Istanbul) in-
tegration is unchanged, or even slightly increased, by the layer removal (panel (b)). These

three cities have also the transport layer characterised by the longest average link distance
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Figure 6 lllustrating the role of transport in building integration and reducing segregation. As observed in
Fig. 5(b), the removal of the transport layer modifies significantly a city segregation and integration. (a)
Segregation always increases after removing the transport layer. (b) Integration drops after removing the
transport layer for some cities (that may reach values as smaller as the half of the initial value) but remains
similar or even raises for other. (c) The raise in segregation grows linearly with the fraction of total flow
represented by in the transport layer. (d) The relative change in integration (GCEemoved — GCEfu)/ GCEgyy is not
simply linked to the length of the connections cut: while for seven cities it seems to follow a trend similar to
that pointed out in Fig. 5(c), for three cities where the average connection length of the transport layer is very
large strongly deviate from this trend

(panel (d)), and while for the other seven cities one might have dared to see a trend, similar
to that of Fig. 5(c), linking higher drop in integration to longer connections, the presence
of these three outliers suggests, another time, that microscopic details in the distribution
of flows of a functional network can play a major role in determining its robustness and

more general its organisation.

3 Discussion

Understanding how cities process information, here encoded by human flows, is of
paramount importance for designing more efficient and smart urban systems and com-
munities. By characterising at the same the structural and the functional organisation of
10 large urban systems in terms of well defined and normalised measures of network in-
tegration and segregation, we have shown how network-based analysis can support, and
further expand, ongoing discussions about and novel understanding provided by the ICT-
data driven quantitative urbanism [38].

From a modelling perspective, going beyond the antonymic dichotomy between inte-
gration and segregation by studying the Segregation/Integration diagrams allowed us to
expand our understanding of the interplay between the urban structure, social relation-
ships and human behaviour. This can be exemplified by three clear results. First, the iden-
tification of the dominant factor dominating this negative correlation (the edge density,

Page 10 of 17
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which is in turn a function of a city size) and forcing the deviations from it (the hierarchi-
cal structure of flows). Second, the correspondence of the empirical results with those of
Small World networks shows that for modelling urban system one has necessarily to go
beyond “first neighbour” transmission as long range interactions are extremely relevant to
reproduce the many salient features measured from empirical data. Third, we were able to
rightfully isolate, using this approach, the essential role played by the transportation layer
that is pivotal for both integration (thanks to its long distance connectivity) and segrega-
tion (thanks to its large flows).

Under this lens, many features of complex megacities can be therefore understood from
simple mechanisms related to geometric constraints and city’s characteristic size, with
larger cities tending to be more segregated and less integrated. More in details, for grow-
ing cities, it is expected a transition from a monocentric to a polycentric organisation,
characterised by a sub-linear growth of the number of hotspots with population [63]. Sim-
ilarly, for both urban structural and functional networks, we provide evidence that large
polycentric cities, which are characterised by a larger number of hotspots (although being
the growth sub-linear they have a smaller fraction of hotspots as shown in Additional file
1, Fig. 3(d)), appear to be more segregated and less integrated than smaller, and mono-
centric, cities. We have highlighted, however, that a city can be much more integrated
than what expected by its size if it display a low flow-hierarchy [74] and thus has more
direct connections between central and marginal areas. However, the interplay between
heterogeneities in the distribution of flows, spatial constraints, and the layered structure
of flows, might be responsible for the emergence of peculiar integrated/segregated struc-
tures that might be reflected in the functional organisation of the city. Future research in
this direction, including a wider spectrum of urban and non urban systems, is required to
gain more insights on this matter.

Finally, from a more methodological point of view, our analysis highlights the impor-
tance of data sources for the analysis of the interplay between the city and its main users,
i.e., the citizens. Thanks to the unique dataset of anonymised movements provided by
Foursquare and the easy access to street data [68], we have been able to gain novel insights
on urban and human behaviour in terms of interaction between structure and functional
organisation of the system. The availability of activity-aware information, in particular, al-
lowed the analysis of attacks targeted towards specific types of activities which unraveled
the fundamental importance of transport as integrator an urban system. This result is spe-
cially relevant for policy and decision-making in time of crisis, provide new quantitative
tools that allow one to identify a limited set of activities (commercial, restaurants, leisure)
which can be prioritised or temporary limited to achieve a desired amount of human flows
integrated across the city.

4 Methods

4.1 Limitations of this study

Our study is based on a large collection of user-generated access data to public venues.

As all sources of automatically collected social data, it is affected by a series of biases that

might influence our observations [76].

«+ Representativeness. The Foursquare user-base does not cover, naturally, the totality of

a city population. Some public figures are available online [77], from which we can
both get indirect estimates that about 13% [78] of adult social media users in the USA
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used Foursquare in 2018. Since the United States about 79% of adults used social
media in 2019 [79], that would make our samples for Chicago, Los Angeles and New
York City covering ~ 10% of the total adult population. Naturally not all users use it
regularly (see Inhomogeneity of users’ behaviour), and also the representativeness will
surely vary from country to country. To estimate how representativeness may
translate to other cities, we can use as a proxy the check-ins per capita in the cities
(see Table 1), which is more or less homogeneous, ranging between 0.8—0.9 for Asian
cities to the higher values of American cities (2.5 in Los Angeles and 3.7 in Chicago).
Using these proportions we can estimate that the total user base can be of the order of
2% in Asian cities.

« Demographic bias. The Foursquare user-base is mostly cantered around the age 18—34
and the male population is almost the double of females. The foursquare penetration
is also greater penetration among users with higher income [77].

« Inhomogeneity of users’ behaviour. Of course, not all users are active daily on
Foursquare. An empirical analysis [80] describing a dataset of Foursquare check-ins
collected in 2010 over 4 months via Twitter, with no spatial boundaries set, provides
hints for a dishomogeneous, but somehow limited, number of checkins per users.

o Subsampling and missing stops. As shown again in [80], the distribution of inter-time
between check-ins is long tailed. This can strongly bias the observed displacements
[81]. Flows in this analysis will often not correspond to real movement but they have
to be taken for what they are: subsequent checkins. For this reason, we opted to avoid
focusing on the temporal disaggregation of flows that Foursquare provided on base of
the hour-of-the-day and month of the arrival check-in. We decouple the functional
use of a city in different months of the year of the network only to test what happen by
sub-sampling the flow network.

+ Inhomogeneity of venues. Venues are not homogeneously distributed across the city,
with a larger densities in the city centres. Moreover, venues display a great
inhomogeneity in the number of check-ins they capture (see Additional file 1, Fig. 8).

+ Definition of city It is known that many urban measures may strongly depend on how
the city itself is defined [82]. In the dataset provided, cities administrative areas were
already selected (with the exception of Paris where it has been selected the “Grand
Paris” area). In Additional file 1, Fig. 9, we test robustness of our metrics to the
boundary definition by radially reducing the city area.

4.2 Geographic coarse-graining

We reconstruct the flows network by aggregating data over areal units of 500 m x 500 m, in
all 10 cities considered. Flows are reconstructed from subsequent anonymised check-ins
into Foursquare venues, ignoring the order (undirected network). Flows inside the same
area have been integrated into a self-loop link only if the check-ins were between two
different locations. Subsequent check-ins in the same location have been excluded from
the analysis. We reconstruct the structural networks using OSMnx [68], a python library
which provides a network object where nodes are the street intersection and links are
defined as the stretch of road between two subsequent intersections. We coarse grained
these street network to match the granularity imposed to the flow network. The short-
range nature of the street network provided by OSMnx makes that these coarse grained
structural maps are mostly lattice-like.
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4.3 Activity stratification

We use Foursquare’s rich system of categories and manually associate them to a reduced
number of macro-categories (food, lodging, tourism, work, religion, services, education,
health, sport, transport, entertainment, leisure, public, housing and commercial). We do
not use Foursquare Venue Category Hierarchy [83], except for venue icons in Fig. 1. The
few categories that did not fit any macro-category have been labelled as ‘unknown’ These
categories allow us to build “activity-aware multilayer networks’, where activities of dif-
ferent types are associated to different layers of our model. Flows between activities of
the same macro-category are encoded by intra-layer links, while flows between different
categories are encoded by inter-layer links.

4.4 Measuring functional integration

We measure to which extent a network is integrated in terms of communication, i.e., how
efficient nodes are, on average, in exchanging information, using an indicator based on the
concept of shortest path. Given two areal units i and j we can reasonably assume that the
efficiency ¢;; in their communication is inversely proportional to their distance d;. If dj;
is a topological distance, counting the number of links in a shortest-path from i to j, our
assumption means that the longer the path a piece of information has to travel, the more
inefficient will be the communication, since the probability that the message is corrupted
along the way increases. A global descriptor of the topological communication efficiency
[18] of a city is then the average pairwise efficiency of its nodes is the average shortest path
length in the network

E=——c—=Y —. 1)

4.5 Normalising functional integration of flow networks

For flow networks, like those analysed in this paper, given the additional information on
the strength of connections distances can be very different. If the flow between two nodes
is large, their distance should be, intuitively, small. For this reason, the distance averaged
has to be that of weighted shortest-paths, minimising the sum of costs along all paths be-
tween pairs of nodes. In a flow network with edge weights representing the intensity of
the connections, the costs of edges are the inverse of weights.

Unfortunately, (1) cannot be effortlessly generalised to weighted networks, since it de-
pends on the scale of weights. Latora and Marchiori proposed a weighted efficiency de-
scriptor in [84], rescaling the value of efficiency in [0, 1] considering an idealised proxy
considering an idealised proxy of G, Gigea, having maximum efficiency. However, that
finding the ideal proxy Gjgea of a network G for the normalisation of the weighted E(G) is
often ambiguous.

An universally valid solution for the normalisation of the global efficiency, capturing at
the same time information of link existence and link weights has been proposed in [71],
enabling the comparison of communication efficiency of disparate systems. The idea is
that each (weighted) shortest-path in the network has a length, which is the sum of links
costs along the path, and a total flow, which is the sum of the links weights. These path
flows ¢;; are strictly positive for each pair of nodes (i, ) in a connected network and can be
added to the original network as an artificial direct flow between i and j. In other words,
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to the network G are added artificial links representing all missing shortcuts between pair
of nodes, which allow to deliver the total flux through a shortest-path from origin to des-
tination in one topological-step.

A correct normalisation of E is then possible using this network Gigea resulting from a
physically-grounded enrichment procedure independent from the scale of flows and from
any metadata or the lack thereof. The normalised Global Communication Efficiency can
be then computed as:

GCE = E(G)/E(Gigeal)- (2)

4.6 Measuring functional segregation
A usual measure of network segregation, quantifying how strongly the units are organised
in into M non-overlapping blocks, is the modularity [72]

Q=) |:euu - (Z ew)Q], (3)

ueM veM

where e, is the proportion of links inside module #, while e, accounts for the connectiv-
ity between two distinct modules « and v. More specifically, our measure of segregation is
the maximum value Q* of the modularity that we find using the Louvain algorithm [85].
We also verify that the observed modularity is significant, by comparison with the values
of Q* computed over an ensemble of configuration models obtained reshuffling the net-
work (see Additional file 1, Tables II and III). Finally, note that here, instead, we used the
weights defined by flows. Values of Q* for weighted and unweighted networks are indeed
comparable, as opposite to what discussed above for E, and using weights here allowed us
to better discern the characteristics of different layers.

4.7 Synthetic network models
We use two standard spatial network models for our analysis.

We first consider a class of networks characterised by small average geodesic distance:
the Watts-Strogatz (WS) model. Starting from a regular graph, e.g., a two-dimensional lat-
tice, each link has a probability p of being rewired, that is removed and re-placed randomly
in the network. If p is large the resulting WS network will look more like an ER random
graph than the original lattice. WS networks are also highly clustered, where nodes tend
to form closed triangles. WS model are usually referred to as small-world networks.

Alternatively to WS, we study also the simplest network model actively involving the
spatial dimension model is the random geometric network (RGN), where nodes randomly
distributed in space are connected if they are closer than a fixed threshold distance. The
RGNSs share many important properties with regular lattices, in particular they are not
“small world”. For this reason, similarly to the WS case, here also for the RGN we perform

a rewiring with probability «.
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