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Abstract
We tackle the problem of classifying news articles pertaining to disinformation vs
mainstream news by solely inspecting their diffusion mechanisms on Twitter. This
approach is inherently simple compared to existing text-based approaches, as it
allows to by-pass the multiple levels of complexity which are found in news content
(e.g. grammar, syntax, style). As we employ a multi-layer representation of Twitter
diffusion networks where each layer describes one single type of interaction (tweet,
retweet, mention, etc.), we quantify the advantage of separating the layers with
respect to an aggregated approach and assess the impact of each layer on the
classification. Experimental results with two large-scale datasets, corresponding to
diffusion cascades of news shared respectively in the United States and Italy, show
that a simple Logistic Regression model is able to classify disinformation vs
mainstream networks with high accuracy (AUROC up to 94%). We also highlight
differences in the sharing patterns of the two news domains which appear to be
common in the two countries. We believe that our network-based approach provides
useful insights which pave the way to the future development of a system to detect
misleading and harmful information spreading on social media.

Keywords: Computational social science; Disinformation; Multi-layer networks;
Twitter

1 Introduction
In recent years there has been increasing interest in the issue of disinformation spreading
on online social media. Global concern over false (or “fake”) news as a threat to modern
democracies has been frequently raised—ever since 2016 US Presidential elections—in
correspondence of events of political relevance, where the proliferation of manipulated
and low-credibility content attempts to drive and influence people’s opinions [1–4].

Researchers have highlighted several drivers for the diffusion of such malicious phe-
nomenon, which include human factors (confirmation bias [5], naive realism [6]), algo-
rithmic biases (filter bubble effect [1]), the presence of deceptive agents on social platforms
(bots and trolls [7]) and, lastly, the formation of echo chambers [8] where people polarize
their opinions as they are insulated from contrary perspectives.
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The problem of automatically detecting online disinformation news has been typically
formulated as a binary classification task (i.e. credible vs non-credible articles), and tack-
led with a variety of different techniques, based on traditional machine learning and/or
deep learning, which mainly differ in the dataset and the features they employ to perform
the classification. We may distinguish three approaches: those built on content-based fea-
tures, those based on features extracted from the social context, and those which combine
both aspects. A few main challenges hinder the task, namely the impossibility to manu-
ally verify all news items, the lack of gold-standard datasets and the adversarial setting in
which malicious content is created [4, 7, 9].

In this work we follow the direction pointed out in a few recent contributions on the dif-
fusion of disinformation compared to traditional and objective information. These con-
tributions have shown that false news spread faster and deeper than true news [10], and
that social bots and echo chambers play an important role in the diffusion of malicious
content [7, 8]. Therefore, we focus on the analysis of spreading patterns which naturally
arise on social platforms as a consequence of multiple interactions between users, due to
the increasing trend in online sharing of news [1].

We propose a classification framework based on a multi-layer formulation of Twitter
diffusion networks, extending the results of our previos work [11]. For each article we
disentangle different social interactions on Twitter, namely tweets, retweets, mentions,
replies and quotes, to accordingly build a diffusion network composed of multiple layers
(one for each type of interaction), and we compute structural features separately for each
layer. We pick a set of global network properties from the network science toolbox which
can be qualitatively explained in terms of social dimensions and allow us to encode dif-
ferent networks with a tuple of features. These include traditional indicators, e.g. network
density, number of strong/weak connected components, and diameter, and more elabo-
rated ones such as main K-core number [12] and structural virality [13]. Our work is driven
by the following research questions:

• RQ1: Does a multi-layer representation of Twitter diffusion networks yield a
significant advance in terms of classification accuracy over a conventional single-layer
diffusion network?

• RQ2: Which of the above features, and which layer, are the most effective in the
classification task?

We perform classification experiments with an off-the-shelf Logistic Regression model
on two different datasets of mainstream and disinformation news shared on Twitter re-
spectively in the United States and in Italy during 2019. In the former case we also per-
form multiple disaggregated tests to control for political biases inherent to different news
sources, referring to the procedure proposed in [3] to label different outlets. Overall we
show that we are able to classify credible vs non-credible diffusion networks (and conse-
quently news articles) with high accuracy (AUROC up to 94%), also when controlling for
the political bias of sources (and training only on left-biased or right-biased articles). We
observe that the layer of mentions alone conveys useful information for the classification,
denoting a different usage of this functionality when sharing news belonging to the two
news domains. We also show that the most discriminative features, which are relative to
the breadth and depth of the largest cascades in different layers, are the same across the
two countries.



Pierri et al. EPJ Data Science            (2020) 9:35 Page 3 of 17

As our datasets are collected in different countries, we also investigate whether disin-
formation can be detected independently from the country where it originates. Cross-
country experiments show that our methodology fails to distinguish reliable vs non-
reliable news regardless of where it originates from. We argue that this might be due either
to the high imbalance of data or to the class discrepancies which are country specific. It
emerges that a classifier based on our methodology should be trained in a country-wise
fashion.

The outline of this paper is the following: we first provide a description of related litera-
ture; next, we describe our methodology acknowledging its intrinsic limitations; then, we
provide experimental results and finally we draw conclusions and future directions.

2 Related literature
A deep learning framework for detecting fake news cascades is proposed in [14], where
the authors refer to [10] in order to collect Twitter cascades pertaining to verified false
and true rumors. They employ geometric deep learning, a novel paradigm for graph-based
structures, to classify cascades based on four categories of features, such as user profile,
user activity, network and spreading, and content. They also observe that a few hours of
propagation are sufficient to distinguish false news from true news with high accuracy.

Diffusion cascades on Weibo and Twitter are analyzed in [15], where the authors fo-
cus on highlighting different topological properties, such as the number of hops from the
source or the heterogeneity of the network, to show that fake news shape diffusion net-
works which are highly different from credible news, even at early stages of propagation.

In this work, we consider the results of [11] as our baseline. In that paper, we classi-
fied US news articles leveraging Twitter diffusion networks. Here we further build on that
approach by exploiting a disaggregated multi-layer representation of Twitter social in-
teractions, in order to take advantage of a larger and more specific set of features. The
methodology used in [11] has several analogies with [16], where authors successfully de-
tect Twitter astroturfing content, i.e. political campaigns disguised as spontaneous grass-
roots, with a machine learning framework based on network features.

3 Methodology
3.1 Disinformation and mainstream news
In this work we formulate our classification problem as follows: given two classes of news
articles, respectively D (disinformation) and M (mainstream), a set of news articles Ai and
associated class labels Ci ∈ {D, M}, and, for each article Ai, a set of tweets �i = {T1

i , T2
i , . . .}

each containing an Uniform Resource Locator (URL) pointing explicitly to article Ai, pre-
dict the class Ci of each article Ai.

There is huge debate and controversy on a proper taxonomy of malicious and deceptive
information [2–4, 11, 17–19]. In this work we prefer the term disinformation to the more
specific fake news to refer to a variety of misleading and harmful information. Therefore,
we follow a source-based approach, a consolidated strategy also adopted by [2, 3, 7, 18], in
order to obtain relevant data for our analysis. We collected:

1. Disinformation articles, published by websites which are known for producing
low-credibility content, false and misleading news reports as well as extreme
propaganda and hoaxes, and flagged as such by reputable journalists and
fact-checkers;
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Figure 1 Distribution of the number of articles per source for US (a) disinformation and (b) mainstream news.
Colors indicate the political bias label of each source

2. Mainstream news, referring to traditional news outlets which deliver factual and
credible information.

3.2 US dataset
We collected tweets associated to a dozen US mainstream news websites, i.e. most trusted
sources described in [20], with the Streaming API, and we referred to Hoaxy API [18]
for what concerns tweets containing links to 100+ US disinformation outlets. We filtered
out articles associated to less than 50 tweets to reduce noisy observations. The resulting
dataset contains overall ∼1.7 million tweets for mainstream news, collected in a period of
three weeks (February 25th, 2019–March 18th, 2019), which are associated to 6978 news
articles, and ∼1.6 million tweets for disinformation, collected in a period of three months
(January 1st, 2019–March 18th, 2019) for the sake of balance of the two classes, which hold
5775 distinct articles. Diffusion censoring effects [13] were correctly taken into account
in both collection procedures. We provide in Fig. 1 the distribution of articles by source
and political bias for both news domains.

As it is reported that conservatives and liberals exhibit different behaviors on online
social platforms [21–23], we further assigned a political bias label to different US outlets
(and therefore news articles) following the procedure described in [3]. In order to assess
the robustness of our method, we performed classification experiments by training only
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Figure 2 Distribution of the number of articles per source for Italian (a) mainstream and (b) disinformation
news

on left-biased (or right-biased) outlets of both disinformation and mainstream domains
and testing on the entire set of sources. As additional test, we excluded particular sources
that outweigh the others in terms of samples to avoid over-fitting.

3.3 Italian dataset
For what concerns the Italian scenario we first collected tweets with the Streaming API in
a 3-week period (April 19th, 2019–May 5th, 2019), filtering those containing URLs point-
ing to Italian official newspapers websites as described in [24, 25]; these correspond to
the list provided by the association for the verification of newspaper circulation in Italy
(Accertamenti Diffusione Stampa).a We instead referred to the dataset provided by [26]
to obtain a set of tweets, collected continuously since January 2019 using the same Twitter
endpoint, which contain URLs to 60+ Italian disinformation websites (the list is available
in the Additional file 1); these were obtained by using black-lists from Italian fact-checking
websites and agencies (PagellaPolitica.it, Bufale.net and Butac.it). In order to get balanced
classes, we retained data collected in a longer period w.r.t to mainstream news (April 5th,
2019–May 5th, 2019). In both cases we filtered out articles with less than 50 tweets; overall
this dataset contains ∼160k mainstream tweets, corresponding to 227 news articles, and
∼100k disinformation tweets, corresponding to 237 news articles. We provide in Fig. 2 the
distribution of articles according to distinct sources for both news domains. As in the US
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Table 1 Breakdown of US and IT datasets in terms of different Twitter interactions

Country Class Mentions Replies Retweets Quotes Tweets

United States Mainstream 87,183 30,745 1,482,261 29,365 409,544
Disinformation 123,047 22,599 1,207,243 94,027 220,891

Italy Mainstream 1578 473 18,794 1378 4832
Disinformation 929 186 35,323 3192 5302

dataset, we took into account censoring effects [13] by excluding tweets published before
(left-censoring) or after two weeks (right-censoring) from the beginning of the collection
process.

The different volumes of news shared on Twitter in the two countries are due both to
the different population size of US and Italy (320 vs 60 million) but also to the different
usage of Twitter platform (and social media in general) for news consumption [27]. Both
datasets analyzed in this work are available from the authors on request.

3.4 Breakdown of Twitter interactions
We disentangle different social interactions on Twitter according to five categories:

Mention (M): Including in a tweet another account’s Twitter user name, preceded by
the “@” symbol;
Reply (R): Responding to another account’s tweet;
Retweet (RT): Re-posting a tweet;
Quote (Q): Retweeting with the addition of a comment;
Tweet (T): Posting a tweet containing an article URL.

We show in Table 1 the breakdown of our datasets for what concerns cardinalities of differ-
ent Twitter interactions across news domains. We notice that news sharing mostly involves
retweeting and tweets in both countries and for both classes of news articles.

For what concerns different Twitter actions, users primarily interact with each other us-
ing retweets and mentions [22]. The former are the main engagement activity and act as
a form of endorsement, allowing users to rebroadcast content generated by other users
[28]. Besides, when node B retweets node A we have an implicit confirmation that in-
formation from A appeared in B’s Twitter feed [16]. Quotes are simply a special case of
retweets with comments. Mentions usually include personal conversations as they allow
someone to address a specific user or to refer to an individual in the third person; in the
first case they are located at the beginning of a tweet and they are known as replies, other-
wise they are put in the body of a tweet [22]. The network of mentions is usually seen as a
stronger version of interactions between Twitter users, compared to the traditional graph
of follower/following relationships [29].

3.5 Building diffusion networks
Using the notation described in [30] we employ a multi-layer representation for Twitter
diffusion networks. Sociologists have indeed recognized decades ago that it is crucial to
study social systems by constructing multiple social networks where different types of
ties among the same individuals are used [31]. Therefore, for each news article we build a
multi-layer diffusion network composed of four different layers, one for each type of social
interaction on Twitter platform, namely retweet (RT), reply (R), quote (Q) and mention
(M), as shown in Fig. 3. These networks are not necessarily node-aligned, i.e. users might
be missing in some layers. We do not insert “dummy” nodes to represent users not active in
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Figure 3 A visualization of a Twitter multi-layer
diffusion network with four layers

a given layer as it would have severe impact on the global network properties (e.g. number
of weakly connected components). Alternatively one may look at each multi-layer diffu-
sion network as an ensemble of individual graphs [30]; since global network properties
are computed separately for each layer, they are not affected by the presence of inter-layer
edges, which nonetheless allow the diffusion of information across layers.

In our multi-layer representation, each layer is a directed graph where we add edges and
nodes for each tweet of the layer type. While the direction of information flow—thus the
edge direction—is unambiguous for some layers, e.g. RT, the same is not true for others.
Here we follow the conventional approach described e.g. in [7, 16, 19, 22] to define the
direction of edges. For the RT layer: whenever user a retweets account b we first add nodes
a and b if not already present in the RT layer, then we build an edge that goes from b to a
if it does not exist. Similarly for the other layers: for the R layer edges go from user a (who
replies) to user b, for the Q layer edges go from user b (who is quoted by) to user a and for
the M layer edges go from user a (who mentions) to user b. Note that, by construction,
our layers do not include isolated nodes; they correspond to “isolated tweets”, i.e. tweets
which have not originated any interactions with other users. However, they are present in
our dataset, and their number is exploited for classification, as described below.

3.6 Global network properties
We used a set of global network indicators which encode each network layer by a tuple
of features. Then we simply concatenated tuples as to represent each multi-layer network
with a single feature vector. We used the following global network properties:

1. Number of Strongly Connected Components (SCC): a Strongly Connected
Component of a directed graph is a maximal (sub)graph where for each pair of
vertices u, v there is a path in each direction (u → v, v → u).

2. Size of the Largest Strongly Connected Component (LSCC): the number of nodes in
the largest strongly connected component of a given graph.

3. Number of Weakly Connected Components (WCC): a Weakly Connected Component
of a directed graph is a maximal (sub)graph where for each pair of vertices (u, v) there
is a path u ↔ v ignoring edge directions.

4. Size of the Largest Weakly Connected Component (LWCC): the number of nodes in
the largest weakly connected component of a given graph.
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Figure 4 Two illustrative examples of diffusion layers. Left: The same news spreads, in a pure top-down
broadcast manner, along two distinct cascades. Thus, SCC equals the number of nodes, since each strongly
connected component is a single node, while WCC is the number of distinct cascades. Right: The two
cascades merge in a common node (thus WCC = 1) and, additionally, mono-directionality is broken by a loop
(thus SCC is less than the number of nodes)

5. Diameter of the Largest Weakly Connected Component (DWCC): the largest distance
(number of edges of the shortest path) between two nodes in the (undirected version
of ) largest weakly connected component of a graph.

6. Average Clustering Coefficient (CC): the average of the local clustering coefficients of
all nodes in a graph; the local clustering coefficient of a node quantifies how close its
neighbourhood is to being a complete graph (or a clique). It is computed according to
[32].

7. Main K-core Number (KC): a K-core [12] of a graph is a maximal sub-graph that
contains nodes of internal degree K or more; the main K-core number is the highest
value of K (in directed graphs the total degree is considered).

8. Density (d): the density for directed graphs is d = |E|
|V ||V –1| , where |E| is the number of

edges and |V | is the number of vertices in the graph; the density equals 0 for a graph
without edges and 1 for a complete graph.

9. Structural virality of the largest weakly connected component (SV): this measure is
defined in [13] as the average distance between all pairs of nodes in a cascade tree or,
equivalently, as the average depth of nodes, averaged over all nodes in turn acting as a
root; for |V | > 1 vertices, SV = 1

|V ||V –1|
∑

i
∑

j dij where dij denotes the length of the
shortest path between nodes i and j. This is equivalent to compute the Wiener’s
index [33] of the graph and multiply it by a factor 1

|V ||V –1| . In our case we computed it
for the undirected equivalent graph of the largest weakly connected component,
setting it to 0 whenever |V | = 1.

We used networkx Python package [34] to compute all features. Whenever a layer is
empty, we simply set to 0 all its features. In addition to computing the above nine features
for each layer, we added two indicators for encoding information about isolated tweets,
namely the number T of isolated tweets (containing URLs to a given news article) and the
number U of unique users authoring those tweets. Therefore, a diffusion network for a
given article is represented by a vector with 9 · 4 + 2 = 38 entries.

3.7 Interpretation of network features and layers
The aforementioned network properties can be qualitatively explained in terms of social
footprints as follows (see the illustrative examples in Fig. 4): in this specific class of net-
works, SCC correlates with the size (i.e. number of nodes) of the diffusion layer, as the
propagation of news occurs in a broadcast manner in most cases, i.e. re-tweets domi-
nate on other interactions, while LSCC allows to distinguish cases where such mono-
directionality is somehow broken. WCC equals (approximately) the number of distinct
diffusion cascades pertaining to each news article, with exceptions corresponding to those
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cases where some cascades merge together via Twitter interactions such as mentions,
quotes and replies, and accordingly LWCC and DWCC equals the size and the depth of
the largest cascade. CC corresponds to the level of connectedness of neighboring users
in a given diffusion network whereas KC identifies the set of most influential users in a
network [19]. Finally, d describes the proportions of potential connections between users
which are actually activated and SV indicates whether a news item has gained popularity
with a single and large broadcast or in a more viral fashion through multiple generations
[13].

3.8 Limitations
As mentioned beforehand, we use a coarse approach to label articles at the source level
relying on a huge corpus of literature on the subject. We believe that this is currently the
most reliable classification approach, although it entails obvious limitations, as disinfor-
mation outlets may also publish true stories and likewise misinformation is sometimes
reported on mainstream media [4]. Also, given the choice of news sources, we cannot test
whether our methodology is able to classify disinformation vs factual but not mainstream
news which are published on niche, non-disinformation outlets [11].

Another crucial aspect in our approach is the capability to fully capturing sharing cas-
cades on Twitter associated to news articles. It has been reported [35] that the Twitter
streaming endpoint filters out tweets matching a given query if they exceed 1% of the
global daily volumeb of shared tweets, which nowadays is approximately 5 · 108; however,
as we always collected less than 106 tweets per day, we did not incur in this issue and we
thus gathered 100% of tweets matching our query.

We built Twitter diffusion networks using an approach widely adopted in the literature
[3, 7, 19]. We remark that there is an unavoidable limitation in Twitter Streaming API,
which does not allow to retrieve true re-tweeting cascades because re-tweets always point
to the original source and not to intermediate re-tweeting users [10, 13]; thus we adopt
the only viable approach based on Twitter’s public availability of data. However, by dis-
entangling different interactions with multiple layers we potentially reduce the impact of
this limitation on the global network properties compared to the approach used in our
baseline.

Finally, a limitation of the present work is the lack of a direct comparison of our method-
ology with other techniques, an exercise which boils down to assessing several classifica-
tion metrics on the same dataset(s). As thoroughly discussed in [36], the problem of reli-
ably comparing fake-news classifiers is open and faces many types of challenges that go out
the scope of this work. We just mention that the performance of our classification frame-
work is quantitatively comparable (in terms of AUROC value) to that of state-of-the-art
deep learning models for fake news detection [14, 37]. However, this result is only indica-
tive, because obtained on different datasets and, in one case [37], with different focus of
the classification task.

4 Experiments
4.1 Setup
We performed classification experiments using a basic off-the-shelf classifier, namely Lo-
gistic Regression (LR) with L2 penalty; this also allows us to compare results with our
baseline [11]. We applied a standardization of the features and we used the default config-
uration for parameters as described in scikit-learn package [38]. We also tested other
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Table 2 Composition of the US dataset according to domain (mainstream vs disinformation), size
class (number of unique users who interact with a given news) and political bias

No. mainstream No. disinformation

Size class Left Right Tot. Left Right Tot.

[0, 100) 774 2746 4177 379 2086 2640
[100, 1000) 1712 464 2605 654 1946 2900
[1000,+∞) 115 54 196 19 162 235
[0, +∞) 4573 1292 6978 1052 4194 5575

Table 3 Composition of the Italian dataset according to domain (mainstream vs disinformation) and
size class (number of unique users who interact with a given news)

Size class No. mainstream No. disinformation

[0, 100) 165 79
[100, 1000) 61 158
[0, +∞) 226 237

classifiers (such as K-Nearest Neighbors, Support Vector Machines and Random Forest)
but we omit results as they give comparable performance. We remark that our goal is to
show that a very simple machine learning framework, with no parameter tuning and op-
timization, allows for accurate results with our network-based approach.

We used the following evaluation metrics to assess the performance of different classi-
fiers (TP = true positives, FP = false positives, FN = false negatives):

1. Precision = TP
TP+FP , the ability of a classifier not to label as positive a negative sample.

2. Recall = TP
TP+FN , the ability of a classifier to retrieve all positive samples.

3. F1-score = 2 Precision·Recall
Precision+Recall , the harmonic average of Precision and Recall.

4. Area Under the Receiver Operating Characteristic curve (AUROC): the Receiver
Operating Characteristic (ROC) curve [39], which plots the TP rate versus the FP
rate, shows the ability of a classifier to discriminate positive samples from negative
ones as its threshold is varied; the AUROC value is in the range [0, 1], with the
random baseline classifier holding AUROC = 0.5 and the ideal perfect classifier
AUROC = 1; thus larger AUROC values (and steeper ROCs) correspond to better
classifiers.

In particular we computed so-called macro average—simple unweighted mean—of these
metrics evaluated considering both labels (disinformation and mainstream). We employed
stratified shuffle split cross validation (with 10 folds) to evaluate performance.

Finally, we partitioned networks according to the total number of unique users in-
volved in the sharing, i.e. the number of nodes in the aggregated network represented
with a single-layer representation considering together all layers and also isolated tweets.
A breakdown of both datasets according to size class (and political biases for the US sce-
nario) is provided in Table 2 and Table 3.

4.2 Classification performance
In Table 4 we first provide classification performance on the US dataset for the LR classifier
evaluated on the size classes described in Table 2. We can observe that in all instances our
methodology performs much better than a random classifier (50% AUROC), with AUROC
values above 85% in all cases.

For what concerns political biases, as the classes of mainstream and disinformation net-
works are not balanced (e.g., 1292 mainstream and 4149 disinformation networks with



Pierri et al. EPJ Data Science            (2020) 9:35 Page 11 of 17

Table 4 Performance of the LR classifier (using a multi-layer approach) evaluated on different size
classes on both the US (top rows) and the Italian (bottom rows) dataset

Size class AUROC Precision Recall F1-score

(US) [0, 100) 0.87 ± 0.01 0.79 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
(US) [100, 1000) 0.93 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01
(US) [1000,+∞) 0.94 ± 0.02 0.86 ± 0.05 0.86 ± 0.05 0.86 ± 0.05
(US) [0, +∞) 0.88 ± 0.01 0.81 ± 0.01 0.80 ± 0.01 0.80 ± 0.01
(IT) [0, 100) 0.89 ± 0.06 0.81 ± 0.11 0.82 ± 0.11 0.81 ± 0.11
(IT) [100, 1000) 0.86 ± 0.07 0.83 ± 0.08 0.78 ± 0.06 0.80 ± 0.06
(IT) [0, +∞) 0.90 ± 0.02 0.81 ± 0.05 0.81 ± 0.05 0.81 ± 0.05

Figure 5 AUROC values for the Balanced Random Forest classifier trained on left-biased (red) and
right-biased (blue) news articles in the US dataset, and tested on the entire dataset. Error bars indicate the
standard deviation of AUROC values over different folds of the cross validation

right bias) we employ a Balanced Random Forest with default parameters (as provided
in imblearn Python package [40]). In order to test the robustness of our methodology,
we trained only on left-biased networks or right-biased networks and tested on the entire
set of sources (relative to the US dataset); we provide a comparison of AUROC values for
both biases in Fig. 5. We can notice that our multi-layer approach still entails significant
results, thus showing that it can accurately distinguish mainstream news from disinfor-
mation regardless of the political bias. We further corroborated this result with additional
classification experiments, that yield similar performance, in which we excluded from the
training/test set two specific sources (one at a time and both at the same time) that out-
weigh the others in terms of data samples—respectively “breitbart.com” for right-biased
sources and “politicususa.com” for left-biased ones [36].

We performed classification experiments on the Italian dataset using the LR classifier
and different size classes (notice that [1000, +∞) is empty for the Italian dataset); we show
results for different evaluation metrics in Table 4. We can see that despite the limited
number of samples (one order of magnitude smaller than the US dataset) the performance
is overall in accordance with the US scenario.

As shown in Table 5, we obtain results which are much better than our baseline in all
size classes:

• In the US dataset our multi-layer methodology performs much better in all size
classes except for large networks ([1000, +∞) size class), reaching up to 13%
improvement on smaller networks ([0, 100) size class);
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Table 5 Comparison of performance of our multi-layer approach vs the baseline (single-layer). We
show AUROC values for the LR classifier evaluated on different size classes of both US and IT datasets

Size class Single-layer Multi-layer

(US) [0, 100) 0.74 ± 0.02 0.87 ± 0.01
(US) [100, 1000) 0.85 ± 0.02 0.93 ± 0.01
(US) [1000,+∞) 0.93 ± 0.03 0.94 ± 0.02
(US) [0, +∞) 0.78 ± 0.02 0.88 ± 0.01
(IT) [0, 100) 0.77 ± 0.08 0.89 ± 0.06
(IT) [100, 1000) 0.66 ± 0.14 0.86 ± 0.07
(IT) [0, +∞) 0.74 ± 0.12 0.90 ± 0.02

Table 6 Different evaluations metrics for LR classifier evaluated on different size classes of the US
dataset and trained using features separately for each layer. Best scores for each row are written in
bold

Size class Metric Quotes Retweets Mentions Replies

[0, 100) AUROC 0.75 ± 0.02 0.63 ± 0.02 0.75 ± 0.02 0.61 ± 0.02
Precision 0.71 ± 0.02 0.59 ± 0.02 0.70 ± 0.02 0.60 ± 0.04
Recall 0.66 ± 0.01 0.55 ± 0.01 0.67 ± 0.01 0.54 ± 0.02
F1-score 0.66 ± 0.02 0.53 ± 0.02 0.68 ± 0.02 0.50 ± 0.06

[100, 1000) AUROC 0.81 ± 0.02 0.63 ± 0.02 0.81 ± 0.02 0.65 ± 0.03
Precision 0.73 ± 0.02 0.61 ± 0.02 0.75 ± 0.02 0.65 ± 0.02
Recall 0.73 ± 0.02 0.60 ± 0.02 0.75 ± 0.02 0.62 ± 0.02
F1-score 0.73 ± 0.02 0.60 ± 0.02 0.75 ± 0.02 0.60 ± 0.02

[1000,+∞) AUROC 0.85 ± 0.08 0.62 ± 0.08 0.84 ± 0.04 0.66 ± 0.06
Precision 0.80 ± 0.08 0.61 ± 0.08 0.75 ± 0.06 0.61 ± 0.10
Recall 0.80 ± 0.08 0.60 ± 0.07 0.75 ± 0.06 0.59 ± 0.07
F1-score 0.79 ± 0.08 0.59 ± 0.08 0.75 ± 0.06 0.58 ± 0.09

[0, +∞) AUROC 0.76 ± 0.01 0.62 ± 0.01 0.77 ± 0.01 0.59 ± 0.04
Precision 0.70 ± 0.01 0.58 ± 0.01 0.73 ± 0.01 0.59 ± 0.05
Recall 0.69 ± 0.01 0.56 ± 0.01 0.71 ± 0.01 0.55 ± 0.03
F1-score 0.69 ± 0.01 0.53 ± 0.01 0.71 ± 0.01 0.52 ± 0.05

• In the IT dataset our multi-layer methodology outperforms the baseline in all size
classes, with the maximum performance gain (20%) on medium networks ([100, 1000)
size class); the baseline generally reaches worst performance compared to the US
scenario.

4.3 Layer importance analysis
In order to understand the impact of each layer on the performance of classifiers, we per-
formed additional experiments considering separately each layer (we ignored T and U
features relative to isolated tweets).

In Table 6 we show metrics for each layer and all size classes, computed with a 10-fold
stratified shuffle split cross validation, evaluated on the US dataset; in Fig. 6 we show AU-
ROC values for each layer compared with the general multi-layer approach. We can notice
that both Q and M layers alone capture adequately most of discrepancies of the two dis-
tinct news domains in the United States as they obtain good results with AUROC values in
the range 75%–86%; these are comparable with those of the multi-layer approach which,
nevertheless, outperforms them across all size classes.

In the Italian dataset we observe that the M layer obtains comparable performance w.r.t
the multi-layer approach for what concerns small networks and the dataset altogether,
whereas the RT layer performs better on large networks (see Table 7 and Fig. 7). We also
notice higher values in standard deviations of performance metrics which are likely due
to the limited size of the training/test data.
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Figure 6 AUROC values for the LR classifier (evaluated on different size classes of the US dataset) trained
using different layers separately and together (our multi-layer approach). Error bars indicate the standard
deviation of AUROC values over different folds of the cross validation

Table 7 Different evaluations metrics for LR classifier evaluated on different size classes of the IT
dataset and trained using features separately for each layer. Best scores for each row are written in
bold

Size class Metric Quotes Retweets Mentions Replies

[0, 100) AUROC 0.49 ± 0.12 0.73 ± 0.08 0.74 ± 0.06 0.49 ± 0.09
Precision 0.34 ± 0.00 0.61 ± 0.15 0.58 ± 0.08 0.34 ± 0.00
Recall 0.50 ± 0.00 0.63 ± 0.13 0.57 ± 0.07 0.50 ± 0.00
F1-score 0.40 ± 0.00 0.61 ± 0.13 0.57 ± 0.07 0.40 ± 0.00

[100, 1000) AUROC 0.64 ± 0.10 0.80 ± 0.07 0.62 ± 0.11 0.51 ± 0.07
Precision 0.59 ± 0.18 0.77 ± 0.13 0.74 ± 0.15 0.66 ± 0.18
Recall 0.56 ± 0.08 0.67 ± 0.10 0.64 ± 0.08 0.56 ± 0.07
F1-score 0.55 ± 0.11 0.67 ± 0.11 0.65 ± 0.10 0.56 ± 0.08

[0, +∞) AUROC 0.72 ± 0.08 0.72 ± 0.06 0.82 ± 0.07 0.51 ± 0.05
Precision 0.66 ± 0.09 0.75 ± 0.06 0.76 ± 0.06 0.53 ± 0.06
Recall 0.66 ± 0.09 0.70 ± 0.04 0.75 ± 0.06 0.51 ± 0.03
F1-score 0.66 ± 0.09 0.70 ± 0.04 0.75 ± 0.06 0.47 ± 0.04

4.4 Feature importance analysis and cross-country experiments
We further investigated the importance of each feature by performing a χ2 test, with 10-
fold stratified shuffle split cross validation, considering the entire range of network sizes
[0, +∞). We show the Top-5 most discriminative features for each country in Table 8.

We find exactly the same set of features (with different rankings in the Top-3) in both
countries; these correspond to two global network properties—LWCC, which indicates
the size of the largest cascade in the layer, and SCC, which correlates with the size of the
layer (ρ ≈ 0.99, with p ≈ 0 in all cases)—associated to the same set of layers (Q, RT and
M).

We further performed a χ2 test to highlight the most discriminative features in the M
layer of both countries, which performed equally well in the classification task as pre-
viously highlighted; also in this case we focused on the entire range of network sizes
[0, +∞). Interestingly, we discovered exactly the same set of Top-3 features in both coun-
tries, namely LWCC, SCC and DWCC (which indicates the depth of the largest cascade
in the layer). We performed a Kolmogorov–Smirnov two-sample test to assess whether
distributions of these features are statistically equivalent across the two news domains;
the hypothesis was rejected in all cases at α = 0.05.
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Figure 7 AUROC values for the LR classifier (evaluated on different size classes of the IT dataset) trained using
different layers separately and together (our multi-layer approach). Error bars indicate the standard deviation
of AUROC values over different folds of the cross validation

Table 8 Top-5 most discriminative features according to χ2 test evaluated on both US and IT
datasets (considering networks in the [0, +∞) size class)

Rank US IT

#1 SCC (Quotes) LWCC (Retweets)
#2 LWCC (Retweets) SCC (Retweets)
#3 SCC (Retweets) SCC (Quotes)
#4 LWCC (Quotes) LWCC (Quotes)
#5 LWCC (Mentions) LWCC (Mentions)

The similarities evidenced so far in both countries—i.e., classification performance of
single layers and features importance—might suggest that the two news domains exhibit
discrepancies which are geographic-independent. We further investigated this hypoth-
esis by testing the performance of both LR and Balanced Random Forest classifiers in
several cross-country settings, e.g. training on the US dataset and testing on the Italian
(and viceversa), performing feature normalization either over the entire data or separately
for training and test sets, to investigate whether we can classify disinformation vs main-
stream news regardless of the country where they originate. Interestingly, performance is
in all cases worse or equal than those of a random classifier (AUROC = 50%); this might be
due either to the high imbalance of data across the two countries, or most likely suggests
that sharing patterns of the two news domains exhibit coupled dissimilarities which are
very country specific.

5 Conclusions
In this work we tackled the problem of the automatic classification of news articles in
two domains, namely mainstream and disinformation news, with a language-independent
approach which is based solely on the diffusion of news items on Twitter social platform.
We disentangled different types of interactions on Twitter to accordingly build a multi-
layer representation of news diffusion networks, and we computed a set of global network
properties—separately for each layer—in order to encode each network with a tuple of
features. Our goal was to investigate whether a multi-layer representation performs better
than an aggregated one [11], and to understand which of the features, observed at given
layers, are most effective in the classification task.



Pierri et al. EPJ Data Science            (2020) 9:35 Page 15 of 17

Experiments with an off-the-shelf classifier such as Logistic Regression on datasets per-
taining to two different media landscapes (US and Italy) yield very accurate classification
results (AUROC up to 94%), also when controlling for the different political bias of news
sources, which are far better than our baseline [11] with improvements up to 20%. Classi-
fication performance using individual layers shows that the layer of mentions alone entails
better performance w.r.t. other layers in both countries, pointing in both cases to a pecu-
liar usage of this type of Twitter interaction across the two domains.

We also highlighted the most discriminative features across different layers in both
countries; we noticed the exact same set of features, suggesting, at first glance, that differ-
ences between the two news domains might be country-independent and rather due only
to the typology of content shared. However, the two news domains exhibit coupled dissim-
ilarities in sharing patterns which appear to be very country specific, and our methodology
fails to detect disinformation regardless of where it originates.

Overall, our results prove that the topological features of multi-layer diffusion networks
might be effectively exploited to detect online disinformation. Notice that we do not deny
the presence of deceptive efforts to orchestrate the regular spread of information on social
media via content amplification and manipulation [41, 42]. On the contrary, we postulate
that such hidden forces might play to accentuate the discrepancies between the diffusion
patterns of disinformation and mainstream news (and thus to make our methodology ef-
fective).

In the future we aim to further investigate two main directions: (1) employ temporal net-
works to represent news diffusion and apply classification techniques (e.g. recurrent neu-
ral networks) that take into account the sequential aspect of data; (2) leverage our network-
based features in addition to state-of-the-art text-based approaches for “fake news” detec-
tion in order to deliver a real-world system to detect misleading and harmful information
spreading on social media.
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