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the individual or household level by using survey methods. However, population
flows during disasters are not just the aggregation of individuals' decisions, but a
result of complex interactions with other individuals and the environment. We
propose a method to model evacuation flows and reveal the patterns of evacuation
flows at different spatial scales. Specifically, we gathered large-scale geotagged
tweets during Hurricane Irma to conduct an empirical study. First, we present a
method to characterize evacuation flows at different geographic scales: the state
level, considering evacuation flows across southern states affected by Irma; the
urban/rural area level, and the county level. Then we demonstrate results on the
predictability of evacuation flows in the most affected state, Florida, by using the
following environmental factors: the destructive force of the hurricane, the
socioeconomic context, and the evacuation policy issued for counties. Feature
analyses show that distance is a dominant predictive factor with counties that are
geographically closer generally having larger evacuation flows. Socioeconomic levels
are positively related to evacuation flows, with popular destinations associated to
higher socioeconomic levels. The results presented in this paper can help decision
makers to better understand population evacuation behaviors given certain
environmental features, which in turn will aid in the design of efficient and informed
preparedness and response strategies.
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1 Introduction

Natural disasters are extreme events that can incur damage to the physical environment
and infrastructures, which might, in turn, cause millions of losses and affect the routine
life of residents [1]. With accurate disaster forecasting techniques, evacuations have be-

come a common strategy to manage the consequences of disasters [2]. Residents who are
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potentially under the impact of disasters may choose to evacuate voluntarily or under the
guidance of evacuation policies issued by local governments, so as to avoid life-threatening
risk, reduce personal injuries and damages to property [3]. Nevertheless, due to the limited
understanding of population evacuation behaviors, local governments may fail to provide
proper guidance or management strategies, which can lead to inefficient evacuations or
even cause negative consequences to surrounding areas. For example, the evacuated pop-
ulation might crowd to certain routes and cause severe traffic jams that hinder the evac-
uation process [4]; or evacuations might fail to provide sufficient supplies for the daily
necessities of evacuees [5].

It is critical to have a comprehensive understanding of the evacuation behaviors for gov-
ernments and organizations to plan, support, and respond to the evacuations. Local gov-
ernments would benefit from a better understanding of how residents respond to evacua-
tions so as to adjust the policies that aim to support vulnerable communities [6]. A better
understanding of the possible evacuation destinations lead to more efficient logistic sup-
ply and effective humanitarian relief operations [7]. Traffic management also benefit from
an accurate foresight of the evacuation flows during disasters [8].

Evacuation behaviors have been studied from different perspectives, however few have
examined the relation between evacuation behaviors and geographic variances in the con-
text, i.e. what meteorological or socioeconomic features affect evacuees’ decision making.
Survey studies have tried to explain evacuees’ decision making processes at the individ-
ual or household level using their personal characteristics [3, 9, 10]. For example, Perry
showed that evacuation destinations are related to the geographic distribution of one’s
social network, i.e. people tend to move to places where their friends or family are [3].
Simulation methods usually take these behavioral findings to model evacuation flows, so
as to find optimal choice of evacuation routes and shelters [11, 12]. Few of these models in-
corporate mobility information from actual evacuations. Large-scale spatiotemporal data
such as GPS, cell phone data and geotagged social media data enable researchers to model
population evacuation behaviors at societal scales [13, 14]. Most of recent studies aim to
reveal the common patterns of evacuation trajectories, for example the distance and reg-
ularity of evacuees’ mobility trajectories [14, 15]. However, these studies fail to provide
detailed evacuation behaviors with specific spatial information, such as evacuation desti-
nations, which is necessary to improve evacuation management. In addition, few studies
have looked into the geographic factors that might affect evacuation behaviors, i.e., the
choice of an evacuation destination can be related to the environmental characteristics
of the destination. The geographic variances may explain whether people evacuate and
where they evacuate to.

In this paper, we aim to model and predict evacuation flows across different geographic
areas, and to examine environmental indicators that contribute to variances in the vol-
umes of evacuation flows. To do so, we will use geotagged tweets, which have been used
in the past to successfully model large-scale displacement and dispersion across intra-city,
metropolitan, and inter-city movements [16]. With continuous geotagged tweets, we can
approximate the spatiotemporal trajectories of users, therefore inferring their movements
across geographic areas during a disaster. Although our findings will mostly reveal disaster
behaviors across the Twitter population, it is important to highlight that surveys during
disasters also suffer from biases in the population that responds to them [17]. We expect
our findings to be analyzed in combination with survey results, rather than separately, in
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an attempt to build a comprehensive picture of the actual evacuation events for different
population groups.

Specifically, we look into the case of Hurricane Irma, a catastrophic hurricane that
reached category 5 intensity in 2017. Starting from August 30th, the National Hurri-
cane Center observed the formation of Hurricane Irma and issued notice. With the fore-
warning, areas that were potentially threatened by the hurricane, including large areas of
Florida, and partial areas of Georgia and South Carolina issued evacuation orders or emer-
gency declarations as coping strategies [18]. It is estimated that more than 6 million people
evacuated from their homes [19]. We collected geotagged tweets of the southern states of
US for months that include different phases of Irma. We model the evacuation flows at
three geographic levels: across states, across urban and rural areas of states, and across
counties of Florida. Then, we build models to predict evacuation flows across counties
using environmental features that include the hurricane’s destructive force, the socioeco-
nomic context, and the government evacuation policies. Lastly, we identify the important
factors in evacuations by examining how these factors affect the prediction results.

The contributions of this paper are:

« A method to model the evacuation flows across different geographic areas with
geotagged tweets, which might be indicative of population evacuation patterns during
Hurricane Irma.

+ A model to predict the evacuation flows based on environmental features including
meteorological indicators, socioeconomic status, and evacuation policies. Results
show that our model can largely explain the variances in evacuation flows.

+ An analysis of the impact of features in the predictive model, which shows how the
variances in certain factors are related to the volumes of evacuation flows. It provides
a way to quantify the impact of factors on predicted evacuation flows, as opposed to
qualitative analysis based on stated information gathered by survey methods.

In the following sections, firstly we summarize the previous studies on evacuation be-
haviors and show that the research question we work on has rarely been studied. Then
we present the background information on Hurricane Irma and describe the dataset and
methods for modeling evacuation flows at different geographic scales. In the last section,
we present our results and discuss the implications as well as the limitations of this study.

2 Related work

Evacuation behaviors have been studied from three perspectives: (i) survey-based meth-
ods, to understand the decisions made by individuals and households during a evacuation;
(ii) simulations models, to optimize the evacuation routes or resource strategies with re-
spect to road networks, supplies or shelters; and (iii) data-driven models, to understand
the patterns of human mobility behaviors during evacuations.

Evacuations involve several consecutive decisions, for example, whether to evacuate or
stay, or when and where to evacuate. Previous studies have looked into the factors that re-
late to these decision-making processes using surveys. Perry built a social-psychological
framework on individuals’ decisions to evacuate, which suggests three major variables:
the presence of an adaptive plan, the individual’s belief in the perceived threat, and the
level of perceived risk [3]. Following this work, researchers investigated how these fac-
tors influence decisions to evacuate [20], the choice of evacuation departure time [21, 22],
and evacuation destinations [23]. Individual and household characteristics are usually an-
alyzed in the decision-making models, including the demographics, socioeconomic levels,
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evacuation notices received, and social relations. Survey-based studies provide a compre-
hensive understanding of how individuals or households make decisions on evacuations
during disasters. Nevertheless, the population evacuation results, i.e., evacuation flows,
are not results of the aggregated effect of individuals’ or households’ decision-making,
but rather results of a combination of complex individual and community-level interac-
tions [2]. In this study, informed by the survey-findings, we look into factors that relate to
the population evacuation behaviors at societal scale.

Simulation models have been widely used to characterize population evacuation be-
haviors for logistics coordination and disaster relief. These models are generally built on
assumptions about how people choose evacuation routes, for example, the optimal routes
are the ones incur least cost [11]. These assumptions are used to find the optimal locations
of shelters [12] or to plan for traffic management [24]. However, simulation models usually
simplify the computation of evacuation flows and fail to incorporate data of actual evac-
uations. We propose a method to characterize evacuation flows based on spatiotemporal
data released by people who evacuated in a disaster. The purpose is to have a better un-
derstanding of actual evacuation flows and be able to predict the evacuation flows based
on geographic variances. Such models can be potentially applied to improve the accuracy
of simulation models.

Large-scale digital traces as GPS traces, cell phone records, and geotagged tweets, have
become critical sources of information to study human mobility behaviors during natural
disasters. Lu et al. used cell phone records from 1.9 million residents during the Haiti
earthquake to characterize population mobility trajectories. They showed that despite
large variances in travel distances, the trajectories and movement patterns are predictable
with social bonds [7]. Song et al. used GPS data to model population mobility patterns af-
ter a disaster [13]. Song et al. found that there are basic laws that can explain the variances
in mobility distance and evacuation destinations [25]. Previous studies have shown geo-
tagged tweets can be reliable sources to model movement within and across cities [16, 26].
Wang and Taylor used geotagged tweets to quantify human mobility distances before,
during, and after disasters of hurricanes and typhoons. They found that trips follow the
Levy—Walk model where short-distance trips take the majority [27, 28]. Most of the stud-
ies aim to characterize mobility patterns in terms of the distribution of mobility distances
or the perturbations in mobility directions. Few have used large-scale spatiotemporal data
to characterize evacuation flows at different geographical scales. Hara and Kuwahara used
GPS data to model the traffic flows of a large city in Japan after disaster [4]. However, GPS
data is not always available due to privacy or company regulations. We uses Twitter data
to model the evacuation flows in a large geographic area across states and to incorporate
contextual features to examine potential factors on the prediction of population evacua-
tion behaviors.

3 Phases of hurricane Irma
To model evacuation behaviors, we identify the following phases of Hurricane Irma based
on its tracking positions [19].

Pre-hurricane phase, which is the period of two weeks before the warning of the hurri-
cane. It is assumed that most of the people stay in a permanent location during this period
(possibly their residence).

Hurricane preparation phase, which lasts from August 30th to September 9th. On Au-
gust 30th, the National Hurricane Center observed the formation of Hurricane Irma in the
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Figure 1 Track positions of Hurricane Irma by the US National Oceanic and Atmospheric Administration
(NOAA)

Atlantic Ocean and issued warnings about the potential incursion into the US. We extend
the time range to one day before the hurricane makes landfall in the US.

Hurricane landfall phase, which is the time when Hurricane Irma lands on US territory
and decreases to tropical storms in the state of Georgia. It lasts from September 10th to
September 11th. We extend this phase with one day since related work has shown that
evacuees can stay a minimum of one night in their evacuation (landfall) zones prior to
re-entry [29].

Hurricane recovery phase, which is two weeks after the hurricane’s landfall. After the
hurricane leaves, the evacuees start to return to their pre-hurricane locations. Since re-
entry time varies across people, part of the evacuees are probably still traveling in this
phase.

Post-hurricane phase, which is two weeks after the hurricane recovery. People are as-
sumed to have returned back to their pre-hurricane locations according to previous stud-
ies on evacuation behaviors [17, 27].

Figure 1 shows the tracking positions of hurricane Irma collected by the US National
Oceanic and Atmospheric Administration (NOAA) [19]. The timeline below shows how
we define the phases of Irma in US territories.

4 Data collection

We aim to use geotagged tweets from six US southern states to model the evacuation flows
during Irma. For that purpose, we purchased all historical tweets through the Twitter En-
terprise Search API which allows to acquire tweets within specific geographical bound-
aries and temporal ranges. Next we provide further details about the tweets acquired.
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Figure 2 Number of users and tweets per state

Spatial Bounds. Figure 1 shows that Florida (FL) was the most affected state during Irma.
However, due to the uncertainty in the hurricane’s moving path, the states of Georgia (GA)
and South Carolina (SC) were also issued notice of warning, which could have lead to evac-
uation behaviors. Therefore, we aimed to observe the evacuation behaviors of residents
in these states. Previous studies [14, 15] show that evacuation mobility follows the Levy—
Walk model, where short distance trips are the majority. Thus, we add the states that share
aborder with FL, GA and SC; and purchased all tweets with spatial bounds set to cover the
states of North Carolina (NC), Tennessee (TN), Southern Carolina (SC), Georgia (GA),
Alabama (AL), and Florida (FL).

Temporal Bounds. In Sect. 3 we defined the different phases of Irma that start from
August 15th to October 12th. As a result, we collected all geotagged tweets in the specified
spatial bounds during this time range.

With the spatial and temporal bounds, we retrieved 9,263,399 tweets, which include
tweets that are tagged with latitude and longitude (geotagged), as well as tweets that are
tagged with geographic entities such as counties or neighborhoods. Since there are no
common standards to regulate the entity tags people use, it is difficult to accurately map
the entity tags to geolocations. Thus, we only use the 1,013,313 geotagged tweets, which
were posted by 127,181 Twitter users. Figure 2 shows the number of geotagged tweets and
observed Twitter users in each state. Since the geographic bounding box cannot perfectly
align with the boundaries of states, there might be a few tweets from other states. In ad-
dition, a user may move across states during Irma. As a result, the total number of users
shown in the figure can be larger than the number of unique users in the dataset.

Finally, we also carried out a tweet cleaning process to eliminate tweets that might not
represent individuals, but rather news platforms or other social entities. For that pur-
pose, we used the traditional approach based on ratios between followers and followees
to eliminate users with extremely large numbers of followers that could represent non-
persons [30]. Specifically, we eliminated users whose number of followers and followees
were two standard deviations larger than the average values. Of the 127,181 Twitter users,
only 116 were detected as non-persons. This is probably due to the fact that related work
has shown that news platforms and other official accounts that belong to government ad-
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ministrations and that report important information during disasters (weather, road or
evacuation information) do not usually post geotagged tweets [31].

5 Methodology

Geotagged tweets can be used to estimate the spatiotemporal trajectories of users; that
is, the changes of locations in different phases of Irma. We present a method to estimate
the evacuation flows across different geographic areas at state and county levels. Then we
build machine learning models to predict county-level evacuation flows in Florida based
on environmental features that have geographic variances, and identify the key factors
related to accurate predictions of evacuation flows.

5.1 Identification of evacuation flows

To understand the evacuation and re-entry behaviors of evacuees, we measure the num-
ber of individuals whose stay location changes during three Irma phases: pre-hurricane,
landfall, and post-hurricane. Changes in stay locations from pre-hurricane to landfall will
reflect individuals evacuating, while changes from landfall to post-hurricane will mostly
reveal individuals going back to their pre-hurricane locations. Although one could argue
that landfall locations might not be end destinations for some evacuees who might still be
traveling, Wong et al. showed that 90% of the population in Florida areas affected by Irma
went back to their homes one week after the hurricane’s landfall [17]. Thus, we argue, and
our results in fact will show, that changes in stay locations from landfall to post-hurricane
reflect actual re-entry behaviors.

We define stay location as the place where an individual has a permanent (pre-hurricane)
or temporary home (landfall and post-hurricane). To identify stay locations for all the
individuals in our dataset, we require users to have geotagged tweets in at least two days
within each phase, which enables us to differentiate permanent/temporary stay locations
(multiple tweets from a given location during a phase) from users passing by (one tweet
in a given phase). Using all the geolocated tweets within a given phase, we compute the
stay location for an individual as the center of gravity of all the locations visited in that
phase. The center of gravity, computed as the geographical average location of all points
(see Fig. 3), has been used in many studies using location and trajectory data and is a well
tested approach [33-38].

To compute the center of gravity, we first project the geographic points with latitude
and longitude into the NAD83 coordination system and then compute the stay location
(#, M) where P;(x;,y;) (i = 1,2,...,n) are the geotagged co-

(center of gravity) as =

ordinates of a user at a given phase. The stay location is then associated to the county
whose geographic boundary contains the center of gravity. We consider that the stay lo-
cation has changed between two phases if it is at least 1 mile away from the previous stay
location. An individual will be defined as an evacuee if her stay location changes from pre-
hurricane to landfall. Evacuees will be either in-county evacuees, when the changes in stay
locations happen within the county, or out-of-county or out-of-state evacuees when the
changes take place between counties or states. We selected 1 mile as the most stringent
distance threshold that will reveal the upper bound for the number of evacuees. Higher
threshold values will decrease the total number of evacuees identified. Nevertheless, the
lack of ground truth prevents us from selecting what could be the optimal threshold, thus
reporting the upper bound instead. Upper bounds are extremely valuable for emergency
preparedness and response to prepare for the worst case scenario.
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We model evacuation flows by aggregating the number of evacuees from pre-hurricane
to landfall phases, and re-entry behaviors by modeling the number of evacuees between
the landfall and post-hurricane phases. Evacuation flows are modelled at the county level
with stratification at both urban and rural levels. A discussion of the results is presented
in Sect. 6.

5.2 Relaxing two-day constraint
Applying the two-day constraint to each phase significantly decreases the number of indi-
viduals in our dataset to 2339 individuals. This is specially significant for the landfall phase
as it only lasted three days. In this section, we explore the impact that relaxing that con-
straint for the landfall phase would have on the evacuation flows identified. Specifically,
we maintain the two day constraint for the pre-hurricane and post-hurricane phases, while
only requiring tweets on at least one of the three days in the landfall phase to compute
the stay location. Although this approach obviously increases the number of individuals
considered (up to 6726), one may argue that it might include individuals who were pass-
ing by a given location rather than reflecting a stay location during the landfall. Therefore,
we next present an experiment to compare the differences in the volumes of evacuation
and re-entry flows when using different constraints; and we will show that relaxing that
constraint has a minor impact on the final volumes.

We first apply the one-day and two-day constraints during the landfall thus getting two
sets of individuals with their stay locations. Next, we compute their evacuation flows based
on their stay locations during the pre-hurricane and landfall phases. We separately gener-

ate two evacuation matrices with these individuals. Each row or column of the evacuation
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matrix represents a county, while the values in the matrix represent the number of people
evacuating from origin counties to destination counties.

We use Pearson’s correlation to test whether these two evacuation matrices are linearly
correlated. The results show a high correlation between these two matrices, with a co-
efficient of 0.9880 and p < 0.05. In addition, we compute the ranks of origin-destination
pairs and apply the Wilcoxon rank test [39]. There is no significant shift in the ranks with
p = 0.6326. The tests show that when we soften the two-day constraint in the landfall
phase, we manage to increase the number of individuals considered while maintaining
similar patterns of evacuation flows across counties. Similar tests were computed for the
re-entry flows computed using landfall and post-hurricane stay locations. The two sets
of individuals with the one- and two-day constraints show correlations of 0.9898 between
the two re-entry matrices with p < 0.05. The rank test also showed no significant shift in
the rank of pairs with p = 0.3444.

This experiment shows that both the evacuation and re-entry flow patterns are main-
tained if we soften the two-day constraint in the landfall phase. Since the one-day con-
straint enables us to have a larger number of individuals to model, we report results and
conduct prediction models based on the set of 6726 individuals with a one-day constraint
in the landfall phase, and two-day constraints in the pre-hurricane and post-hurricane
phases. It is also important to clarify that although we require a minimum of two days of
data, stay locations for over 47% of users have been computed with at least 5 days of data,
and over 32% of users had data for at least 8 different days which confirms the robustness
of our approach.

5.3 Prediction of evacuation flows

We propose to predict the evacuation flows across different geographic areas based on
contextual characteristics of these areas. Specifically, we take into account features includ-
ing: (i) physical destructive force, which is measured using meteorological indicators; (ii)
socioeconomic indicators, which are obtained from census records; and (iii) evacuation
policy in each county. In Sect. 6 we will present the results of the prediction models for
county-level evacuation flows in Florida since that was the state with the most damage.

5.3.1 Features
We introduce the features and data sources for constructing these features.

Meteorological Indicators. The meteorological indicators are collected from the Global
Historical Climatology Network (GHCN), which is an integrated database that summa-
rizes climate measurements from land surface weather stations across the globe [40]. We
extracted the features that depict wind intensity, including the average daily wind speed
(AWND), peak fastest 2-minute wind speed (WSF2), fastest 5-second wind speed (WSF5)
and precipitation (PRCP) during Irma’s landfall. Since the records of WSF2 and WSF5 have
a high correlation of 0.95 across weather stations in FL, we only maintain AWND, WSF2,
and PRCP in our analysis. Although one could argue that other meteorological factors
such as storm surge or flooding might also impact evacuation behaviors, these are factors
that cannot be observed prior to the evacuation. Thus, we have identified a set of meteo-
rological factors that can be measured pre-evacuation and that are natural precursors of
storm surge or flooding, among others [40].

Census Data. Meteorological indicators and flooded areas mainly measure the variances
in the physical environment. Beyond that, we also collect census data to characterize the
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socioeconomic status of counties. The data is collected from the United States Depart-
ment of Agriculture Economic Research Service [41]. Specifically, we extracted county-
level population, poverty rate, and unemployment rate.

Evacuation Policy. According to data from Florida’s Department of Emergency Manage-
ment (DEM) [42], there were 54 out of 67 counties that had been issued evacuation orders
in response to Irma. Forty-two counties have mandatory evacuation orders, while the re-
maining ones were only issued voluntary evacuation orders. We employ the evacuation
policy as a categorical feature with three values: no evacuation, voluntary evacuation, and
forced evacuation. This feature is taken into account to examine whether the evacuation
policy has an impact on the evacuation flows. We acknowledge that several evacuation
orders for hurricane Irma in Florida focused on specific zones or types of populations
across counties, rather than county-wide. Nevertheless, we decided to work with county-
level orders instead to account for the potential of shadow evacuations, a phenomenon
that has been widely observed during disasters whereby residents living near mandatory
evacuation zones also evacuate, despite not being forced to do so [43, 44].

5.3.2 Machine learning models

We formalize the prediction of evacuation flows using a machine learning model whereby
given a pair of counties, features characterizing each individual county and their inter-
actions, we can predict the number of people that will evacuate from one county to the
other. Our machine learning model is inspired by gravity models that approximate flows
between two regions as being proportional to the regional population and inversely pro-
portional to the distance between them [45]. The machine learning model proposed in
this paper predicts the evacuation flow between two counties using not only traditional
gravity model features per county, but also all the features described in Sect. 5.3.1 namely
meteorological indicators, census data and evacuation orders. In addition, inspired by in-
tervening opportunities models [45], the machine learning model is also enhanced with
features that characterize the interaction effect between any two given origin and desti-
nation counties, modeled using all the features mentioned before. Next we describe the
model in detail.

Given a county U;, we represent it as a set of features characterizing that county i.e.,

Ui ={ui1, i, .., uinN},

where i indexes the countiesiti.e., i =1,2,...,67 since there are 67 counties in Florida; and
N indexes the features in Sect. 5.3.1. In addition, for each pair of counties, we compute the
joint features wy, as shown in (1). Each joint feature is computed using a gravity-inspired
transformation of the feature values from origin and destination counties [46]. Specifically,
we take the feature values from the origin county and the destination county, multiply the
values and divide them by the square of the distance between the two counties, where dis-
tance is computed as the separation between the two county centroids (see Formula (1)).
The idea behind this approach is that the number of people evacuating from one county
to another is not only dependent on the contextual features of these two counties, but also
depends on the interactions between the two counties and on the distance between them.

Uip - Uik

_ dik ik 1
k= dis2(,)) W)
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where k indexes the features, i.e, k=1,2,...,N.

The model takes features from the origin county and the destination county, and the
joint features of these two to predict the number of people in each evacuation route, de-
fined as any pair of counties in Florida. After the construction of features, we use Support
Vector Machines (SVM), Random Forest (RF), and Extreme Gradient Boosting regression
(XGBoost) to train models. The data is randomly split, with 75% samples as training and
the rest 25% samples as testing. We use root mean square error (RMSE), R-squared, and

mean absolute error (MAE) to evaluate model performance.

5.3.3 Two sets of features

Previous studies have shown that the mobility flow between two geographic areas is highly
related to the population, as well as to the distance between these two areas [45]. If that
holds for the evacuation case, features that contain population variances might be highly
indicative of the evacuation flows. To assess the role that other features, besides popula-
tion, might play in the evacuation behaviors, we consider a second feature representation
U] that removes the population feature from U;. In the following experiments, we will
compare prediction performance on these two sets of features and analyze the impact of

each feature in the prediction models.

5.3.4 Impact of features on prediction

We propose to use SHAP values to understand how the meteorological, socioeconomic
and policy factors lead to variances in the evacuation flows. SHAP values are usually used
to evaluate the impact of features on the final model output, especially when applied in
complex models that are hard to interpret. The method “connects optimal credit allocation
with local explanations using the classic Shapley values from game theory and their related
extensions” [32]. In other words, we can analyze the dependency relations between fea-
tures and predictions in terms of which feature is more helpful in achieving high predictive
accuracy, and also in terms of the direction of that relation i.e., a positive relation signals
that increments in a feature correspond to increments in the prediction value, while a neg-
ative relation points to decrements in prediction values when features increase. In the fol-
lowing experiments, we will evaluate the overall importance of features in the model and
identify features that are most indicative of the predicted variances in evacuation flows.

We will also compute the effect of the interaction of features on the model output.

6 Results

To understand the evacuation flows across different geographic areas, we use geotagged
tweets from six US southern states. We first identify the stay locations of individuals dur-
ing the pre-hurricane, landfall and post-hurricane phases as explained in Sect. 5.1. Next,
evacuation flows will be computed as flows from the pre-hurricane stay location to the
landfall stay location; while re-entry flows will be computed as flows from stay locations
during the landfall phase to stay locations during post-hurricane phase. Flows are ex-
tracted counting the number of people for each pair of origin-destination locations for
evacuations and re-entry behaviors. Flows will be computed and discussed at three levels:

state, urban/rural areas at state level, and county level.
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Figure 4 State-level evacuation flows

6.1 State level evacuation flows
First, we show the results of evacuation and re-entry flows across states. This analysis
will enable preparedness and response decision-makers to have a comprehensive under-
standing of large-scale evacuation behaviors during disasters. We do not report results for
Tennesse (TN) since the resident sample was too small (only 21 residents were detected).
Mobility across five states. We present evacuation flows across five states: Florida, Geor-
gia, Alabama, South Carolina, and North Carolina, which in the figures are shown as FL,
GA, AL, SC, and NC. Figure 4 shows the evacuation and re-entry flows across the five
states for the 5307 evacuees identified in our dataset out of a total of 6726 individuals with
stay locations across the three hurricane phases, as explained in Sect. 5.1. We focus on
presenting the numbers of evacuation flows and use the re-entry flows, from the landfall
to the post-hurricane phase, to check if there are reverse mobility trends after evacuations.
First, we observe that 85.42% of the sampled evacuees (4533 individuals) across all 5
states do not evacuate to other states i.e., they are within-state evacuees and could either
be in-county or out-of-county evacuees (next section will analyze these behaviors). Similar
trends were reported for an online survey by Wong et al. specifically for the state of Florida.
In fact, they found that the majority of evacuees in Florida during hurricane Irma stayed
within state [17], although their percentages were lower than ours: 51.4% vs. 86.5% (1747
out of 2020 evacuees in Florida). We posit that such difference might be due to selection
bias since the population in Wong et al. had 81.9% of female respondents, and generally
higher income and education levels when compared to the population at large in Florida
e.g., only 6.5% of the survey participants have a high school degree or below compared to
42% of the total Florida population. In addition, the survey was only distributed online
thus leaving out individuals without internet access or smartphone access (according to
Pew Research, in 2018 only 68% of US homes had access to broadband internet service).
On the other hand, Twitter population has been found to be biased towards male, younger
and certain ethnic groups [47]. As a result, these demographic and socio-economic dif-
ferences make it hard for the two papers to be compared, and in fact, the differences in
evacuation rates could be simply due to the fact that diverse populations are being ana-
lyzed. Nevertheless, trends albeit not percentages, are comparable.
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Second, of the five states, Florida and South Carolina have more people going out than
coming in during the evacuation. Using the number of individuals sampled in each state
during the pre-hurricane phase as Twitter residents, 13.5% of Florida Twitter residents
leave to other states (with 2.4% coming in), while 32.2% of South Carolina Twitter residents
leave to other states (with 12% coming in from other states). Wong et al. showed larger
percentages for Florida, with 48.6% of evacuees leaving to other states [17]. We posit that
these differences are highly probably related to diverse selection biases both in their online
survey and in our Twitter population [47].

Alternatively, Georgia and North Carolina have more people coming in from other
states. For people who evacuated from Florida, 6.3% of them have their resettlement loca-
tions in Georgia, which corresponds to 46.52% of the total number of individuals evacuat-
ing to other states. North Carolina is the second state that Florida Twitter residents chose
to move to during Irma’s landfall, with 1.63% of Florida Twitter residents. The re-entry
flows are reversed. Especially, we observe that the most popular re-entry flows are from
Georgia to Florida, and from North Carolina to South Carolina, which respectively take
6.1% of Florida residents, and 14.58% of South Carolina residents. Wong et al. also found
that the most visited state for Floridians that evacuated out of state was Georgia [17].

Although Alabama is more inland and has less risk of being hit by a hurricane, there
is no significant number of people going to Alabama. That state has a relatively balanced
number of people going out and coming in, which respectively takes 8.7% and 9.5% of
Alabama Twitter resident population.

The state-level analysis enables us to have a comprehensive understanding of the pre-
ferred states that are chosen by evacuees. The major evacuation directions are from
Florida to Georgia (as reported in Wong et al. [17]) and from South Carolina to North
Carolina. Generally, the direction is from South to North. Although geographically close,
few people choose Tennessee and Alabama as destinations during the landfall phase.

Mobility across rural/urban areas of states. Based on the state-level analysis, the majority
of people stay in the same state during the landfall phase. However, these people may move
within their states, which cannot be captured by the analyses presented in the previous
section. In this section, we are interested in the analysis of evacuation and re-entry flows
across the urban and rural areas of states.

We employ the Census Bureau definition of urban and rural areas. Urban areas are de-
fined as the geographical territories that have at least 1000 people per square mile in the
core census blocks and 500 people per square mile for the surrounding census blocks [48].
Urban areas are usually associated with facilities to support public services [49]. We refer
to the geographic boundary file from the US Census Bureau to define the urban and rural
boundaries [50].

Figure 5 shows the evacuation and re-entry flows across urban and rural areas for the
five states. There is a common pattern across in-state evacuations: people tend to move
away from rural areas and stay in urban areas during the landfall. Three states have the
highest number of people moving: (i) There are 28.7% of Florida twitter rural residents
staying in rural areas, while 71.3% evacuate to urban areas. Comparatively, there are only
16.3% of urban twitter residents who move from urban to rural areas, and 83.7% of them
stay in urban areas. The majority of Florida twitter residents choose to stay in urban areas
in the landfall phase; (ii) 66.8% of North Carolina rural residents move to urban areas,
while only 17.6% of urban residents who move to rural areas; and (iii) in Georgia, 71.8%
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a. Pre-hurricane to landfall b. landfall to post-hurricane

Figure 5 Evacuation flows across urban and rural areas of states

of the rural residents leave to urban areas, while only 10.0% urban residents leave to rural
areas.

Looking at the re-entry flows from the landfall phase to the post-hurricane, we observe
reverse trends with residents moving back from urban to rural areas. Three directions have
the largest flow volumes: (i) Florida-urban to Florida-rural (15.9% of FL twitter residents);
(ii) North Carolina-urban to North Carolina-rural (22.8% of NC twitter residents), and
(iii) Georgia-urban to Georgia-rural (13.1% of GA twitter residents). The trends reveal
that Twitter residents tend to evacuate from rural to urban areas before the landfall; and
return back from urban to rural areas after the landfall phase. Similar rural-urban-rural
evacuation behaviors have been reported by Cheng et al. post-hurricane Floyd in South
Carolina in 1999 [51].

6.2 County level evacuation flows

6.2.1 Characterization of evacuation flows

State-level analyses have shown that most of the residents stay in the same state, and that
within states, residents mostly evacuate from rural areas to urban areas. In this section,
we focus on county-level evacuation flows to model population evacuation behaviors at
a finer spatial granularity. Specifically, we focus on county evacuations for the state of
Florida for two reasons. First, Florida has 2486 observable Twitter residents—the largest
number in our sample, of which 2020 are evacuees with 1747 in-state evacuees. Second,
Florida is the most affected state since Irma’s landfall took place in the Southern part of
Florida.

Figure 6 shows a heatmap of the county-level evacuation (a) and re-entry (b) flows in
Florida. Only counties that have incoming or outgoing mobility flows are shown in the
figure. Each grid corresponds to the number of people moving from their origin county to
a destination county. At the county level, we find that the majority of Florida twitter res-
idents that evacuate (62%) are in-county evacuees i.e., they stay within the same county.
Results reported by Wong et al. found that only 17.1% of individuals were in-county evac-
uees [17]. As explained earlier, we posit that these results might differ due to the selection
bias present in both their online survey and our twitter population sample.
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Figure 6 Heat map of evacuation flows across counties in FL

Of the 4422 pairs of counties, only 289 pairs have observed residents traveling between
them. Orange, Broward and Miami-Dade receive the largest volumes of people from other
counties during the landfall with 3.9%, 3.3% and 2.8% of Florida’s twitter population, re-
spectively. Consistently, the re-entry flows show the largest number of people moving out
of Orange, Broward and Miami-Dade. Since Orange, Broward and Miami-Dade coun-
ties have the largest urban areas in Florida, these results highlight a potential preference
of evacuees towards metropolitan areas which might be perceived as regions with more
resources and with the ability to accommodate more people. Similar findings have been
reported by Cheng et al. who conducted a survey study on hurricane Floyd in South Car-
olina [51] and showed that evacuees have a preference towards metropolitan areas.

6.2.2 Prediction of evacuation flows

In this section, we present the results of the machine learning models for the prediction of
evacuation flows across counties in Florida. As our analyses have shown, the re-entry flows
show reverse patterns of the evacuation flows. As a result, if we can predict evacuation
flows, re-entry numbers can be directly inferred.

We employ two sets of features. Set-2 is composed of U that removes the population
feature and normalizes all other features by its corresponding population, while set-1 is
composed of U;. As explained in Sect. 5.3.3, we build models with set-2 to identify how
much variance in evacuation flows can be explained by factors other than population and
distance.

The evacuation flows across Florida counties are highly imbalanced, with a lot of origin-
destination county pairs having no observed values. To mitigate this problem, we use a
sub-sampling method in the model training by randomly taking out pairs of counties that
do not have any observed evacuation flows. A parameter k determines the proportion
of samples with observed values and samples with 0 in training. If there are n pairs of
counties with observed evacuation flows, we randomly take #n * k samples that do not
have evacuation flows to be included in the training data. The value of k that leads to the
best prediction results is chosen. K is selected from a range of 0 to 5. When k is 0, it means

we only use pairs that have evacuation flows.
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Figure 7 Averaged R-squared values over repetitive experiments

Table 1 Accuracy for regression with different models when k= 0.5

Regression RMSE Rsquared MAE

SVM-1 1.6301+/-0.3811 0.7192+/-0.1320 0.8293+/-0.1080
RF-1 1.83784/-0.6054 0.6441 +/-0.1049 0.87194/-0.1306
XgbTree-1 1.9327+/-0.5201 0.6358+/-0.1199 0.9446+/-0.1280

Figure 7 shows the averaged R-squared values across repetitive experiments for models
built on two sets of features. SVM-1, RF-1, and XgbTree-1 are built on set-1 that includes
population factors. SVM-2, RF-2 and XbgTree-2 are built on set-2 that removes population
factors. It shows that models built on set-1 have much better performance than models
built on set-2. This result implies that the population feature highly contributes to the
variances in evacuation flows.

Models built on set-1 have the best performance when & is 0.5. Specifically, the model
trained by SVM-1 has the best performance in terms of the average R-squared value, which
is 0.7192. This result reflects that, on average, SVM-1 with features that include population
factors can explain 71.92% of the variance in the evacuation flows. Table 1 shows the results
of the models on set-1 for k = 0.5. Consistently, SVM-1 has better performance evaluated
by RMSE and MAE.

Models built on set-2 have the best performance when k is 2. The highest averaged
R-squared is achieved by XbgTree-2, which is 0.5511 and 13.24% smaller than that of
XgbTree-1. These numbers show that environmental factors other than population are
also predictive of evacuation flows, and that by adding population factors, the prediction
performance can be increased.

For SVM-1 that has the best prediction performance, we plot the distribution of the pre-
dicted values against the real evacuation numbers across all train-test pairs (Fig. 8). This
plot enables us to examine biases in the SVM-1 model. The plot shows that for large evacu-
ation flows, the predicted values are high, while for small evacuation flows, the predicted
values are correspondingly smaller. However, the predicted values for some evacuation
flows tend to have larger variances across experiments, which might be due to sample
bias during training.
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6.2.3 Interpretation of the environmental features

R-squared values show that environmental factors combined with population are highly
predictive of the evacuation flows across counties in Florida. In addition to that, we are
interested in examining what are the most important factors for the prediction of evacua-
tion flows other than population. We employ the SHAP indicators to evaluate the impact
of features on the best model output [32].

Overall Feature Importance. Fig. 9 shows the SHAP values for features that have rela-
tively higher importance in the prediction model. The features are ordered according to
the sum of the impact over all test samples. Each SHAP value is computed per predic-
tion task and represented as a point in the Figure. Positive SHAP values indicate that the
feature tends to push the predicted value high, while negative SHAP values indicate the
opposite impact.

We observe that the distance between the origin and destination counties is the most im-
portant predictor. Specifically, when the distance is short, the impact on the output value
is high and positive i.e., county closeness is related to increases in predicted evacuation
flows, while long distances between counties tend to have negative impact on the pre-
dicted evacuation flows. A similar relation was reported in a survey conducted by Cheng
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et al. post-hurricane Floyd in South Carolina in 1999 that showed that evacuees preferred
to evacuate to places that they perceived as being safe and closer to home than traveling
longer distances [51].

The second most important features are wind features (AWND.O, AWND.D). The wind
intensity of the origin county has a positive impact, which reflects that high wind inten-
sity is related to increases in the predicted evacuation flows. Similar results have been
reported by researchers using household surveys to assess the impact of weather features
on evacuation decisions [52]. Wind intensity and precipitation at the destination county
(AWND.D, PRCP.D) also have positive impact in the prediction model i.e., higher values
are associated to larger predicted evacuation flows. Ignoring the weather conditions at
evacuation destinations might appear to be counter-intuitive. We posit that since we are
combining socioeconomic features and meteorological features together, it could be that
the model is using environmental features exclusively because they happen to be highly
correlated to distance or socioeconomic features making the feature a useful confound-
ing factor with no direct relation with the evacuation flows. In fact, our model also shows
that the poverty rate at destination plays a role in the prediction of evacuation flows as we
discuss next.

Other important features are the socioeconomic indicators of origin and destination
counties. According to the SHAP values, when the poverty rate of the origin county is low,
the SHAP values tend to be positive. The effect of unemployment rate is similar. Together,
these features show that high socioeconomic status is associated to higher predicted evac-
uation flows. The evacuation behaviors are also related to the socioeconomic status of des-
tination counties. The SHAP values associated to PovertyRate2016.D are negative when
feature values are high, which indicates that high poverty rates at destination are related
to lower predicted evacuation flows. Similar relations has been shown in the literature
studying household-level behaviors during evacuations. For example, the poverty rate of
evacuation destinations has been shown to have a negative effect on evacuation rates [23];
high-income households have been reported to be more prone to evacuate [10, 21]; and
income has been found to have a small positive effect on evacuation numbers [29].

The least significant features for prediction are the evacuation policy in origin and des-
tination counties. As the feature has categorical values, we created dummy variables for
each category to be able to carry out the SHAP analysis i.e., no evacuation, voluntary evac-
uation and forced evacuation of origin and destination counties. These three types have
small SHAP feature importance values, with voluntary evacuation being the most impor-
tant. This result reflects that evacuation policy does not have much impact on the accuracy
of the predicted evacuation flows for twitter users. It is important to clarify that the SHAP
analysis does not imply that evacuation policy impacts lightly on population evacuation,
which would be contrary to the related literature, but rather that the feature itself, and
when compared to other meteorological and census features, is not as helpful in the pre-
diction model i.e., does not provide as much information in enhancing the accuracy of the
prediction. Nevertheless, our more nuanced interaction analysis in the next section will
show that, for small origin to destination county distances, voluntary evacuation orders
have a positive effect on the prediction i.e., the presence of a voluntary evacuation order
is associated to larger predicted evacuation flows when the two counties are close to each
other. This result is consistent with related work that showed that evacuation orders, either

mandatory or voluntary, have a positive effect on residents’ decisions to evacuate [10, 21].
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Figure 10 SHAP values of features with the interaction of distance

Examining the Interaction of Features on Prediction Output. In the previous section, we
showed that distance is the most predictive factor for evacuation flows. Next, we will eval-
uate the interactive effects between distance and the other meteorological and socioeco-
nomic factors at origin and destination counties. This analysis will provide more nuanced
insights into the effect of specific factors on predicted evacuation flows when mediated by
distance.

Figure 10 shows the SHAP values that reflect the interactive effects of paired features for
wind variables and poverty rates mediated by distance. The color of the dots represents
the distance value in each prediction task. For each dot, the x-axis value corresponds to
the normalized feature value and the y-axis value corresponds to SHAP value. In the plot,
we can observe that distance plays a dominant role in almost all prediction tasks. The
red dots usually locate close to the y = 0 line, which indicates that the interactive effect
on the predicted evacuation flows is small when the distance between counties is large.
In comparison, blue dots usually deviate further away from the y = 0 line, reflecting that
when distance is small, the interactive effect between distance and environmental features
is larger. In other words, the effects described in the previous section mostly take place at
small between-county distances.

Figure 10 shows that the effect of wind speed in origin counties is generally positive
when the distance between origin and destination counties is small (see WSF2.0 Figure
with blue dots associated to positive SHAP and positive wind speed values). This result
reflects that high wind speeds are associated to larger predicted evacuation flows when
counties are close to each other. For origin counties with relatively low wind speed, the
predicted evacuation flows are also lower when the distance between origin-destination
counties is small (see the blue dots for negative SHAP and negative wind values in the
same figure). Similarly, wind speed at destination county (WSF2.D) has a positive effect
on the predicted evacuation flows when the origin-destination county distance values are
small. This result reflects that high wind speed at destination is related to an increase in the
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Figure 11 SHAP values of voluntary evacuation of origin with the interaction of distance

predicted evacuation flows when the evacuation distance traveled is small. Related work
via household surveys has shown that weather features impact evacuation decisions [52]
which together with results showing that individuals prefer to evacuate to places closer to
home [51] could explain these findings.

On the other hand, Fig. 10 shows that when the poverty rate is high in the origin or
destination county, the effect is always negative (see blue dots for high poverty rates and
low SHAP values in Figures PovertyRate2016.0 and PovertyRate2016.D). In other words,
the predicted number of evacuees decreases when socioeconomic levels are low at ori-
gin or destination counties that are close to each other. In addition, we also observe that
such relationship holds as well for cases where the destination county is located at long
distances (see red dots in PovertyRate2016.D). These results can be interpreted as a con-
firmation of previous work at the individual household level that showed an individual
preference towards evacuating to high income counties and to counties that are closer to
home [23, 51].

Next, we discuss the interaction between distance and evacuation policy. We focus on
voluntary evacuation policy in origin counties since, as discussed earlier, it is the one with
the largest SHAP feature importance. Figure 11 shows the SHAP values for the interaction
between travelled evacuation distance and voluntary evacuation policy (where 1 means
voluntary). We can observe that for counties that issued voluntary evacuations, the SHAP
values tend to be positive at small distances i.e., voluntary evacuations to counties close
to the origin are associated to larger predicted evacuation flows. On the other hand, if
the origin counties do not have evacuation orders, the SHAP values tend to be negative,
which means that for counties with no evacuation orders,the predicted evacuation flows to
counties nearby are smaller. Survey-based studies have shown a similar relation between
evacuation orders and distance to home [51].

To summarize the findings, distance between origin and destination counties is a domi-
nant factor that appears to highly impact predicted evacuation behaviors, especially when
the distances are short. Socioeconomic factors are positively correlated to the predicted
evacuation flows as well. Evacuation policy has a very small effect on the prediction of
evacuation flows. However, we still see the positive impact of evacuation policy with coun-
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ties with voluntary evacuation associated to higher predicted evacuation flows, especially
for counties close to evacuees’ homes. We posit that these findings can be potentially help-
ful for local governments and organizations to coordinate or issue policies on evacuations,

specially with respect to destination coordination.

7 Discussion

Using geotagged tweets to model evacuation flows has certain limitations. Previous stud-
ies show that less than 1% of tweets are geotagged [53]. Twitter users who frequently use
geotagged tweets tend to be younger, belong to certain ethnic groups and have higher
socioeconomic status [47]. Although the Twitter population we examined is not fully rep-
resentative of the real population, we can at least observe evacuation flows across coun-
ties with different socioeconomic levels. Compared to other demographic characteristics,
socioeconomic status is the dominant factor in individual’s decision-making during evac-
uations [3, 21].

Second, we might introduce bias when we determine stay locations using geotagged
tweets. Twitter users tend to post tweets tagged with locations in metropolitan areas [54],
which means mobility in urban areas can be better captured with geotagged tweets. It can
be seen from our results that the observable Twitter population is much larger in urban
areas, or in urban counties. We partially correct for that by comparing Twitter population
proportions rather than absolute numbers. In addition, we employ method to compute
SHARP values for features so as to disentangle the environmental factors on the relative
large or small values of output. The analysis is less affected by the bias in the modeled
evacuation flows.

Third, the stay location threshold has been defined as the most stringent distance (one
mile) due to the lack of ground truth data that prevents us from selecting what could be the
optimal threshold. As a result, we can only report with certainty the upper boundary for
the number of evacuees. This number is still extremely valuable for emergency prepared-
ness and response to prepare for the worst case scenario. In future work, we aim to explore
how survey-based and Twitter-based results could be used in combination to balance bi-
ases and hypothesize about potential ground truth values to better validate quantitatively
the approach presented in this paper. In addition, we believe that qualitative validations
via mapping tools is also a promising research avenue.

Finally, we use Hurricane Irma as a case study for the initial exploration of modeling
large-scale evacuation behaviors with geotagged tweets. For future work, we will incor-
porate data from other types of disasters to compare the effect of environmental factors
on evacuations. Here we present a study that partially validates findings from previous
studies [55], and also reveals findings that could potentially be interesting for researchers
working on evacuation route simulations or on the determinants for the decision-making
during evacuations.

8 Conclusions

Understanding evacuation flows across different geographic areas can potentially enhance
decision-making processes put in place by governments and organizations for disaster
preparedness and response. However, the existing work mostly studies evacuation behav-
iors at the individual or household level. We argue that population evacuations are not just
the aggregation of individual evacuee’s behaviors, but involve complex interactions with
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people and the environment. We have proposed a method to model evacuation flows with
large-scale geotagged tweet datasets. In addition to that, we have built machine learning
models to examine the relations between evacuations and geographic variances, which
take into account the physical destructive force, socioeconomic indicators and evacua-
tion policy. To the best of our knowledge, this is the first study aiming at understanding
evacuation behaviors across large geographical areas and revealing the effect of multiple
dimensions of environmental factors on the evacuation flows.

Our results provide nuanced perspectives on evacuation flows at different geographic
levels: i) state-level, which characterizes the evacuation flows across states; ii) urban/rural
areas within states, which reveal the preferences to urban/rural areas when people choose
to stay in state; and iii) county-level, which depicts the evacuation flows across counties
in Florida. We find that many Twitter residents did not evacuate (stayed in their original
county) during Irma. People who evacuated but stayed in their own state have a preference
for urban areas during the landfall. The county-level evacuation flows in Florida are highly
imbalanced and a few origin-destination county pairs have the majority of evacuees. We
also show that the combined environmental factors of origin and destination counties
can predict county-level evacuation flows with relatively high accuracy. The population
of origin and destination counties plays an important role in predicting the number of
evacuees. However, if we control for population factors, the variances in evacuation flows
can be largely explained by geographic variances. Specifically, the distance between origin
and destination locations is the most important feature for prediction. The dependency
relation shows that lower socioeconomic status at origin is associated to lower predicted
evacuation flows, and that higher socioeconomic status at destination is related to higher
predicted evacuation flows.

Decision-makers working on disaster preparedness and response might benefit from
this paper on different perspectives. First, the study depicts evacuation flows at different
geographic levels, which could provide information to design better traffic management
and logistics when disasters happen in the similar regions. Second, it reveals the pattern
between evacuation flows and geographic variances, which could potentially be used to

infer evacuation flows in other cases.
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