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Abstract

The emerging technologies of wearable wireless devices open entirely new ways to
record various aspects of human social interactions in a broad range of settings. Such
technologies allow to log the temporal dynamics of face-to-face interactions by
detecting the physical proximity of participants. However, despite the wide usage of
this technology and the collected datasets, precise reconstruction methods
transforming the raw recorded communication data packets to social interactions are
still missing.

In this study we analyse a proximity dataset collected during a longitudinal social
experiment aiming to understand the co-evolution of children’s language
development and social network. Physical proximity and verbal communication of
hundreds of pre-school children and their teachers are recorded over three years
using autonomous wearable low power wireless devices. The dataset is accompanied
with three annotated ground truth datasets, which record the time, distance, relative
orientation, and interaction state of interacting children for validation purposes.

We use this dataset to explore several pipelines of dynamical event reconstruction
including earlier applied naive approaches, methods based on Hidden Markov Model,
or on Long Short-Term Memory models, some of them combined with supervised
pre-classification of interaction packets. We find that while naive models propose the
waorst reconstruction, Long Short-Term Memory models provide the most precise way
to reconstruct real interactions up to ~90% accuracy. Finally, we simulate information
spreading on the reconstructed networks obtained by the different methods. Results
indicate that small improvement of network reconstruction accuracy may lead to
significantly different spreading dynamics, while sometimes large differences in
accuracy have no obvious effects on the dynamics. This not only demonstrates the
importance of precise network reconstruction but also the careful choice of the
reconstruction method in relation with the data collected. Missing this initial step in
any study may seriously mislead conclusions made about the emerging properties of
the observed network or any dynamical process simulated on it.

Keywords: Physical proximity networks; Temporal network reconstruction;
Supervised learning; Data driven modelling of spreading processes
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1 Introduction

The precise observation of the dynamics of face-to-face interactions of people have been a
major challenge in social studies [1]. Such observations were commonly limited to small-
scale observations for short periods of time [2]. Meanwhile such studies promise keys to
understand better the formation of social ties, the emergence of social groups, psycholog-
ical well-being [3], or how information or influence diffuse via personal interactions. Re-
cently developed new technologies of wearable wireless devices made possible a giant leap
in this direction, as they allowed for large-scale experiments to observe offline interactions
in multiple settings like in schools [4, 5], museums or conferences [6], hospitals [7, 8], or
even between animals [9, 10]. These experiments highlighted novel behavioural patterns
[11, 12] and their consequences on ongoing dynamical processes like epidemic spreading
[13-16] or the adoption of different behavioural forms [12]. However, all these studies have
some methodological similarities. First, although they have been implemented in rather
different ways using centralised radio-frequency identification (RFID) [11, 16-21] or au-
tonomous LPWD (8, 22, 23] technologies, they all provide the same output as sequences
of radio signals pairs. Second and more importantly, using the collected data streams, the
reconstruction methods of temporal interactions were commonly based on naive assump-
tions [18, 24], which may seem convenient at first, but have indisputable consequences on
the reconstructed event structure and any observed process taking place on it. To bridge
this shortcoming, in this paper, starting from the recorded raw communication data, we
explore multiple temporal network reconstruction methods to find the best way to re-
build the original sequence of interactions. In addition, we will show that even a small
improvement in the reconstruction accuracy may have dramatic effects on the dynamics
of ongoing processes simulated on the temporal network.

The dynamics of human actions and interactions are conventional topics in social and
behavioural sciences, while their modern studies articulated a new distinguishable area in
the field of computational social science [25] called human dynamics. This transition has
been fuelled by some radically new digital data collection technologies [26], which allow to
track human behaviour at the individual level within large populations. On one hand, they
provide automatised data collection methods for in vivo observations of millions of people
without the usual observational biases but with certain limits in control and reproducibil-
ity. Popular methods rely on mobile communication devices [27], or online communica-
tion platforms [28] just to give a few examples. On the other hand, online experimental
settings, crowd-sourcing services, and new behavioural tracking technologies provided by
Internet-of-Things (IoT) solutions like RFIDs [17], IoT-LPWD [8, 22, 23], in addition to
reality mining/personal logs [29, 30], real-time surveillance [31], or smart/GPS enabled
devices [32, 33] provide the opportunity to precisely observe the behaviour of a selected
group of people in more controlled settings.

However, these new opportunities open new challenges as the recorded raw data do
not translate easily to knowledge. To bridge this gap, careful methodologies need to be
developed to obtain unbiased precise proxy descriptions of human behaviour. For exam-
ple, in case of RFID and LPWD tracking, information about the physical proximity of two
people comes as pairs of data sequences recording mutually shared packets with certain
frequencies and varying signal strength. However, these devices are not flawless, they are
influenced by external noise, and may lose packets for several reasons, e.g., due to interfer-
ence with other devices, communication overload, physical obstacles, humidity level, or
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misplaced orientation of interacting people. The reconstruction of the real temporal inter-
actions from such noisy and incomplete data sequences translates to a multidisciplinary
challenge involving signal processing, communication protocols, social behavioural stud-
ies and advanced techniques of statistical data analysis. Supervised learning methods can
be especially useful for this task, as they are able to recognise recurrent dynamical patterns
associated with ongoing or missing interactions. As a result, we may obtain a sequence of
proxy interactions between people, which can be best represented as a temporal network
[34] coding simultaneously the dynamics and structure of the social fabric. The precise
estimation of these interactions has important consequences. Misplaced or wrongly iden-
tified interactions may lead to completely different network dynamics and in turn to falsely
claimed time-respecting paths. Such paths determine the possible ways how information
or influence can spread in the observed temporal structure, thus even minor change in
their structure can lead to radically different outcomes of co-evolving processes like infor-
mation diffusion [35, 36], opinion dynamics [37-39] or epidemic spreading [40].

In this paper, we focus on human proxy data collected in a large-scale social study called
DyLNet [22]. This experiment, explained in details in Sect. 2, aims to understand the lan-
guage development of children in their early age, by observing the verbal and social inter-
actions of pre-school children and their teachers over three years. Physical proximity and
verbal interactions of the participants are recorded using voice enabled decentralised Low
Power Wireless tags. By focusing on the proximity data, and relying on ground truth data
recorded simultaneously in controlled settings, we explore several supervised reconstruc-
tion methods of the temporal social interactions. As demonstrated in Fig. 1, first we build
a binary interaction sequence from the raw data of packet exchange between the LPW
badges of a pair of individuals, and then use it to reconstruct the time and duration of the
mutual interactions among the participants in order to obtain a temporal network repre-
sentation of the social interaction dynamics. As we explain in Sect. 3.1, we translate the
first level problem to a classification task, while in Sect. 3.2 we explore multiple naive and
advanced supervised learning methods to solve the final reconstruction problem of the
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Figure 1 Temporal network reconstruction pipeline. Starting (a) from mutually observed packets of pairs of
LPWD tags, (b) we train models using the raw and annotated data to (c) reconstruct interaction and
non-interaction periods between individuals to (d) reconstruct events and ultimately (e, f) build a temporal
network
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dynamical interaction sequences. Further, in Sect. 4, via data-driven simulation of spread-
ing processes, we demonstrate that while commonly used naive reconstruction methods
consistently overestimate the number of interactions, using advanced supervised learning
methods, even a minor improvement in the reconstruction performance can have radical

effects on the dynamics of an ongoing process.

2 Experimental setting and data collection

Our primarily analysed dataset was collected during a large-scale social experiment, which
employed IoT-LPWD technology to track human interactions. More precisely, it involved,
in each year of the project, about 170 pre-school children (between age 2% and 6%) in
7 classes, together with about 30 teachers and assistants. During this experiment, their
physical proximity and verbal interactions have been recorded using voice enabled LPWD
badges. The experiment has been ongoing in a French pre-school over three years, for one
week in each month during school periods (i.e. 30 weeks in total). The original goal of this
study has been to analyse the relations between child socialisation and language devel-
opment in pre-school, by describing the co-evolution between social network dynamics
(changes in the social relationships) and the language dynamics in the networks (inter-
individual influences and changes in language skills).

2.1 Data collection

For the purpose of our analysis, we concentrate on the proximity data recorded by LPWD
badges worn by each of the participants. In our architecture, developed by SEQUANTA
[23], each badge is associated with a unique ID and uses the IEEE 802.15.4 low-rate wire-
less standard to communicate®. Badges broadcast a ‘hello’ packet with 0 dBm transmission
power for 384 us in every 5 seconds. For communication, they use the carrier-sense mul-
tiple access (CSMA) protocol, thus they first listen to the dedicated channel, and only
transmit packets if it is clear to avoid collision. When a badge is not transmitting, it is lis-
tening to capture incoming packets from other devices in its vicinity. Due to the CSMA
protocol, a random offset can appear in the timing of the packet transmission, which can
accumulate and cause considerable delay as compared to a global clock signal. For this rea-
son, the time of each badge is synchronised with a central device, connected to a computer,
which propagates the global time to all badges. Badges which fall off synchronisation of
the time stop transmitting packets. This way, each sent packet is time-stamped. Beyond
the broadcasted global time signal our architecture is completely distributed as it builds
up from autonomous badges, which record data locally on their own flash memory card.
Every day, badges are plugged on a USB board to re-charge their batteries overnight, and
at the end of each measurement period (typically after a week), we gather data from their
flash memory card to a computer, and re-initialise it ahead of the next recording session.
Note that there are other wireless architectures developed for similar purposes, such as
OpenBeacon [17] or Open badges [30], but they typically use RFID technology with cen-
tralised communication protocols and a different philosophy for data collection.

2.2 Ground truth datasets

Beyond the experiments, we collected multiple annotated ground truth datasets for train-
ing and validation. The first one (GT1) was recorded by a researcher sitting in a classroom
and logging the state of interaction/no-interaction between a pair of children and their
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relative orientation using the scan sampling method (7 pairs of children were observed
for X' = 3 hours 35 minutes, in ranges of 17—-54 minutes). Advantage of this setting was to
gather annotated data in-situ with all noise and interference present (the class containing
20-25 individuals wearing a badge). To obtain annotated data in more controlled settings,
a second dataset (GT2) was recorded by statically positioning a pair of children, at a given
distance and orientation from each other for ~10 minutes periods, in a separate room (4
pairs of children positioned in two different settings each, observation time in a given po-
sition range was 2—10 minutes, summing up to ~56 minutes of observation). These data
provided stationary observations of packet exchange, however, it failed to capture the dy-
namicity of social interactions. Finally, a third dataset (GT3) was recorded by a researcher
sitting in a classroom and logging the relative distance and orientation of the individuals
present, both children and adults, during regular class activities (28 individuals wearing a
badge observed for 30 min). Advantage of this dataset was to make possible a direct com-
parison of the RSSI values collected by the badges with the actual distance between social
partners. Both the datasets GT1 and GT3 were collected using the scan sampling method
[41] (data recorded at intervals of 10 seconds for GT1, and at intervals of 2 minutes for
GT3) with the Animal Observer application for iPad [42]. For a more detailed description

on how ground truth data were collected see Appendix A.

2.3 Environmental dependencies and parameters

During the experiments, each badge recorded a time-stamped sequence of packets, which
were broadcasted by other badges in its vicinity. More precisely, a sequence recorded by
a given badge consists of (¢, ID, RSSI) tuples, where ¢ is the time of observation, ID is the
unique identifier of the observed badge, and RSSI is the received signal strength indicator
of the observed packet transmitted as a radio signal. In Fig. 2a we show the distribution of
RSSI values recorded over a week (24 hours, 196 badges). Values were observed between
—24 and -94 dBm with a bimodal distribution. One peak, above —45 dBm, corresponds
to the situation when badges are stored in a box close to each other thus communicat-
ing with strong radio signals. The other peak, below —75 dBm, corresponds to any other
observations, including ones capturing real social interactions with an —94 dBm ceiling
value hardwired in the badges configuration. Observed RSSI values can depend on exter-
nal factors like distance, body orientation, battery status, or humidity conditions. While
battery status should not be an issue here as badges are charged overnight, and we can
control for distance and orientation (as explained below), we cannot account for changing
weather conditions, which can cause some fluctuations in our measurements. In addition,
the potential conflict of signals within 1 us may induce accidental loss of observed packet
in case of interactions within large social groups.

Social as well as verbal interactions depend upon the relative distance and orientation of
the participants, which should be reflected by the RSSI values of captured packets in our
experiments. The strength of transmitted radio signals depends on distance and orienta-
tion as they are effectively absorbed by the water of the human body. These dependencies
are demonstrated by the measurements depicted in Fig. 2b and c. There, in panel Fig. 2b,
the density plot of RSSI values (y-axis) of captured packets shows a non-linear negative
correlation with the distance between participants (x-axis). This measure suggests, for a
realistic distance of maximum 1.5-2 meters for verbal interactions, a corresponding RSSI
range between —70--- — 75 dBm, while high intensity regions for lower RSSI values are
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Figure 2 LPWD packet statistics. Panel (a) shows the distribution of RSSI values (bin-width = 3) observed by
single badges over a week (24 hours, 196 badges); (b) Correlation between distance (x-axis) and RSSI (y-axis)
values shown as a density plot (based on GT3 dataset); (c) Recorded RSSI values as a function of time in
settings where the relative orientation of participants has been changed (based on GT2 dataset; position FF:
face to face, SS: side by side, BB: back to back; distance: 10 cm, 1 m, 2 m)

due to noise and situations of close, non-interacting proximities. This is verified by other
measures based on GT2 dataset (see panel Fig. 2c), where RSSI values remain within this
range for several orientations and radically change only when participants are back to back
to each other. However, only visually inspecting these results, it is very difficult to deter-
mine a precise RSSI threshold separating real and false social interactions. To better solve
this task, next we frame this question as a classification problem to distinguish between
packets indicating real and false social interactions that we can use then to reconstruct

the temporal network.

3 Temporal network reconstruction

In our pipeline, we are going to reconstruct the temporal network from raw data in five
main steps, as demonstrated in Fig. 1. First, we discuss how to arrive from the recorded
data to a handshake pair sequence, whose items indicate mutual handshakes between in-
teracting badges. Then we perform a binary state classification process, turning handshake
pair sequence into the binary sequence where each item indicates mutual social interac-
tion state. Finally, we propose several methods to reconstruct the real dyadic temporal
interactions with duration, which in turn provides us with a temporal network capturing
time-varying interactions between a larger group of individuals.

We separate the binary state classification step from event reconstructions as our first
goal was to create a binary sequence of interactions from the raw data that we can apply
earlier defined methods on. In addition, we found this approach necessary as we identi-
fied two potential sources of errors effective during the reconstruction process. One is due
to the fluctuations of recorded signal strengths of transmitted packets, while the other is
caused by packet loss or interferences, which induce uncertainties in present or absent
handshake pairs. This second type of errors makes it difficult to reconstruct events with
longer duration, a problem for which earlier studies provided overly simplified heuris-
tic solutions only with limited precision. We will explore various methods relying on this
two-steps approach, but show also a method, which solves the problem at once by taking
packets with signal strength values as input and directly reconstructing temporal interac-

tions with duration.
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3.1 Binary signal reconstruction

Physical proximity between two participants, A and B, within the right distance range and
orientation should appear as a sequence of consecutive mutual ‘handshakes’ of badges for
the duration of their interaction. To obtain the sequence of these handshakes, we take the
sequences of packets observed by the badges of A and B and match those packets, which
correspond to the mutual observation of the two participants. In other words, since pack-
ets are transmitted every 5 seconds, we match two packets into a single handshake event
(see Fig. 1b) if they appear within 2.5 seconds to each other and they refer to the opposite
ID (for A from B and for B from A). Missing packets are also recorded in the handshake
sequence (see Fig. 1b empty red arrows) and are assigned a default RSSI value, —95 dBm,
out of the possible RSSI range, that we can easily distinguish from observed packets. To
clearly distinguish ‘fake signal’ from ‘real signal, we appended one item called ‘pair_state’
to each handshake RSSI pair to indicate the number of ‘real signals’ in the pair. This vari-
able can take values 0, 1 or 2, and it enables to code for the presence of ‘fake signals’ while
keeping the normalisation of RSSI values possible for the coming reconstruction methods.
Thus the encoding of each handshake pair becames a vector (RSSI4, RSSIg, pair_state),
forming a sequence of handshake events recording all information for the reconstruction
task.

In order to determine if a handshake pair should be considered as a state of social inter-
action, we use GT1 where we recorded the start and end time of each social interaction
so that we could mark each handshake pair as interaction or non-interaction event. This
is shown in Fig. 3a, where we plot handshake pairs using their RSSI values as coordinates.
Colours code a handshake being an interaction (green) or non-interaction (red). Since
different handshake pairs could appear with the same RSSI values but different interac-
tion states, in Fig. 3a we represent with a small pie chart their fraction at a given location.
The strong diagonal component indicates that the RSSI values of mutual observations are
very similar to each other as expected, while the interactions seem to separate from non-
interactions around ~-70 dBm, which corresponds well to the earlier estimated threshold
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Figure 3 Reconstructing binary sequences and interactions. (a) Scatter plot of RSSI values of pairs of
interacting (green) and non-interacting (red) badges observed in GT1, with decision boundary presented as
grey line; (b—d) Demonstration of reconstruction strategies of (b) an observed binary sequence of interactions
using (c) a naive method with gap = 1 threshold, (d) a HMM with window size win = 3 and (e) a BiLSTM with
window size win =3
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Table 1 Confusion matrix with accuracy for logistic regression to reconstruct binary signals

acc.=0.7728 contact no-contact
contact 0.7728 0.2272
no-contact 0.2272 0.7728

range. To solve this classification problem in a more systematic way, we trained a logistic
regression model on the annotated GT1 dataset. As input we gave vectors of handshake
pairs and we used their annotated labels for the training task. As output we received a
probability for each state to be a real social interaction and we thresholded this probability
at 0.5 to assign 0/1 states to each handshake pair. The obtained decision boundary is shown
as a grey line in Fig. 3a, which appears to be linear, except close to the boundaries where
saw-teeth appears due to the two dimensional projection of a three dimensional decision
surface. With this method we reached a 77.28% accuracy with 10-fold cross validation (for
further details see Table 1) to classify a handshake pair as real social interaction or not.
This way we can turn our sequence of handshakes into a binary signal (demonstrated in
Fig. 1c), by assigning 1/0 to interaction and non-interaction events in every 5 seconds.

3.2 Interaction state reconstruction methods

Using the obtained binary sequences, what we call now on un-reconstructed sequences,
our next task is to reconstruct the real interactions, which appeared between pairs of par-
ticipants. The general problem here is to identify false interaction events, which were in-
duced by interference and thus should appear as actual non-interactions, and reconstruct
true ones, which were missed due to packet loss. As this is the most challenging task in
our methodological pipeline, we are going to follow three different methodological tracks.
We will start with a naive approach commonly used in the literature, then we will explore
variants of the Hidden Markov model (HMM) and the Long Short-Term Memory (LSTM)
model to find the best solution for this dynamical reconstruction task. Note that while the
naive method only reconstructs interaction periods, the two learning methods naturally
adapt to the inverse problem and also reconstruct non-interacting periods with falsely
observed interactions in the middle.

3.2.1 Naive reconstruction model

Consecutive binary signals in a sequence (following each other in 5 seconds here) can
be merged into long interaction periods (we call them events) with duration equal to the
length of the continuous interaction. These events are separated by non-interaction gaps.
If such a non-interaction gap is induced by an accidental packet loss, it is assumingly very
short. On the other hand, if it is due to a real break of social engagement, it may occupy
a longer period. Based on this assumption we can design a very simple reconstruction
method, where we merge two interaction periods if they are separated only by a sequence
of non-interaction events shorter than a given gap threshold value. This naive reconstruc-
tion method is demonstrated in Fig. 3c, where we assume with gap = 1 to reconstruct
the sequence observed in Fig. 3b. This method has been used conventionally in most of
the RFID social experiments so far, typically choosing the threshold to be gap = 0, thus
merging only directly consecutive interaction packets (what we call non-reconstructed
method here) or gap = 1 corresponding to a gap smaller than 40 seconds. This choice has
been challenged recently by Elmer et al. [24], who identified the optimal threshold being
75 seconds for the best reconstruction accuracy.
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3.2.2 Hidden Markov model

The second reconstruction method we chose is the Hidden Markov Model. To set the
parameters for HMM with supervised learning method we used the GT1 dataset with the
annotated states of handshake sequences as states sequence, and the sequence of binary
states (explained in Sect. 3.1) as the observations. After training on the annotated data
(GT1), we determined the values of the conditional transition probability of hidden states
as transition matrix, conditional emission probability from hidden states to observation
states as emission matrix and the initial states probability as start matrix. In turn, we used
these as parameters for the Viterbi algorithm to solve the most likely sequence problem
and use the output as the reconstructed sequence.

To enrich the information coded in the input sequence, instead of providing a sequence
of binary values for each time step, we define a backward window, which contains some
short term information before the actual state being reconstructed. More precisely, as
demonstrated in Fig. 3d, we define a tuple of win number items (there win = 3), where
the last one is yet the state to reconstruct while the others are the previous states in the
sequence. Applying these envelop definitions to a unit of binary state sequence, we cre-
ate an envelop with backward signals for each signal, thus transforming a binary state
sequence into an embedded envelop sequence. Subsequently, we use these transformed
envelops instead of binary signals to define the hidden states, observation states, as well
as determining all the matrices. Finally, as an output of the Viterbi algorithm we obtain
a sequence of envelops, with last item of each envelop as the predicted interaction/non-
interaction state of each time step. Note that we tried multiple other envelop methods (not
reported here) coding different distance information between actual and last interaction
packets but received worst performance than in the actual case.

3.2.3 Bi-directional LSTM model

The Hidden Markov Model has two limitations in terms of reconstructing the real inter-
action signal. First, it can only consider states from the past, while states in the future may
be also important for the actual state to predict. Second, it is a Markov model thus it can
consider only short-term temporal correlations between the actual and previous states.
We tried to overcome this shortcoming by introducing longer observation windows for
each state, which helped to learn longer temporal correlations yet they were very limited
to the actual window size.

Bidirectional recurrent neural networks propose simultaneous solutions to these two
problems as they can be trained using input information in the past and future of a spe-
cific time frame [43] (for demonstration see Fig. 3e). Especially the Bidirectional Long
Short-Term Memory (BiLSTM) model has been shown to perform well on dynamical sig-
nal reconstruction. This model was initially adopted in speech recognition and showed
to improve model performance on sequence classification problems. In practise, it trains
two LSTM models on a complete input sequence from opposite directions, one on the
input sequence as it is, and another on a reversed copy. The output of each time step from
the two LSTM models are merged and passed to the next layer, this way providing some
additional context to perform the learning task better.

We applied this model in three different settings to find the best performing one. In one
case, that we call BILSTM-bin, the input of the model was a sequence of binary states we
obtained from the classifier’s binary output as explained in Sect. 3.1. In the second setting,
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that we call BiLSTM-logi, the input sequence was also generated from the classifier but,
instead of binary states, it was a sequence of probabilities obtained as the direct output of
the logistic regression before thresholding it. Finally, the third case, that we call BILSTM-
RSSI, is not relying on the sequence of classified states, but instead it takes directly se-
quences of encoded handshake pair vectors (RSSI4, RSSIg, pair_state). This solution has
the advantage to skip one step of the reconstruction pipeline and to use a more complex
set of information, but it needs to solve the same problem using noisy RSSI signals without

pre-processing.

3.3 Eventreconstruction

To train all these models we used GT1 since it was recorded in the most realistic setting.
These data were built from 7 observation clips of 1290, 3060, 3200, 1230, 1740, 1350 and
1030 sec, covering 3 hours 35 minutes combined. For training and validation purposes,
we divided evenly observations longer than 3000 seconds (2 clips) into 3 shorter peri-
ods, and retained 10 observation clips all with length between 1000 and 1740 seconds (for
a total of 3 hours and 18 minutes). To determine the best hyper-parameter set for each
method, we applied a nested cross validation strategy. In the outer loop, we selected one
clip (each of them once) for testing purposes thus we kept it out from the training of the
model at this round. From the remaining 9 clips we perform the traditional 9-fold cross
validation. Considering all combinations, we could compute the average accuracy over 9
possible divisions of training-validation sets in order to screen hyper-parameter depen-
dencies. Subsequently, we could repeat it 10 times to obtain the average test accuracy with
the selected best hyper-parameters. Note that while computing averages we took into ac-
count the variance in length of the actual clips used for validation or testing.

3.3.1 Hyper-parameters

All BiLSTM models have two hyper-parameters to define their architecture, the num-
ber of hidden neurons and hidden layers. In our computations, we decided to use all
architectures with a single hidden layer, which was a sufficient choice for the relatively
small training data we have. At the same time, with grid search we explored the depen-
dency of the models on the number of hidden neurons. The results summarised in Ap-
pendix B suggested that the performance of the models were weakly depending on this
hyper-parameter, but suggested different optimal values for their best performance as
summarised in Table 2.

The most important hyper-parameter controlling the performance of all of the methods
was the window size, which determined the length of temporal correlation a given method
could consider. For the naive model, this window can be associated with the gap parameter
(see Fig. 3c). In case of the HMM model, as shown in Fig. 3d, it is the size of the window

Table 2 Selected optimal hyper-parameters as number (No.) of hidden neurons, optimal (Opt.)
window size, average test accuracy values, and the corresponding standard deviations for each

model

unreconstr. naive HMM BiLSTM-bin BiLSTM-logi BILSTM-RSSI
No. hidden neurons - - - 64 16 32
Opt. window size 0 6 6 27 25 27
Average accuracy 77.28 % 83.36% 84.25% 88.34% 89.02% 90.03%

Standard deviation 14.91% 12.11% 11.67% 9.55% 9.36% 8.99%
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Figure 4 Accuracy of temporal network reconstruction (a) Average validation accuracy values as a function
of window size for the naive, HMM, BiLSTM-bin, BiLSTM-logi and BiLSTM-RSSI models, with fixed number of
hidden neurons for BiLSTM models as summarised in Table 2. (b) Distribution of accuracy values shown as
box-plots for the different models with optimal hyper-parameters values summarised in Table 2. Horizontal
white bar inside box is median and white star is average

that the model considers from the past to infer the actual state. Finally for the BIiLSTM
models, this window was defined as an envelope of equal number of states before (past)
and after (future) relative to the actual state to reconstruct (see Fig. 3e).

To choose the best window size, we took it as a parameter to compute the dependency
of average accuracy values over the validation sets. As results in Fig. 4a depict, the recon-
struction accuracy of each of the models shows strong dependency on the selected win-
dow size. First, in the case of the naive method, by increasing the filled non-interaction
gap size the accuracy reaches a maximum at gap = 6°. This corresponds to a gap length of
35 seconds, which is somewhat smaller than the gap window size of 75 seconds reported
by Elmer et al. [24] on another RFID dataset. In the case of the HMM model, the best
performance corresponds to the same window size win = 6. For the BILSTM models, the
accuracy increases with the window size but reaches a plateau at window size win = 27 for
the BiLSTM-bin, win = 25 for the BILSTM-logi, and win = 27 for the BILSTM-RSS], after
which the reconstruction accuracy decreases.

3.3.2 Performance of network reconstruction

After computing the average accuracy values over the test sets, surprisingly all methods
performed relatively well the reconstruction task (see Table 2 and Appendix B for the con-
fusion matrices). Even the non-reconstructed sequence reaches a surprisingly high accu-
racy of 77.28%. On the other hand, the naive method, commonly used in other studies,
performs significantly better with 83.36%, closely matching the performance (84.25%) of
the considerably more complicated model of HMM. It is evident, however, that from all
tested models, the BILSTM methods perform the best to solve the temporal network re-
construction. They all provide accuracy at least 4% better than any other method reaching
88.34% for the BiLSTM-bin method, closely matching the values of 89.02% and 90.03%
for the BiLSTM-logi and BiLSTM-RSSI methods respectively. More importantly, the best
performing BiLSTM methods are also the ones providing accuracy values with the small-
est fluctuations over the different test cases. This is reflected by the standard deviation
values reported in Fig. 4b and Table 2 where all performance measures are summarised. In
summary, these results suggest that the pipelines with the binary classification and logis-
tic regression provide one of the best performances, but the BILSTM-RSSI model trained
directly on the RSSI values of interaction pairs provide just as good but simpler solution.
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Figure 5 Characterisation of the reconstructed network. (a) Rates of reconstructed events by different
methods (for colours see key). (b) Inter-event time distribution between original and reconstructed event on
single links. (c) Distribution of the duration of interactions. Dashed lines on panels (b) and (c) depict
approximating power-law functions with exponents 1.8 and 2.1 respectively. (d) Weighted static
representation of a reconstructed network using the BiLSTM-RSSI method. Here link widths are proportional
to the time spent together when both nodes were present and node sizes are proportional to node degrees.
Nodes are coloured according to the original class partitions with darker nodes indicating adults (teachers,
assistants or interns). For better visualisation we removed links which correspond to the weakest 3% of
weights

3.4 The reconstructed temporal network

The different models we introduced may reconstruct the temporal network with different
characteristics. First of all, difference may arise as some models would label the same event
to be present and some others as being absent interaction. This can be easily demonstrated
by looking at the rates of reconstructed interactions by each model, as shown in Fig. 5a for
a single morning period (2.5 hours). There, evidently, the highest event rate appears for
the unreconstructed signal (naive method with gap = 0) where we only merge consecutive
packets labelled as interactions by the binary classifier. Relative to the unreconstructed
sequence, each reconstruction method reduces considerably the rate of identified inter-
action events. The naive method, being still a very simple model, which merges events
maximum 35 seconds apart, appears with the second highest event rate. Subsequently, the
HMM method provides a lower event rate while BILSTM-logi, BiILSTM-bin and BiLSTM-
RSSI methods are closely grouped with lowest rates, reconstructing about four times less
events than in the unreconstructed case.

Despite these large differences in the reconstructed volume, the P(t) inter-event time
distributions between interactions on single links (shown in Fig. 5b) and the P(dur) distri-
bution of duration of interactions (Fig. 5¢) appear with very similar shapes. These distri-
butions all depict broad tails ranging over several orders of magnitudes and can be approx-
imated well with power-law functions with exponents of « = 1.8 and y = 2.1 respectively.
Interestingly, this scaling is very similar to earlier observations in independent RFID stud-
ies [18, 44]. In one way, this match verifies our experimental setting and observations,
and at the same time it suggests that heterogeneities present in the interaction dynamics
of face-to-face interactions may be universal with similar characteristics in independent
systems.

To demonstrate the structure of the reconstructed network, we chose the BiLSTM-RSSI
method as it was one of the best performing models with the smallest variance in accuracy.
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Using this method, we reconstructed the events recorded in five consecutive mornings (15
hours observation combined) for 165 children and 25 adults (teachers, assistants and in-
terns), and aggregated the obtained interaction sequences into a static network structure.
Link weights in this representation were defined as per hour interaction rates between
participants. This network is visualised in Fig. 5d where we draw links with width pro-
portional to the time the connected nodes interacted during periods when they were both
present. The size of the nodes reflects their degrees, while their colours are associated to
the class they belong to (with darker colours indicating teachers, assistants and interns).
This network structure appears with several interesting characteristics. First of all, the
network is heterogeneous in degree, which is a common characteristic of social networks.
Second of all, it well recovers the expected community structure where children of the
same class connect densely together including the teaching staff in charge of that group.

4 Spreading processes on reconstructed networks

Temporal social interactions are far from being random but highly correlated in time and
structure. They are characterised by heterogeneous bursty dynamics [45], which poten-
tially appear due to causal correlations between events. Such causally related adjacent
events, sharing at least one person in common, build long time respecting paths [34, 36],
which are extremely important as they determine how information/epidemics/influence
can flow in the temporal network.

Consequently, the precise inference of temporal interactions in a network is extremely
important not only to study the emergent structure but any ongoing process, like language
evolution or information spreading or epidemics. To demonstrate this issue, here we take
all the different event reconstruction methods we explored, and study how the temporal
networks reconstructed in different ways influence the dynamics of a simple information
spreading process. More precisely, we use the susceptible-infected (SI) model [46] as one
of the simplest prototypical models of information spreading, which in turn can be used
to simulate the fastest possible spreading under certain conditions. This model, defined
on temporal networks, assumes that each node in the network initially is in susceptible
state except for a single randomly selected node, which was set to be infected initially at
a randomly selected time. Infection can be transferred with rate g from an infected to
a susceptible node (i.e. S LAy} ) only at the time and direction of their temporal interac-
tions. In case 8 = 1 the model is equivalent to a breadth-first-search process realising the
fastest possible information spreading scenario with given initial conditions in the actual
temporal network. However, if 8 < 1, the process would be arguably less sensitive to local
fluctuations in the temporal networks, as it could take alternative routes than the shortest
paths to reach nodes, thus would spread slower on the same network. Note that due to
the finite observation period of temporal interactions, in our simulation we divided a 150
minutes long observation period into a 30 minutes and a 120 minutes time windows. We
selected 800 random seeds from the first window and simulated the SI process for 120
minutes in each case. This way we obtained simulated spreading curves with the same
length that we could easily average.

To depict our simulation results, in Fig. 6a we show the average spreading curves for
each model for g = 1 case, while in the inset for lower B values the average times the
process reached 90% infection on each reconstructed networks. Figure 6b shows the cor-
responding distributions of time to reach 90% infection in each case, again when g = 1.
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Figure 6 Characterisation of information spreading on reconstructed networks. (@) Average spreading curves
of susceptible-infected processes with 8 = 1 simulated on different reconstructed temporal networks as
indicated in the key. Inset shows the B dependencies of the speed of spreading processes measured as the
average tooy, 90% infection time. (b) Distributions of 90% infection times as box-plots for the different
reconstruction methods in case of B = 1. Distribution averages are represented by stars. For the parameters of
the Sl simulations see the main text

All these results indeed demonstrate large differences between spreading dynamics sim-
ulated on temporal networks reconstructed with the different methods, despite they all
relied on the same raw observation sequences. Not surprisingly, in general, the speed of
spreading is largely determined by the overall number of events that the different models
reconstructed, as already shown in Fig. 5a. Larger number of interactions means larger
number of possible transitions between the same set of nodes and over the same period.
Following this logic, not surprisingly the unreconstructed network spread the infection
the fastest, while BILSTM models were the slowest. However, there is an important ex-
ceptions, which reflects our main conclusion here. The naive method reduced by more
than ~90% the event rates as compared to the unreconstructed sequence, but when it
turns to disseminating information, this seems to make no difference. It is suggested by
the corresponding spreading curves in Fig. 6a, which are almost indistinguishable, and
by the distributions of 90% infection time which appear with almost the same average
and standard deviation (see Fig. 6b). At the same time, these results seem to be consistent
over a range of 8 values. From Fig. 6a inset it is evident that at small 8 values the spread-
ing is strongly stochastic, fluctuations are very large, and the process takes a long time to
spread. However, as we increase 8 the spreading becomes faster on each network. More
importantly, after an initial 8 regime, the spreading processes evolve with similar relative
speeds on the different structures as observed in case of the deterministic 8 = 1 case. This
indicates that even for stochastic settings (8 < 1) the dynamical process is sensitive to the
precise reconstruction of the underlying temporal network.

In conclusion, when using wireless proximity sensors to capture temporal interactions,
(a) it is very important to carefully reconstruct events from the raw data and not only
rely on simplistic intuitive conditions, otherwise the constructed temporal network will
be biased by noise and overestimated event rates and will lead to unreliable outcomes of
simulated dynamical processes; and (b) it is not enough to choose the best reconstruc-
tion method by its final accuracy, but it is crucial to choose carefully the reconstruction
pipeline, which balances between good reconstruction performance and matching the

purpose of the actual system under study.
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5 Discussion

The goal of this work was manyfold. First, we developed a filtering and temporal network
reconstruction pipeline to obtain the best approximation of temporal social interaction
sequences from proximity data recorded via wearable wireless devices. We used ground
truth data recorded in various settings and explored different reconstruction strategies
involving supervised methods of classification and sequence reconstruction. We found
that, while all tested methods provide reasonable performance, naive methods commonly
used in the literature show the worst performance. At the same time, bi-directional LSTM
methods, which take into account information from the past and future of the actually
predicted state, solve the reconstruction task the best, with accuracy up to ~90%.

Furthermore, we wanted to highlight the importance of precise reconstruction of tem-
poral interactions from raw data. Over the last few years, experiments using wearable
wireless devices provided an ideal way to study collective social phenomena through the
precise recording of temporal social interactions of people/animals in various settings.
At the same time, these datasets became inductive resources to study ongoing dynamical
processes such as epidemics [13, 47], opinion dynamics [48], etc. evolving on the tem-
poral social fabric. However, without the careful reconstruction of social interactions, any
study addressing the dynamics or structure of the evolving networks or any ongoing collec-
tive dynamics would risk to draw wrong or inaccurate conclusions. We demonstrated the
sensitivity of this issue by simulating susceptible-infected processes on the reconstructed
networks, which in turn follow significantly different scenarios depending on the actual
method used for event reconstruction, even for those with comparable accuracy.

Finally, we wanted to showcase a large-scale longitudinal social experiment, which
records the proxy social and verbal interactions of hundreds of pre-school children and
their teachers and assistants with high temporal resolution. Our experiment is ongoing,
but in the end it will provide observations about the dynamics of language development
and social network of children over three years. Using these data in our upcoming re-
search, we plan to study linguistic and social similarities at different levels of organisation
of the social network: the collective level (the whole school, classes, or children groups
with similar socio-cultural background considered as a community), the intermediate level
(friendship groups), the dyadic level (connected pairs of children) and the individual level
(each child with their specific characteristics).

First, we plan to detect the temporal relationships between social networks dynamics
and changes in children language. We shall adopt two approaches to disentangle the mu-
tual influences between socialisation and language. To evaluate social influence on lan-
guage skills, we will test whether the change of social distance between individuals pre-
dicts the linguistic distance between them as well. On the contrary, to assess the effect of
language on social relationships (homophily), we will also investigate whether the linguis-
tic distance between individuals predicts the social distance between them. Interesting
future research direction would be to uncover the fine grained differences between the re-
constructed networks to understand which of their features are important to reconstruct
and which are insignificant for dynamical processes.

Second, we aim at measuring, quantifying and modelling the processes that have long-
term influence on social and linguistic development. Our three-year longitudinal follow-
up design makes it possible to analyse the processes underlying the dynamics between
changes in the social network and language skills. In particular, we will examine the effect
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of integration within a new community: does a community always have a homogenising
role, by absorbing linguistic change, or, by contrast, can it accommodate the linguistic
usages brought by new members and augment these by disseminating them through the
community?

As any data-driven study intending to predict or infer human behaviour, our study has
also limitations. First of all, the collected data contain certain noise, which cannot be re-
constructed with any actual method. Noise is also inevitably present in the ground truth
data, which at the same time code only a finite set of configurations used for training, while
rare and exceptional scenarios may remain unobserved. These limitations together with
the stochastic nature of human behaviour lead to an always perfectible reconstruction of
human traits of actions or interactions. Finally, although we payed special attention on de-
noising, pre-filtering, model selection, and the exploration of the hyper-parameter space
of each model, surely the optimal inference pipeline we identified is not universal but may
be different in the case of data from other wireless proximity sensors.

Beyond scientific merit, our results highlight the importance of the careful design of
event reconstruction in studies using wireless sensors. We demonstrated this in the case of
LPWD based experiments recording social interactions, but it is important more generally
in any study relying on similar data collection methods. This way, we hope that our study
contributes not only to the better design of coming scientific studies but also to future

emerging technologies.

Appendix A: Experimental design of ground truth data collection

While designing the ground truth data collection, special attention has been paid to the
feasibility and reliability of our observation method, to decrease human errors during ob-
servations while obtaining a meaningful ground truth dataset. To meet with all these re-
quirements we followed the following logic and conditions:

+ To record the ground truth data for GT1 and GT3 we had a researcher in the
classroom who was monitoring the behaviour of children to record their interaction
state, their relative orientation or position at regular intervals. To quantify
interactions, distance and orientation, we chose a scan sampling strategy (i.e.
observations of states at predetermined time intervals) [41]. Another option was focal
sampling (i.e. continuous recording of interaction events) [41], however social
interactions (and kids position/distance too) were sometimes too short and
fluctuating for continuous observation, thus it was impossible to record the beginning
and end of each interacting event without using video-recording.

In addition, for scan sampling, we made trials to find the appropriate time intervals
between two observations (scans) that allowed us to record data without loss (i.e. the
shortest step possible for recording the data of interest without taking the risk to miss
one observation point). In the end, we chose 10 second steps for pair observations
(GT1) and 2 minute steps for group observations (GT3).

« For GT1 observations, we worked during free play time to be able to observe
spontaneous play interactions. To decrease the possible noise due to fleeting
behaviours and random moves, observations were carried out on older children from
the middle (4-5 years old) or the grand class (5-6 years old). Importantly, we focused
only on one pair of kids at a time to record their state (interacting or not) and relative
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position every 10 seconds. This way we reduced to the minimum the possible human
observation errors in this setting.

Regarding the scoring of the state of interaction/no-interaction, we set the criteria
of interactions based on the literature [49] and the field expertise of the participating
researchers from earlier similar experiments. Specifically, we considered two children
“interacting” if they were within arm’s reach (i.e. less than 1 meter from each other),
either playing together (e.g. cooperatively manipulating construction blocks, kitchen
toys, puzzles...) or playing alongside (e.g. making a drawing next to each other). These
situations typically involved talking to each other at times.

« Regarding GT3, we selected the most appropriate and stable conditions to observe
distance and orientation of as many children as possible. In practice, we performed
observations only with older children (grand class) when their movements inside the
classroom were limited for an extended period of time. This was possible during
specific activities that involved standing still (like collectively sitting on a bench to
listen to the teacher reading a book, sitting around tables in small groups to do written
work...) rather than freely moving around (like during free play time).

+ Measuring distances between children is very much subject to inter- (and even intra-)
individual variations. To minimise such fluctuations in recording the distances in
GT3, we used a customised behavioural observation app originally developed to
record the positions and distances of animals in a fixed environment (Animal
Observer application for iPad [42]). This app projects a scaled map of the classroom
with indicated reference objects (furnitures, doors, windows, etc.) and allows to
record by an observer the positions of individuals on this map as the function of time.
Using this temporal location dataset inter-individual distances of children have been
computed afterward. Relative to the objects on the classroom map the location of
children could be estimated precisely with a very small error margin (around 10 cm),
something that would have been impossible to accurately assess through “naked eye”
estimations and “hand” recording.

To further check the impact of potential errors due to human encoding, we conducted

a randomisation experiment where we induced noise in the already collected data. More
precisely, we randomly selected the 5%, 10%, 15%, and 20% of observation points from
the ground truth data sequences and flipped the annotated flags from interaction to non-
interaction or vice versa to add noise to our original observations. Through remeasuring
the accuracy change of the BILSTM-RSSI method on these randomised data we found that
the average and variance of accuracy is rather robust against such small induced noise, only

having the average to decrease slightly as summarised in Table 3.

Table 3 Average and standard deviations of BiLSTM-RSSI reconstruction method trained on GT1
after introducing random noise of various levels. Average values are computed over 20 independent

realisations
Flipped random fraction 0.05 0.1 0.15 0.2
Average accuracy 90.02% 89.98% 89.91% 89.84%

Standard deviation 9.14% 9.24% 9.53% 9.26%
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Appendix B: Parameters and performance of reconstruction methods

In this Appendix, we summarise the parametrisation of the different reconstruction meth-
ods together with the confusion matrices corresponding to their best performing param-
eters, as summarised in the Sect. 3.3 in the main text.

B.1 Naive method

The naive method has a single parameter gap, which determines the maximum length
of non-interaction gaps between two interaction events to be filled automatically with
interaction states. gap = 0 is a special case as it belongs to the non-reconstructed signal
where no state has been filled. We explored gap from 0 to 9, corresponding from 0 to 45
seconds of non-interaction gaps, with 5 seconds incremental step size. We found that in
our setting the best reconstruction can be reached with gap = 6 with accuracy reaching
0.834 as summarised in the confusion matrix in Table 4. Consequently, if a longer than 35
second gap appears in the interaction sequence of two individuals, the two participants
most probably broke their actual social interaction, thus events before and after the gap
should be considered separately.

B.2 Hidden Markov model

When parametrizing the HMM with annotated data, we used maximum likelihood esti-
mation to compute three matrices. Take transition matrix for example, if the frequency of
hidden state i at ¢ transiting to hidden state j at ¢ + 1 is A;;, then the estimated transition
probability @; is computed as follows: a;; = A;;/ Z}].\:[(_)l A, where N is the number of hidden
states. Same method is applied for computing emission matrix and initial matrix.

With embedded envelop sequence, we first pad 0 (indicating non-interaction states) at
the beginning of each sequence, with size of windowsize — 1. We then use transformed
envelop signals instead of binary signals to define the hidden states, observation states, as
well as determining all the matrices. Finally, as an output of the Viterbi algorithm we obtain
a sequence of envelop, the last item of each envelop being the predicted interaction/non-
interaction state of each time step.

The reconstruction accuracy and the confusion matrices of the HMM methods are
shown in Table 5 for window size win = 6.

B.3 Bi-directional LSTM methods
For each BiLSTM method we used an envelop with size of winsize located symmetrically
on the middle state which we wanted to reconstruct (as demonstrated in Fig. 3e). We pad

void signals at the beginning and at the end of each sequence, with size of | winsize/2] on

Table 4 Confusion matrix with accuracy of the naive event reconstruction method with gap =6

acc.=0.8336 contact no-contact
contact 0.8942 0.1058
no-contact 0.2361 0.7639

Table 5 Confusion matrix with accuracy of the HMM model with window size win =6

acc.=0.8425 contact no-contact

contact 0.8917 0.1083
no-contact 02176 0.7824
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Table 6 Confusion matrix with accuracy of the BiLSTM-RSSI for event reconstruction

acc.=0.9003 contact no-contact
contact 09165 0.0084
no-contact 0.1226 0.8774

Table 7 Confusion matrix with accuracy of the BiLSTM-logi for event reconstruction

acc. = 0.8902 contact no-contact
contact 0.9067 0.0933
no-contact 0.1333 0.8667

Table 8 Confusion matrix with accuracy of the BiLSTM-bin for event reconstruction

acc.=0.8834 contact no-contact
contact 0.8919 0.1081
no-contact 0.1294 0.8706

each side. More precisely, the padded void signal for BILSTM-RSSl is a vector (—95, 95, 0),
for BiLSTM-logi is a vector (1,0) and for BiLSTM-bin is a single number 0.

We merged the outputs of the two LSTMs using concatenation, which provided double
size of outputs to the next layer. For the training, we split our labelled data into 10 clips
with each around 25 mins then use nested cross validation to select best hyper-parameters
and examine the performance of each reconstruction method. The confusion matrix of the
three BiLSTM reconstruction tasks are shown in Table 6, Table 7 and Table 8. The accuracy
of the BILSTM-RSSI reached 0.9003, which is the best among all the tested methods.
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