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Abstract
This paper examines the population heterogeneity of travel behaviours from a
combined perspective of individual actors and collective behaviours. We use a social
media dataset of 652,945 geotagged tweets generated by 2,933 Swedish Twitter
users covering an average time span of 3.6 years. No explicit geographical
boundaries, such as national borders or administrative boundaries, are applied to the
data. We use spatial features, such as geographical characteristics and network
properties, and apply a clustering technique to reveal the heterogeneity of
geotagged activity patterns. We find four distinct groups of travellers: local explorers
(78.0%), local returners (14.4%), global explorers (7.3%), and global returners (0.3%).
These groups exhibit distinct mobility characteristics, such as trip distance, diffusion
process, percentage of domestic trips, visiting frequency of the most-visited locations,
and total number of geotagged locations. Geotagged social media data are gradually
being incorporated into travel behaviour studies as user-contributed data sources.
While such data have many advantages, including easy access and the flexibility to
capture movements across multiple scales (individual, city, country, and globe), more
attention is still needed on data validation and identifying potential biases associated
with these data. We validate against the data from a household travel survey and find
that despite good agreement of trip distances (one-day and long-distance trips), we
also find some differences in home location and the frequency of international trips,
possibly due to population bias and behaviour distortion in Twitter data. Future work
includes identifying and removing additional biases so that results from geotagged
activity patterns may be generalised to human mobility patterns. This study explores
the heterogeneity of behavioural groups and their spatial mobility including travel
and day-to-day displacement. The findings of this paper could be relevant for disease
prediction, transport modelling, and the broader social sciences.

Keywords: Geotagged activity patterns; Individual mobility; Data mining;
Hierarchical clustering

1 Introduction
Understanding travel behaviour can provide insights for a wide range of disciplines, in-
cluding urban planning [1], transport management [2], epidemiology [3], ecology, and
social science [4]. Previous travel behaviour research has used cross-sectional data [5],
such as from household travel surveys. Although it is one of the most prevalent data
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sources, surveys are costly to collect and therefore typically suffer from small sampling
rates, short survey duration, under-reporting of long-distance trips [6], and long lag times
between data collection and data availability [7]. Despite some drawbacks, travel surveys
contain socio-demographic information and detailed activity records that make them dif-
ficult to replace by emerging data sources [6]. Those characteristics enable researchers to
examine population-level mobility determinants and large-scale changes in daily mobility.
Traditional travel surveys also contain rich explanatory variables that enable the valida-
tion/calibration that is essential for utilising emerging data sources.

The rapid development of information and communication technology (ICT) has the
potential to address some of the shortcomings mentioned above and broaden the types of
questions that can be explored in travel behaviour studies [8]. Emerging data sources, such
as records from Global Positioning System (GPS) devices, smart cards, mobile phones,
and other online systems, have deepened the understanding of human mobility [9, 10].
Among the emerging data sources, social media data are being gradually accepted as user-
contributed data sources in travel behaviour studies, such as activity pattern classification
[11], large-scale urban activity [12], and mobility patterns [13].

Geotagged tweets from the Twitter platform represent one type of social media data.
A tweet is a short social media text message associated with a unique user on the Twit-
ter platform, and a geotagged tweet also contains the GPS coordinates if the user allows
this information to be attached to the tweet. The number of geotagged tweets is low com-
pared to the total number of tweets, with one study finding around 1-3% in Syria [14].
Similarly in our previous study, we also found that geotagged tweets accounted for a lim-
ited proportion of overall Twitter users, e.g., 7.4% (George, South Africa), 1.9% (Barcelona,
Spain), 1.1% (Kuwait), and 0.3% (Sweden) [15]. The number of geotagged tweets per user
also varies among countries. Median (and the 5%th - 95%th percentile in parenthesis) val-
ues over a six-month sampling period are 9 (1-190) (Kuwait), 2 (1-50) (Australia), 2 (1-41)
(Sweden), and 2 (1-20) (Barcelona, Spain) etc [15]. Despite that, geotagged tweets have
proved a useful proxy for tracking and predicting human movement [10]. Such a data
source provides precise location information [10], easy and free access [16], and opportu-
nities for continuous tracking activities without a predefined geographic boundaries such
as national borders or administrative boundaries [17]. The main criticisms are biased pop-
ulation representation [18] and behaviour distortion [19, 20] regarding when and where
locations are reported via geotagged tweets. Some studies have compared multiple data
sources to identify or adjust the biases [20, 21] and to validate against “ground truth” [22].
Despite some disadvantages of geotagged tweets, one recent review highlights the use-
fulness of such data sources for modelling travel behaviour [16] and understanding social
behaviors such as urban neighbourhood isolation [23].

1.1 Related work
Geotagged tweets can be obtained by purchasing the complete set of public tweets from
Twitter Firehose, using the Streaming API for up to a maximum of 1% of public tweets,
or retrieving user timelines by user name/ID for up to 3200 historical tweets that are set
publicly accessible by the user [24]. Geotagged tweets are often limited to a geographical
bounding box such as national borders or adminstrative boundaries when collected from
the Streaming API, yielding a lateral dataset that covers a large number of Twitter users
for a snapshot of time. If the movement of a user occurs across or outside the bounding
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Table 1 Representative studies of travel behaviour using social media data. T is the time span
covered by the dataset. S represents data source. On the Angle column, A indicates aggregate/lateral
level and I indicates individual/longitudinal level. On the S column, F indicates Foursquare and T
indicates Twitter

Study Topic Angle User Sample Geo-scale T S

[35] Travel demand A – 19, 710 City 21 days F
[36] Travel demand A 54, 272 355, 059 City 2 days T
[10] Representativeness A 156, 607 7, 811, 004 Country 8 months T
[26] City influence A 571, 893 21, 017, 892 Cities 1000 days T
[15] Travel distance A 791, 542 15, 719, 535 Cities 6 months T
[32] User routines I 825 157, 806 City 1 year F
[11] Urban activity I 3256 504, 000 City 1 month T
[37] Activity space I 116 63, 114 County 5 months T
[8] Travel monitoring I 9738 6, 000, 000 Districts 1 year T
This study Travel patterns I + A 2926 652, 945 Globe 3.6 years T

box, it is not captured with this method. Geotagged tweets collected from user timelines
do not have this geographical boundary limitation, and the historical tweets of a speci-
fied user can be collected in a few seconds. These tweets can cover multiple years, creat-
ing a longitudinal record of an individual’s locations without any geographical boundaries
[24]. Non-recurrent mobility that is often under-reported in a one-day travel diary (e.g.,
tourists’ mobility [25]) can be studied using this type of data. It is also feasible to scale up
the number of Twitter users to study the influence of global cities [26].

Geotagged social media data have been criticised for non-representativeness due to
population bias and behaviour distortion. It is found that Twitter users in the U.S. over-
represent dense population regions and are predominantly male [27]. Behaviour distor-
tion involves both tweeting behaviour and reasons for geotagging, both of which can lead
to non-representativeness. The time sparsity of tweets causes the trajectory of geotagged
tweets collected from users to be incomplete compared with the actual mobility trajectory
of those users. One recent study shows that people geotag consciously and intentionally
in uncommon places, and they often geotag soon after arriving at the place [20]. These
biases need to be considered before drawing any conclusions from these data sources.

Social media data have been used to study both aggregate mobility behaviour and
individual-based activity behaviour [16]. Representative studies are summarised in Ta-
ble 1. At the aggregate level, studies have shown that social media data can be a reason-
able proxy for population mobility. Studies have used social media data to demonstrate
the truncated power law of trip distance distribution [28] and Zipf ’s law of the visitation
frequency, which describes people’s tendency to return to a couple of locations they fre-
quently visit [29]. Studies generally found good agreements cross validating social media
data against other data of higher time resolution, such as mobile phone call detail record
(CDR) [22]. At the individual level, studies have used geotagged social media data to in-
fer activity purpose. Such studies usually have specified application, e.g., bike sharing be-
haviour [30], prediction of next location [31], and lifestyle behaviour [32, 33]. Social media
data have been used to identify activity choice patterns [11, 32] and to recognize specific
activities [34], combining spatial and temporal information with semantic information in
the data.

Previous travel behaviour studies using social media data have been limited by data col-
lection and a lack of understanding of population heterogeneity. Most studies are based
on data collected within a specified geographical bounding box over a short time range
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(Table 1). Use of a geographical bounding box, such as national borders or administrative
boundaries, precludes capture of trips outside or across the boundary of the box, bias-
ing the resulting data toward short-distance travel. On population heterogeneity, most
studies of aggregate population behaviours neglect individual differences, while studies of
individual mobility usually neglect common features that drive similar behaviours across
groups of individuals. Although the travel behaviours of individuals in any population are
neither identical to nor independent of each other’s, there has been little work on combin-
ing aggregate and individual perspectives to gain new insights about travel behaviours of
a heterogeneous population. Understanding travel patterns across scales from individuals
to a population is the next step in understanding urban mobility and social behaviour [4],
especially when comparing mobility in different cities [38].

This paper reveals the population heterogeneity of geotagged activity patterns using a
long-term dataset without any geographical boundaries, such as national borders or ad-
ministrative boundaries. Specifically, this study attempts to answer the following three
questions:

• Are there any distinct patterns that characterise the observed individual geotagged
activities?

• What are the spatial and temporal characteristics derived from different geotagged
activity patterns?

• Can geotagged tweets be used as a proxy to approximate the mobility patterns of
different behavioural groups?

The dataset includes 652,945 geotagged tweets generated by 2,933 Swedish Twitter users
covering time spans of more than one year (3.6 years on average). We first describe the
geotagged tweets dataset and validate it against a household travel survey. To identify the
population heterogeneity of geotagged activity patterns, we combine aggregate and in-
dividual analysis techniques: we first analyse the geotagged trajectories of each user to
classify them regarding their activity patterns, and then we conduct an aggregate analysis
for each group. We characterise the features of individual trajectories of geotagged tweets
using both geographical and network properties. The features describing users’ activity
patterns are based on those found in the literature. Hierarchical clustering is a descriptive
data mining method that can produce new, non-trivial classifications of users based on the
available dataset [39]. Patterns of individual trajectories are thus grouped into four cate-
gories: local returners, global returners, local explorers, and global explorers. The spatial
and temporal characteristics of these four groups of individuals are explored.

2 Methods
We use two datasets in this study: geotagged tweets from Twitter and individual trip in-
formation from the Swedish National Travel Survey. We use the household travel survey
data to investigate the representativeness of geotagged tweets via a descriptive analysis,
comparing spatio-temporal characteristics (behaviour distortion) and the population dis-
tribution (population biases).

The rest of this section introduces the methodology that identifies the population het-
erogeneity of human mobility, as shown in Fig. 1. Six spatial features are proposed to de-
scribe the individual geotagged activity patterns in the feature construction. Based on the
geotagged activity trajectories, the features are calculated per user, and hierarchical clus-
tering is applied. We identify four groups of users with distinct geotagged activity patterns.
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Figure 1 Methods structure. RQ1—Are there any distinct patterns that characterise the observed individual
geotagged activities? RQ2—What are the spatial and temporal characteristics derived from different
geotagged activity patterns? RQ3—Can geotagged tweets be used as a proxy to approximate the mobility
patterns of different behavioural groups?

We further apply down-sampling to test the impact of geotweeting frequency on the group
identification.

2.1 Data collection and pre-processing
2.1.1 Twitter data
In a previous study, we used the Gnip database to identify 5000 non-commercial Twitter
users who geotagged their tweets most frequently during a six-month period (20 Decem-
ber 2015–20 June 2016) within the geographical bounding box of Sweden [15]. Gnip is a
Twitter subsidiary which sells historical tweets in bulk and provides access to the Firehose
API. We extract these top users’ historical tweets (without applying a spatial boundary)
from their user timelines [40]. The data are limited to 3200 tweets per user. This method
produces a varied time span and varied tweet number, since not all users reached the
3200-tweet maximum. Because the tweeting frequency varies among users, the time span
collected per user also varies: the higher the tweeting frequency, the shorter the time span
collected from a user.

We further apply the following rules to pre-process the data to ensure that the indi-
viduals included in the study live in Sweden and have a substantial number of geotagged
tweets so we can reasonably capture their activity trajectories: (1) the covered time span
is above 1 year, (2) the geotweeting frequency (geotagged tweets/day) is above 0.1, or the
total amount of geotagged tweets is above 50, and (3) the most frequently visited locations
is in Sweden. After screening, we identify 2926 users and 652,945 geotagged tweets.

Using Twitter data, a “trip” is defined as the trajectory between two consecutive geo-
tagged tweets generated by the same user. A trip in this study is equivalent to displace-
ment in some previous studies. Waiting time is defined here as the time interval between
two consecutive actions (geotagged tweets in this context) by the same individual [41].
A trip should also have a distance larger than 10 m given the precision of GPS coordinates
generated by Twitter.
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2.1.2 Swedish travel survey
The survey data come from the Swedish National Travel Survey for the years of 2011–
2014 [42]. The survey data are used to compare the trip length distribution with those
derived from geotagged tweets. It consists of a total of 31,457 travel diaries spanning the
period of a day, with detailed information on individual trip distance, travel time, mode of
transportation, and trip purpose [15]. The travel survey also includes a separate dataset
containing a total of 9024 trips during 60 days from the same group of participants as in
the travel diary data. These include trips that are either longer than 100 km or to neigh-
bouring countries with a distance shorter than 100 km. To be consistent when comparing
Twitter data with the survey data, Twitter data are filtered to either only include domes-
tic trips beginning and ending on the same day, with distances longer than one kilometre
(minimum distance in the survey), or international trips.

2.2 Geotagged activity pattern: feature construction
The locations that user i visited are first captured using all geotagged tweets by user i with
the time stamps: (X, Y , t)i,k , k = 1, 2, . . . , Ni where X is the decimal degree of Latitude, Y is
the decimal degree of Longitude, t the time stamp (UTC) of the kth location. We define
dom as the indicator to show whether the location is within Sweden: dom = 0 is outside
Sweden and dom = 1 is in Sweden. Ni is the total number of locations visited by the user
i through his/her geotagged tweets, and Ti is the total captured time span of user i. With
tl as the local time of the tweets, we further calculate the month variable m ∈ [1, 12], the
weekday variable w (weekday = 1 and weekend = 0), and the hour of the day, h ∈ [1, 24].
The time sequence of user’s locations (user trajectory) is therefore:

Si = (X, Y , t, tl, m, w, h, dom)i,k , k = 1, 2, . . . , Ni. (1)

For user i, the number of distinct locations is smaller than or equal to the total number
of locations user i visited. Let ni be the number of distinct locations, fi,j be the visiting
frequency of location j, and Ti,j be the time interval of two visits of the location j. The
vector of visited distinct locations is therefore:

Li = (X, Y , f , T, m, w, h)i,j, j = 1, 2, . . . , ni. (2)

A trip, the connection between two consecutive geotagged tweets generated by the same
user, is represented by the arc connecting two consecutive geotagged tweets with locations
j – 1 and j. (If j – 1 and j are within 10 metres of each other or the tweets are within 10
minutes, these are considered to be the same location and not a distinct trip.) The arc
connecting these locations has a Haversine distance (distance along the curved surface
of the earth), d > 10 m, and time interval �T > 10 min between the tweets. For each trip,
if location j – 1 and j are located within Sweden, that trip is defined as a domestic trip,
dom = 1, and if location j –1 and j are located outside Sweden, dom = 2, otherwise dom = 0.
The origin-destination matrix that is based on the trajectory of geotagged tweets of user
i (ODMi) is a directed graph with the trip attributes shown below.

ODMi = (f , d, dom)p,q, p, q = 1, 2, . . . , ni. (3)
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Based on the literature review, we propose two essential aspects: how far one travels and
how actively one explores new locations. To do pattern mining, we need to find proper
summary statistics as the features to characterise the geotagged activity patterns. There-
fore, we first examine the underlying distribution of the trip distance (di,j, j = 1, 2, . . . , ni)
and the network node degree (fi,j, j = 1, 2, . . . , ni) for all the individuals’ geotagged activity
trajectories. Specifically, we compare the theoretical distribution that best fits the empir-
ical distribution to see whether the empirical distribution is heavy-tailed [43]. It turns
out most users’ trip distance and network node degree follow a heavy-tailed distribution,
such as the distribution of Cauchy, Lévy, Burr, and Pareto. To deal with the highly skewed
data, log transformation is applied to variables fi,j, di,j, j = 1, 2, . . . , ni to calculate the log-
mean and the log-variance. The summary statistics below are proposed to quantify the
key characteristics of Twitter users’ geotagged activity patterns.

Six features of geographical characteristics and network properties are proposed to rep-
resent an individual geotagged trajectory. Geographical characteristics are described by
features rg , Do, and d. Radius of gyration, rg (km), refers to the travel distance range
weighted by the visiting frequency. The total radius of gyration rg is defined as:

rg =

√
√
√
√

1
ni

ni∑

q=1

fq · (rq – rcm)2, (4)

where rq = [X1, X2]q and the mass center of the visited locations:

rcm =
[∑ni

q=1(Xq · fq)
∑ni

q=1 Xq
,
∑ni

q=1(Yq · fq)
∑ni

q=1 Yq

]

. (5)

Location distance variance, Do (km), refers to the geographical dispersion degree of vis-
ited locations. ODMd = (dp,q) represents the linear-scale trip distance matrix where dp,q =
dq,p, dp,q = 0, p = q. The log-transformed trip distance matrix is indicated by ODM′

d =
(log(dp,q)). The only zero elements of the linear-scale ODMd entries are on the diago-
nal for which, instead of using additive smoothing, we retain them on the diagonal of the
log-transformed ODM′

d . ODMnorm
d = dnorm

p,q is defined as:

ODMnorm
d = ODM′

d –

( ni∑

p=1

ni∑

q=1

log(dp,q) · fp,q

)

∗ Jni

n2
i

, (6)

where Jni the unit matrix. So the location distance variance Do is defined by:

Do =

√
∑ni

p=1
∑ni

q=1 dnorm
p,q

n2
i

. (7)

Mean value of log-transformed trip distance, d (km), refers to the average log-transformed
distance between two consecutive geotagged tweets, defined as:

d =
∑Ni

k=2 log(dk–1,k)
Ni – 1

. (8)
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Table 2 Spatial features characterising individual’s activity patterns. The node degree (a) is
equivalent to the location visiting frequency

Type Feature Description

Geographical characteristics rg (km) Radius of gyration Travel distance range weighted
by the visiting frequency.

Do (km) Location distance variance Geographical dispersion
degree of visited locations.

d (km) Mean trip distance Average distance between two
consecutive geotagged tweets.

Network properties C (–) Clustering coefficient To which degree the visited
locations are connected
together.

z (–) Mean node degree a Overall visiting frequency.
zm (–) Max node degree divided by

the sum of total degrees
Degree of how centralised the
overall visited locations are by
visiting frequency.

Network properties are described by feature clustering coefficient (C), average node de-
gree (z), and normalised node degree (zm). Clustering coefficient (average), C (–), refers
to the degree to which the neighbours of a given node link to each other [44, p. 63]. For
a node (location) j with degree (visiting frequency) fi,j, its local clustering coefficient is
defined as:

Cj =
2Lj

fj(fj – 1)
, (9)

where Lj indicates the number of links between the kj neighbours of node j. The average
clustering coefficient of the whole network is calculated by:

C =
1
ni

ni∑

j=1

Cj. (10)

The mean value of the log-transformed node degree, z (–), represents the overall visiting
frequency. Each visited location is seen as one node in the network, and the visiting fre-
quency is equivalent to the node degree; therefore, the average value of the node degree z
is one important indicator of the network properties. It is defined as:

z =
∑ni

j=1 log(fj)
ni

. (11)

zm (–) is the max node degree divided by the sum of total degrees, which indicates the
how centralised the overall visited locations are. The normalised max node degree zm is
defined as:

zm =
max[fj]
∑ni

j=1 fj
. (12)

The proposed features are summarised in Table 2. The geographical features reflect how
far people travel and all have the same units, km. The radius of gyration, which combines
the locations’ geographical distribution and their visiting frequency, has been widely ap-
plied to characterise human mobility patterns [28, 45]. Do and d describe how the visited
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locations are distributed geographically. d indicates the average distance between trips
and Do quantifies the variation of trip distance. Not all the visited locations are fully con-
nected with each other. Hence in the calculation of d and Do, distance is only counted
when there exists a connection between two consecutive geotagged tweets.

The network features describe properties [26] which characterise how actively people
explore new locations. Individual trajectories create a complex network, where a node
represents one visited location. The clustering coefficient is a measure of the degree to
which locations in such a complex network tend to cluster together. For each visited lo-
cation, one important property is how frequently the users return to a visited location on
average (z (–)) as not every location is evenly visited. The frequency of the most visited
location reflects how centralised the complex network is (zm (–)).

2.3 Potential user groups: hierarchical clustering and down-sampling
We apply hierarchical clustering to the six spatial features. The clustering procedure in-
volves: (1) data standardisation, (2) distance calculation, (3) linkage establishment, and
(4) splitting the linkage into clusters. For data standardisation, the min-max method is
applied to each feature. For the distance calculation, the squared Euclidean distance is
applied [46]. For cluster method of linkage establishment, Ward’s method is used [47].
Sensible clustering is measured by the small sum of squares of deviations within the same
cluster. By limiting the cluster distance larger than a certain threshold, the final clusters
are formulated. The average silhouette width provides an evaluation of clustering valid-
ity [48]. As a result of hierarchical clustering, each user is categorised into a group with
certain characteristics.

To test the impact of geotweeting frequency on the group identity, random down-
sampling is applied to raw individual trajectories of geotagged activities. The features are
re-calculated based on the down-sampled trajectories. The same procedure of hierarchi-
cal clustering is applied to the updated feature sets to re-identify the behaviour group of
individuals.

3 Results
In this section, we first briefly summarise the geotagged activity dataset regarding their
spatial and temporal characteristics. Two clustering analyses are applied, resulting in four
combinations of clusters that categorise users by two independent aspects of geotagged
activities: geographical characteristics and network properties. We present the features of
these four categories and visualise the typical network structures of the four categories.
We further present the statistical characteristics of the users from each category. Based on
these four groups of Twitter users, we present their trip distances and diffusion processes
in space and time.

3.1 Descriptive analysis of geotagged activity dataset and its comparison with
travel survey

Geotagged tweets of the Swedish users are collected without applying any geographical
boundaries (Fig. 2(A)). A large proportion of geotagged locations are in Sweden (Fig. 2(B)).
The ratio of distinct locations quantifies the variation level of geotagged locations for each
user (Fig. 2(D)). The more geotagged locations that are outside the habitually visited lo-
cations, the larger the variation level. At the extreme, if the ratio is 1, the geotagged loca-
tions are purely random and we have no information on frequently visited locations such
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Figure 2 Characteristics of geotagged activity of Swedish users. (A) Geotagged activity Origin-Destination
Matrix (ODM) on the map. Each point represents a region formulated by DBSCAN clustering with the distance
threshold for merging as 1 km and the minimum number of location for a region is set as 1 [10, 49]. (B)
Geotagged activity ODM on the map where the trip has both origin and destination located within Sweden.
(C) A week-long geotagging activity pattern that captures the time-dependent characteristic of geotagged
locations (average of all the users). The warmer the colour (e.g. red and orange), the higher number of
geotagged locations. (D) The distribution of the ratio of distinct geotagged locations over total geotagged
locations (individually calculated). (E) Daily distributions of visiting frequency of the top two most visited
locations, weekday vs. weekend (adjusted by the overall distribution of geotagged tweeting frequency over
seven days across a week)

Figure 3 County-level geographical representativeness of estimated home locations from Twitter data:
percentage value difference. (A) Twitter users vs. residents (Twitter minus Census population) [50]. (B) Twitter
users vs. Swedish travel survey participants (Twitter minus survey)

as workplace or home. The spread of the distribution, shown in Fig. 2(D), suggests that
the proportions of distinct locations are evenly spread out between 0 and 1 among users.

We assume that the first and the second most visited locations by users are either work
or home. These two locations have distinct temporal distributions in a day. We apply a
hierarchical clustering to the instances of users’ daily time distribution of visiting fre-
quency for these two locations. We find two significantly different patterns that fit work
and home respectively (Fig. 2(E)). Individual geotagged activity is unevenly distributed in
time (Fig. 2(C)). People’s weekend activity is more dispersed and they spend less time at
the two most visited locations; therefore, the frequencies of visits are lower compared to
weekdays.

Figure 3 shows how representative those Twitter users are regarding their estimated
home locations compared with the Swedish travel survey and with the Census population.
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Figure 4 Clustering results. (A) Clustering dendrogram. The clusters are formulated by splitting groups into
clusters when the cluster distance is above five. (B) Kernel density estimation of cluster feature distributions of
geographical characteristics and network properties. The height of the one-dimensional distribution is
proportional to the fraction of the number of individuals in each cluster over the total individuals. The
Silhouette width for both clustering results is above 0.5, indicating that the identified categories are sensible

Not surprisingly, compared with the general population, the top Twitter users in Sweden
seem to over-represent the residents in Stockholm county, while the rest of the top Twitter
users seem to be distributed similarly to the population distribution (Fig. 3(A)). Compared
with the travel survey (Fig. 3(B)), the top Twitter users are more concentrated in Stock-
holm and Malmö, the third biggest city but under-represent the residents in Västra Göta-
land county where the second biggest city Gothenburg is located. It is worth noting that
the design of travel survey can over- or under- sample certain population segments de-
pending on the expected response rate, usage patterns etc., in order to get representative
samples.

3.2 Behavioural categories
There are four categories identified through two clustering analyses (see Fig. 4), one for
geographical characteristics (namely global vs. local) and one for network properties (re-
turner vs. explorer).

• Global returner. Geotagged locations are geographically remote and diverse. These
individuals generate high proportions of international trips (the destination is outside
of Sweden). They also exhibit a centralised network structure. We call this group of
individuals global returner.

• Global explorer. Geotagged locations are geographically remote and diverse. Like
global returners, these individuals frequently travel internationally; however, their
visited locations are distributed in a more decentralised way, i.e., the locations are
more evenly geotagged. We call this group of individuals global explorer.

• Local returner. Geotagged locations are not geographically remote or diverse. These
individuals usually visit locations near and connected to a frequently visited centre.
The more clustered sub-structures in their location network reflect their occasional
explorations around a centralised location. We call this group of individuals local
returner.
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Figure 5 Network visualisation of four representative individuals from each behavioural group. Each node
represents one visited location. The diameter of the node is proportional to the node degree

• Local explorer. Geotagged locations are not geographically remote or diverse. There
are multiple locations that these individuals visited more frequently than the other
locations, and those locations are relatively distant from each other, so the trip
distances between them is large. Nevertheless, overall the visited locations are less
centralised. Most users are in this category, which we call local explorer.

Figure 5 shows the network visualisation of four typical users’ trajectories. To better
illustrate the network structure, the location position is displayed optimally rather than
according to its geographical position. The returners visit different places, centring on
a large-degree node (frequently visited location). The chain structure of the explorers is
characterised by the lack of a recognisable centre, implying a low returning rate. It is worth
noting that the returners have more clustered sub-structures that correspond to daily mo-
bility, i.e., people move near home locations for regular activities (e.g., commuting and
shopping), and move around the locations of those regular activities [51].

A statistical summary of the four categories is shown in Table 3. It shows an imbal-
anced distribution of Twitter users across four groups: most of them are local explorers
(78.0%), followed by local returners (14.4%), while the rest are global explorers (7.3%) and
global returners (0.3%). The ratio of domestic trips (dom), the returning rate of the most
frequently visited location (R), and the geotweeting frequency (Fg ) are different between
categories (Kruskal–Wallis test, p < 0.001). The Mann–Whitney U test is applied to test
the variable difference between each pair of categories. Regarding dom, a significant dif-
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Table 3 Statistics of four behaviour groups. dom represents the percentage of trips where both the
origin and destination are in Sweden (0), among the destination and the origin, there is one location
outside Sweden (1), and both the origin and destination are outside of Sweden (2). R denotes the
ratio of visiting frequency of the most frequently visited location over the total number of geotagged
locations. Fg denotes the geotweeting frequency

Name User (%) dom (%) R Fg (/day) Characteristics

0 1 2

Local returner 14.4 81.3 7.0 11.7 0.38 0.55 Small rg , d, and Do . Large z,
C, and zm .

Local explorer 78.0 88.4 5.0 6.6 0.21 0.28 Small rg , d, and Do . Small z,
C, and zm .

Global returner 0.3 45.9 10.0 44.1 0.41 1.57 Large rg , d, and Do . Large z,
C, and zm .

Global explorer 7.3 39.6 12.1 48.3 0.22 0.29 Large rg , d, and Do . Small z,
C, and zm .

Figure 6 Geographical distribution of estimated home locations of four behavioural groups (county level).
The displayed percentage by county is the value of each group minus overall users’ value. The warmer the
county is shaded, the more its residents are represented in a certain group

ference is found across all category pairs (p < 0.001). As for R and Fg , there is no significant
difference between global returner vs. local returner, and global explorer vs. local explorer.
That finding indicates that a high returning rate and frequent geotweeting behaviour are
associated with the centralised network structure of geotagged locations. The estimated
home locations of different behaviour groups show an interesting spatial pattern (Fig. 6).
Compared to overall Twitter users, local returners concentrate more in Stockholm and
Malmö. Local explorers concentrate more in the middle of Sweden. Global returners only
account for a small proportion of total users, and their geographic distribution is close to
the overall studied Twitter users.

3.3 The impact of geotweeting frequency on group identification
Table 3 shows a significant difference in geotweeting frequency between returners and
explorers. It is possible that this difference affects the network properties of these users,
and thus their group identity, i.e., if the returners’ tweeting frequency is reduced to the
same rate as explorers, there is a chance that they will be categorised as explorers without
changing their actual travel behaviours.

To test the above assumption, we randomly remove 50% of the geotagged tweets from
the individuals’ original trajectories. Then we calculate the features based on their new



Liao et al. EPJ Data Science            (2019) 8:34 Page 14 of 22

Figure 7 Reclassification results. (A) Group changes by the original groups. GE = Global explorer, GR = Global
returner, LE = Local explorer, LR = Local returner. (B) Geotweeting frequency of four behavioural groups. (C)
Geotweeting frequency of the users who are re-identified as the original group vs. the ones who are not

geotagged activity trajectories and apply hierarchical clustering to get the new behavioural
group. The results are shown in Fig. 7(A). The down-sampling has changed the group
identity of a small proportion (around 25%) of users (Fig. 7(A)). The most frequent group
change is from local explorer, the largest identity group, to local returner, and from local
explorer to global explorer. Figure 7(B) shows the distribution of geotweeting frequency
across four behavioural groups. Returners have higher geotweeting frequency in general,
however, the group changes are not related to their geotweeting frequency (Fig. 7(C)).
Hence, the assumption that the distinct patterns of four user groups are solely due to their
difference in geotweeting frequency does not hold. We conclude that the group identities
of the users are robust regardless of the users’ geotweeting frequency.

3.4 Collective behaviours: trip distance and diffusion in space
In this section, we aggregate all trips within each user category to explore the collective
behaviours of the four behavioural groups.

3.4.1 Trip distance
The definition of a trip in the context of geotagged activity, as defined in Sects. 2.1.1 and
2.2, is different from the one in the Swedish travel survey (one-day diary). A trip in Twit-
ter data is the connection between two consecutive geotagged tweets of the same user.
It provides incomplete mobility information of individuals because of the spatiotemporal
sparsity of tweets. Despite that, at an aggregate level and over large samples, studies gen-
erally find good agreements of trip distance comparing Twitter data vs. other sources of
data including Call Detail Records (CDR) and censuses [22].

The minimum trip distance for the travel survey data is 1 km [42]. To be comparable with
the survey, the Twitter data is reanalysed with a minimum trip distance also set to 1 km
and a time frame of 24 hours, which excludes 24.8% of previously-analysed Twitter trips.
Only 0.4% trips in the Swedish travel survey are international, while geotagged tweets
show 3.6% international trips on a comparable basis.

The geotagged tweets approximate the 1-day travel survey data well for over 90% of
the observed one-day domestic trip distances; however, the geotagged data have relatively
more long-distance trips than the survey data (Fig. 8(A)). For international trips, despite
the similarity between all users’ distribution and the survey data, a large population vari-
ance exists between different user categories (Fig. 8(B)).
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Figure 8 The complementary cumulative distribution function (cCDF) of trip distance. (A) Domestic trips
validated against the one-day travel survey. (B) International trips validated against the 60-day
long-distance/international travel survey

Figure 9 Trip distance vs. waiting time during 7 days. (A) All travellers. (B) Local travellers. (C) Global travellers.
Waiting time is defined as the time interval between two consecutive geotagged tweets generated by the
same Twitter user

The trip distance as a function of waiting time (the time interval between two consecu-
tive geotagged tweets by the same individual) is shown in Fig. 9. The trip distance generally
increases with the waiting time over a multiple-day period at a decreasing rate to up to 7
days (Fig. 9). The correlation between trip distance and waiting time suggests that the ob-
served trip distance increases with waiting time. The diffusive nature of human mobility
and the returning effect (e.g., return to home or return to work) create two distinct mech-
anisms that interact with each other: the diffusion effect causes the observed trip distance
to increase with increasing waiting time derived, and the returning effect causes some of
the distances to decrease to zero periodically, i.e., every 24 hours (Fig. 9).

3.4.2 Diffusion process
The individual diffusion process is described by the time history of the radius of gyra-
tion rg . We first sort the distinct locations of each individual based on their visiting fre-
quency. The rg time history begins when the top location has been visited for the first time
in one’s trajectory of geotagged tweets, and it continues for 90 days thereafter. Previous
studies have shown that rg tends to stabilise within 2000 hours (around 3 months), e.g.,
[28]. The value of rg is updated each time a geotagged tweet appears during the 90 days.
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Figure 10 Diffusion process. (A) Time history of radius of gyration within 90 days. The time history starts from
the first time observing the most visited location; each data point indicates the mean value of rg across the
same group of users. (B) Visiting frequency by the ranking order of the most visited locations. The shaded
range indicates the upper bound (75%) and lower bound (25%) of the cumulative frequency rate of visits

Each time history is required to contain at least 10 instances of rg . We normalise the time
sequences to the same data length (50 data points) by using nearest-neighbour interpo-
lation to sequences shorter than 50 and randomly down-sampling the sequences longer
than 50. Hence, we get a normalised 90-day sequence of rg for each user who satisfies the
conditions above (2303 valid users in total) [17].

Figure 10(A) shows the rg of the returners compared with the explorers and the time his-
tory from the random walk process. The global travellers have a larger mobility range than
the local travellers throughout the 90 days. Their mobility range also increases continu-
ously throughout the time period, whereas the returners’ mobility range tends to saturate
earlier. If individual trajectories followed a random walk [52], then the radius of gyration
should follow the solid black line rg(t) ∼ t1/2 in Fig. 10(A).

Figure 10(C) shows the cumulative distribution function of the visiting frequency rate vs.
the most visited locations ordered by their visiting frequency. The cumulative frequency
rate reflects the regularity of users’ visiting behaviour. Returners have more concentrated
visits to a fewer number of locations than the explorers do. Not only does the cumula-
tive frequency rate start higher and rise faster for returners than for explorers, but the
cumulative frequency saturates around a mean value below 80% for returners compared
to a mean value below 60% for explorers. The variations for explorers are higher as well
(Fig. 10(B)).

4 Discussion
This study presents a picture of population heterogeneity of geotagged activity patterns
through a novel combination of individual and aggregate perspectives in the analysis
framework. In addition, we collect and apply the geotagged social media dataset span-
ning a long period and without any geographical boundaries.
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4.1 Four distinct geotagged activity patterns: population heterogeneity and
collective behaviours

In this study, we propose two essential dimensions of individual mobility, how far one
travels and how actively one explores new locations. Based on the correspondingly con-
structed feature set, most users are identified as local explorers followed by local returners,
global explorers, and global returners. Local returners are characterised by the relatively
short-range trip distance compared to the global travellers. Returners’ trajectories form
complex networks that have more concentrated structure than explorers do. Daily mo-
bility makes most people local travellers: they move between and around home, work,
and locations of regular activities most of the time, with occasional long distance travel or
travel abroad. This explains why most Twitter users are categorised as either local explor-
ers or local returners.

Those two dimensions have been explored separately in some previous studies. Using
geotagged tweets, one study found two distinct types of Twitter users with low random-
ness and high randomness, respectively [10]. In their study, randomness represents the
visiting frequency distribution across distinct locations: the more the visiting frequency
spreads, the higher the randomness. But that study did not capture the other dimension,
how far one travels, which can also differ among sub-populations. Another study used a
high-resolution dataset from a mobile navigation app, Sygic in Australia, where two dis-
tinct groups of users were found; “travellers” who visit different areas with distinct, salient
characteristics, and “locals” who cover shorter distances and revisit many of their locations
[53]. But due to high-dimensional indicators, that study did not show the essential differ-
ences in human mobility which make the results less intuitive to interpret. In our study,
we capture the randomness by using the network structure’s properties to quantify how
actively one explores new locations. The names of the four groups are inspired by previous
studies suggesting a returner-explorer dichotomy in human mobility using GPS log and
mobile phone data [29, 54]. Those studies showed two distinct network structures based
on individual mobility trajectories: one user type recurrently travelled between many dif-
ferent locations (explorer) and the other had a smaller number of different locations (re-
turner). The network structure was found to be invariant across the distances that one
regularly covers (rg .) Based on that study, we further created geographical characteristics
to quantify “how far people travel” with the attempt to achieve a more complete descrip-
tion of human mobility patterns.

The aforementioned studies also have a similar drawback: they apply data sources that
only capture individuals’ mobility within a country. This incomplete tracking fails to cap-
ture international trips and narrows their contributions to domestic mobility only.

The present study has no restrictions from national or adminstrative spatial boundary.
We found that even with high time sparsity, social media data can still capture differences
in mobility patterns across sub-populations. We illustrate the diffusion process of four
groups as one aspect of the collective human mobility patterns in Fig. 10. On the one hand,
trip distance increases with waiting time yet decreases at each 24-hour cycle, indicating
both the returning effect and the increased probability of exploring new locations (the dif-
fusive nature of mobility). The correlation between trip distance and waiting time agrees
with the previous findings from mobile phone data [28] and Twitter data [10]. On the other
hand, the time history of rg highlights the differences between four types of travellers with
global explorers’ mobility range increasing continuously whereas the returners’ mobility
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range tending to saturate earlier. The mechanism of stabilising rg (Fig. 10(A)) has also been
described in another study [28]. Randomness (the degree of location predictability) plays
an important role in explorers’ identity as observed in Fig. 10(B). Explorers have a lesser
tendency towards stabilisation in the cumulative frequency rate of visited locations than
returners, which describes the essential difference between returners and explorers.

4.2 Implications of human mobility and population heterogeneity
Individual mobility is defined by a person’s capabilities, social network and opportunities,
i.e. an individual’s ability to move, social needs and desire; and the availability of trans-
portation resources such as infrastructure [4]. The understanding of population hetero-
geneity will benefit a broad range of disciplines from travel behaviour modelling to social
sciences. For example, heterogeneity can be applied to generate more accurate agents in
transport demand modelling [55]. The continuous tracking and long-term observation of
individuals as illustrated in this article can benefit disease prediction by providing a more
dynamic and temporal perspective of how people diffuse in space [56] and the importance
of adding population heterogeneity to improve the predictions and develop effective mit-
igation strategies [57, 58]. Putting individuals into different groups or places of residence
according to their travel behaviour can also enable new research related to the adoption
of new technology [59], etc. The population heterogeneity identified in this study can be
combined with sociodemographic information of individuals or groups, e.g., race and in-
come level, in future studies to further understand factors such as the effect of neighbour-
hoods on travel behaviours of individuals or groups [23], and the relationships between
short-term mobility and long-term migration [60]. A study on location-based social net-
works shows that the shared visited locations are informative in predicting the social con-
nections between individuals [61]. The distinct behavioural groups identified in this study
can provide additional insights that contribute to the inference of friendship, such as the
relationship between people’s mobility and their social network, where a large proportion
of places visited are within a small distance of their nearest (geographical) social ties’ lo-
cations [62]. The relationship between social ties and mobility can be further explored to
form a more complete picture [4]. Questions such as whether individuals’ social network
shapes their mobility behaviour or the other way around can be further studied using data
we presented here. Would explorers have a different social network structure compared
with returners? Does such a difference contribute to their distinct travel behaviours?

4.3 Representativeness of geotagged social media data as a proxy for human
mobility

Compared to the one-day travel diary, the Twitter dataset in this study has strengths and
weaknesses as a proxy for human mobility. Based on another ongoing study where we
compare geotagged tweets with different data sources, the main strengths of geotagged
social media data are in long collection duration, a large number of involved individuals,
boundary-free spatial coverage, ease of access, low cost, and accurate location informa-
tion. The main weaknesses are incomplete individual trajectories caused by high sparsity
in the time dimension (plus behaviour bias), lack of socio-demographic information (plus
population bias), and lack of trip information [24].

Despite high time sparsity, one of the most appealing features of geotagged social me-
dia data is the capability of continuous and long-term tracking of individual mobility via
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their geotagged activities. We demonstrate how that particular feature helps capture the
heterogeneity of mobility. A one-day travel diary only captures trips generated within 24
hours for each survey participant, while the Twitter dataset covers on average 3.6 years for
each participant. Although Twitter data is extremely sparse, the long-term and continu-
ous tracking compensates for the time sparsity, allowing us to obtain a realistic picture of
user’s trips on an average day.

Given the reported biases in the geotagged social media data, the current study carefully
conducts a descriptive analysis in comparison with the travel survey. The behaviour of
using social media is complex and multidimensional. For example, more than 20 tweeting
features have been used to characterise “how you tweet” including various time-related
statistics [63]. If users constantly and regularly tweet during a certain daily time frame
or only from a few selected locations, then the locations we capture are skewed to the
locations that they tend to visit during that time frame. However, as seen in our study
Fig. 2(D), it is not the case that people only geotweet from a few fixed locations. Despite
peaks during lunch time and night (Fig. 2(C)), geotagged tweets capture many routine
activities (Fig. 2(D)), as seen from the temporal profile of the first and second most visited
locations that share some similarities with the “ground truth” in the travel survey. We
explore population bias by comparing the geographical distribution of the Twitter users’
estimated home location in this study with those from the travel survey. It appears that the
top Twitter users are over-represented by residents of big cities. This is consistent with the
observation by a previous study [27].

Some of the disadvantages mentioned above can potentially be mitigated. Text mining
could be applied to derive location information from the contents of the tweets. One study
has proposed such an approach to infer city-level location of tweets, partially mitigating
the time sparsity of geotagged tweets [64]. Similarly, data fusion could be promising to
obtain better application performance, e.g., activity prediction [65].

5 Conclusions
In this study, we develop a novel analysis framework to categorise individuals regarding
their geotagged activity patterns to reveal population heterogeneity of mobility patterns.
Based on the classification results, trip distance and diffusion process in space are pre-
sented by distinct group. The major contributions of this study include:

(1) Datasets and analysis framework. This study involves two data sources; a household
travel survey and geotagged social media data. The geotagged tweets dataset covers a long
period (3.6 years on average) without any geographical boundaries. The descriptive anal-
ysis of geotagged tweets reveals behaviour and population differences between the two
data sources. Our analysis framework provides a coherent picture of the geotagged activ-
ity patterns by combining the individual perspective with the aggregate perspective.

(2) Four distinct groups of users. We propose two essential aspects to quantify popula-
tion heterogeneity of human mobility: how actively one explores new locations and how
far one travels. A set of features are defined to describe geotagged activity patterns from
the perspectives of geographical characteristics and network properties. A hierarchical
clustering analysis is applied, and four types of Twitter users are identified: local explor-
ers, local returners, global explorers, and global returners.

(3) Population heterogeneity. On the aggregate level, we present the diffusion process
in space based on geotagged social media data. It shows good agreements with previous
studies, while the key differences between user groups are quantified.
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One limitation of the current study is the small number of individuals categorised as
global returners. Therefore, their behaviour captured in this study is less reliable than the
rest of the groups. However, for the sake of completeness reflecting the clustering analyses
discussed in Sect. 3.2, we keep all the groups’ identities to show how geotagged tweets
reveal the heterogeneity of travelling behaviour. Future studies can increase the sample
size of this subpopulation to explore the robustness of the results presented here.

The other major limitation is that our conclusions from the geotagged activity patterns
may not be generalised to the overall population due to the population and behaviour
biases introduced by using geotagged tweets [24]. Given the known shortcomings, more
systematic research efforts are required to identify and correct for these biases. Our next
step is to systematically compare multiple data sources, such as travel surveys, geotagged
social media, call detail records, and GPS logs to reach a deeper understanding of the
strengths and weakness of each data source [24]. With such understanding, we can fur-
ther develop mobility models informed by revealed population heterogeneity, leveraging
geotagged social media data to estimate more accurate and timely travel patterns and de-
mand.

Acknowledgements
The authors would like to express their sincere gratitude to the two anonymous reviewers whose comments have greatly
improved this manuscript.

Funding
This research is funded by the Swedish Research Council Formas (Project Number 2016-1326).

Abbreviations
ICT, Information and Communication Technology; GPS, Global Positioning System; RQ, Research Question; API,
Application Programming Interface; UTC, Coordinated Universal Time; ODM, Origin-Destination Matrix; GC, Geographical
Cluster; NC, Network Cluster; CDR, Call Detail Records; cCDF, Complementary Cumulative Distribution Function.

Availability of data and materials
The data that support the findings of this study are available from Twitter (https://twitter.com). The dataset generated and
analysed for this study is not publicly available due to privacy protection of the subjects in our dataset, which can be
potentially used to identify individuals.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YL, SY and GJ designed the study. YL analyzed the data. YL and SY wrote the paper. All authors edited and approved the
final version of this manuscript.

Author details
1Department of Space, Earth and Environment, Division of Physical Resource Theory, Chalmers University of Technology,
Gothenburg, Sweden. 2School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of
Technology, Stockholm, Sweden.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 November 2018 Accepted: 29 October 2019

References
1. Noulas A, Scellato S, Lambiotte R, Pontil M, Mascolo C (2012) A tale of many cities: universal patterns in human urban

mobility. PLoS ONE 7(5):37027. https://doi.org/10.1371/journal.pone.0037027
2. Treiber M, Kesting A (2013) Traffic flow dynamics. Traffic flow dynamics: data, models and simulation. Springer, Berlin.

https://doi.org/10.1007/978-3-642-32460-4
3. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A (2009) Multiscale mobility networks and the spatial

spreading of infectious diseases. Proc Natl Acad Sci 106(51):21484–21489. https://doi.org/10.1073/pnas.0906910106
4. Kaufmann v, Bergman M, Joye D (2004) Motility: mobility as capital. Int J Urban Regional 28-4:745–756.

https://doi.org/10.1111/j.0309-1317.2004.00549.x

https://twitter.com
https://doi.org/10.1371/journal.pone.0037027
https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1073/pnas.0906910106
https://doi.org/10.1111/j.0309-1317.2004.00549.x


Liao et al. EPJ Data Science            (2019) 8:34 Page 21 of 22

5. Chen C, Ma J, Susilo Y, Liu Y, Wang M (2016) The promises of big data and small data for travel behavior (aka human
mobility) analysis. Transp Res, Part C, Emerg Technol 68:285–299. https://doi.org/10.1016/j.trc.2016.04.005

6. Janzen M, Müller K, Axhausen KW (2017) Population synthesis for long-distance travel demand simulations using
mobile phone data. In: 6th symposium of the European association for research in transportation (hEART 2017).

7. Wang Z, He SY, Leung Y (2018) Applying mobile phone data to travel behaviour research: a literature review. Travel
Behav Soc 11:141–155. https://doi.org/10.1016/j.tbs.2017.02.005

8. Zhang Z, He Q, Zhu S (2017) Potentials of using social media to infer the longitudinal travel behavior: a sequential
model-based clustering method. Transp Res, Part C, Emerg Technol 85:396–414.
https://doi.org/10.1016/j.trc.2017.10.005

9. Yue Y, Lan T, Yeh AGO, Li Q-Q (2014) Zooming into individuals to understand the collective: a review of
trajectory-based travel behaviour studies. Travel Behav Soc 1(2):69–78. https://doi.org/10.1016/j.tbs.2013.12.002

10. Jurdak R, Zhao K, Liu J, AbouJaoude M, Cameron M, Newth D (2015) Understanding human mobility from Twitter.
PLoS ONE 10(7):0131469. https://doi.org/10.1371/journal.pone.0131469

11. Hasan S, Ukkusuri SV (2014) Urban activity pattern classification using topic models from online geo-location data.
Transp Res, Part C, Emerg Technol 44:363–381. https://doi.org/10.1016/j.trc.2014.04.003

12. Gao S, Yang JA, Yan B, Hu Y, Janowicz K, McKenzie G (2014) Detecting origin-destination mobility flows from
geotagged tweets in greater Los Angeles area. In: Proceedings of the eighth international conference on geographic
information science, pp 1–4

13. Hasan S, Schneider C, Ukkusuri S, González M (2013) Spatiotemporal patterns of urban human mobility. J Stat Phys
151(1–2):304–318. https://doi.org/10.1007/s10955-012-0645-0

14. Morstatter F, Pfeffer J, Liu H, Carley KM (2013) Is the sample good enough? Comparing data from Twitter’s streaming
api with Twitter’s firehose. In: Seventh international AAAI conference on weblogs and social media.
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6071/6379

15. Stolf Jeuken G (2017) Using big data for human mobility patterns—examining how Twitter data can be used in the
study of human movement across space. Master’s thesis.
http://studentarbeten.chalmers.se/publication/250155-using-big-data-for-human-mobility-patterns-examining-
how-twitter-data-can-be-used-in-the-study-of-hu

16. Rashidi TH, Abbasi A, Maghrebi M, Hasan S, Waller TS (2017) Exploring the capacity of social media data for modelling
travel behaviour: opportunities and challenges. Transp Res, Part C, Emerg Technol 75:197–211.
https://doi.org/10.1016/j.trc.2016.12.008

17. Liao Y, Yeh S (2018) Predictability in human mobility based on geographical-boundary-free and long-time social
media data. In: 2018 21st international conference on intelligent transportation systems (ITSC). IEEE Press, New York,
pp 2068–2073. https://doi.org/10.1109/ITSC.2018.8569770

18. Malik MM, Lamba H, Nakos C, Pfeffer J (2015) Population bias in geotagged tweets. In: Ninth international AAAI
conference on web and social media, pp 18–27.
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/viewPaper/10662

19. Ruths D, Pfeffer J (2014) Social media for large studies of behavior. Science 346(6213):1063–1064.
https://doi.org/10.1126/science.346.6213.1063

20. Tasse D, Liu Z, Sciuto A, Hong JI (2017) State of the geotags: motivations and recent changes. In: Eleventh
international AAAI conference on weblogs and social media, pp 250–259.
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/viewPaper/15588

21. Wesolowski A, Eagle N, Noor AM, Snow RW, Buckee CO (2013) The impact of biases in mobile phone ownership on
estimates of human mobility. J R Soc Interface 10(81):20120986. https://doi.org/10.1098/rsif.2007.1218

22. Lenormand M, Picornell M, Cantú-Ros OG, Tugores A, Louail T, Herranz R, Barthelemy M, Frias-Martinez E, Ramasco JJ
(2014) Cross-checking different sources of mobility information. PLoS ONE 9(8):105184.
https://doi.org/10.1371/journal.pone.0105184

23. Wang Q, Phillips NE, Small ML, Sampson RJ (2018) Urban mobility and neighborhood isolation in America’s 50 largest
cities. Proc Natl Acad Sci 115(30):7735–7740. https://doi.org/10.1073/pnas.1802537115

24. Liao Y, Yeh S (2020) Using geotagged tweets to assess human mobility: a comparison with travel survey and GPS log
data (under review). Transp Res, Part C, Emerg Technol

25. Hasnat MM, Hasan S (2018) Identifying tourists and analyzing spatial patterns of their destinations from
location-based social media data. Transp Res, Part C, Emerg Technol 96:38–54.
https://doi.org/10.1016/j.trc.2018.09.006

26. Lenormand M, Gonçalves B, Tugores A, Ramasco JJ (2015) Human diffusion and city influence. J R Soc Interface
12(109):20150473. https://doi.org/10.1098/rsif.2015.0473

27. Mislove A, Lehmann S, Ahn Y-Y, Onnela J-P, Rosenquist JN (2011) Understanding the demographics of Twitter users.
In: Fifth international AAAI conference on weblogs and social media, pp 554–557.
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2816/3234

28. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature
453(7196):779–782. https://doi.org/10.1038/nature07850

29. Song C, Koren T, Wang P, Barabási A-L (2010) Modelling the scaling properties of human mobility. Nat Phys
6(10):818–823. https://doi.org/10.1038/nphys1760

30. Coffey C, Pozdnoukhov A (2013) Temporal decomposition and semantic enrichment of mobility flows. In:
Proceedings of the 6th ACM SIGSPATIAL international workshop on location-based social networks. LBSN’13. ACM,
New York, pp 34–43. https://doi.org/10.1145/2536689.2536806

31. Chang J, Sun E (2011) Location3: how users share and respond to location-based data on social networking sites. In:
Proceedings of the fifth international AAAI conference on weblogs and social media, pp 74–80

32. Pianese F, An X, Kawsar F, Ishizuka H (2013) Discovering and predicting user routines by differential analysis of social
network traces. In: 2013 IEEE 14th international symposium and workshops on a World of wireless, mobile and
multimedia networks (WoWMoM). IEEE Press, New York, pp 1–9. https://doi.org/10.1109/WoWMoM.2013.6583383

33. Hasan S, Ukkusuri SV (2015) Location contexts of user check-ins to model urban geo life-style patterns. PLoS ONE
10(5):0124819. https://doi.org/10.1371/journal.pone.0124819

https://doi.org/10.1016/j.trc.2016.04.005
https://doi.org/10.1016/j.tbs.2017.02.005
https://doi.org/10.1016/j.trc.2017.10.005
https://doi.org/10.1016/j.tbs.2013.12.002
https://doi.org/10.1371/journal.pone.0131469
https://doi.org/10.1016/j.trc.2014.04.003
https://doi.org/10.1007/s10955-012-0645-0
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6071/6379
http://studentarbeten.chalmers.se/publication/250155-using-big-data-for-human-mobility-patterns-examining-how-twitter-data-can-be-used-in-the-study-of-hu
http://studentarbeten.chalmers.se/publication/250155-using-big-data-for-human-mobility-patterns-examining-how-twitter-data-can-be-used-in-the-study-of-hu
https://doi.org/10.1016/j.trc.2016.12.008
https://doi.org/10.1109/ITSC.2018.8569770
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/viewPaper/10662
https://doi.org/10.1126/science.346.6213.1063
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/viewPaper/15588
https://doi.org/10.1098/rsif.2007.1218
https://doi.org/10.1371/journal.pone.0105184
https://doi.org/10.1073/pnas.1802537115
https://doi.org/10.1016/j.trc.2018.09.006
https://doi.org/10.1098/rsif.2015.0473
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2816/3234
https://doi.org/10.1038/nature07850
https://doi.org/10.1038/nphys1760
https://doi.org/10.1145/2536689.2536806
https://doi.org/10.1109/WoWMoM.2013.6583383
https://doi.org/10.1371/journal.pone.0124819


Liao et al. EPJ Data Science            (2019) 8:34 Page 22 of 22

34. Yang D, Zhang D, Zheng VW, Yu Z (2015) Modeling user activity preference by leveraging user spatial temporal
characteristics in lbsns. IEEE Trans Syst Man Cybern Syst 45(1):129–142. https://doi.org/10.1109/TSMC.2014.2327053

35. Jin P, Cebelak M, Yang F, Zhang J, Walton C, Ran B (2014) Location-based social networking data: exploration into use
of doubly constrained gravity model for origin-destination estimation. Transp Res Rec 2430:72–82.
https://doi.org/10.3141/2430-08

36. Lee JH, Gao S, Goulias KG (2015) Can Twitter data be used to validate travel demand models. In: 14th international
conference on travel behaviour research.

37. Lee JH, Davis AW, Yoon SY, Goulias KG (2016) Activity space estimation with longitudinal observations of social media
data. Transportation 43(6):955–977. https://doi.org/10.1007/s11116-016-9719-1

38. Keuschnigg M, Mutgan S, Hedström P (2019) Urban scaling and the regional divide. Sci Adv 5(1):0042.
https://doi.org/10.1126/sciadv.aav0042

39. Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. Wiley, Hoboken.
https://doi.org/10.1109/9780470544341

40. The Tweepy project developers: Tweepy: v3.5.0 (2017). http://tweepy.readthedocs.io/en/v3.5.0/
41. Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nature 435(7039):207–211.

https://doi.org/10.1038/nature03459
42. Official Statistics of Sweden: Swedish National Travel Survey (RVU Sweden) 2011–2016. (2016).

https://www.trafa.se/en/travel-survey/travel-survey/
43. Markovich N (2008) Nonparametric analysis of univariate heavy-tailed data: research and practice, vol 753. Wiley,

Chichester
44. Barabási A-L et al (2016) Network science. Cambridge University Press, Cambridge
45. Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021.

https://doi.org/10.1126/science.1177170
46. Deza MM, Deza E (2009) Encyclopedia of distances. Springer, Berlin. https://doi.org/10.1007/978-3-642-00234-2
47. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244.

https://doi.org/10.1080/01621459.1963.10500845
48. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput

Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7
49. Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial

databases with noise. In: Kdd, vol 96. AAAI Press, Palo Alto, pp 226–231.
50. Statistics Sweden: Population of Sweden in 2016, by county (2016).

https://www.statista.com/statistics/526617/sweden-population-density-by-county/
51. Golledge RG, Stimson RJ (1997) Spatial behavior: a geographic perspective. Guilford Press, New York
52. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel. Nature 439(7075):462.

https://doi.org/10.1038/nature04292
53. Scherrer L, Tomko M, Ranacher P, Weibel R (2018) Travelers or locals? Identifying meaningful sub-populations from

human movement data in the absence of ground truth. EPJ Data Sci 7(1):19.
https://doi.org/10.1140/epjds/s13688-018-0147-7

54. Pappalardo L, Simini F, Rinzivillo S, Pedreschi D, Giannotti F, Barabási A-L (2015) Returners and explorers dichotomy in
human mobility. Nat Commun 6. https://doi.org/10.1038/ncomms9166

55. Anda C (2018) A time-space model of disaggregated urban mobility from aggregated mobile phone data. In: 15th
international conference on travel behavior research (IATBR 2018). Future Cities Laboratory (FCL), Zurich.
https://doi.org/10.3929/ethz-b-000300714

56. Xu Z, Glass K, Lau CL, Geard N, Graves P, Clements A (2017) A synthetic population for modelling the dynamics of
infectious disease transmission in American Samoa. Sci Rep 7(1):16725. https://doi.org/10.1038/s41598-017-17093-8

57. Merler S, Ajelli M (2010) Human mobility and population heterogeneity in the spread of an epidemic. Proc Comput
Sci 1(1):2237–2244

58. Dobra A, Bärnighausen T, Vandormael A, Tanser F (2019) A method for statistical analysis of repeated residential
movements to link human mobility and hiv acquisition. PLoS ONE 14(6):0217284

59. Vannoy SA, Palvia P (2010) The social influence model of technology adoption. Commun ACM 53(6):149–153
60. Fiorio L, Abel G, Cai J, Zagheni E, Weber I, Vinué G (2017) Using Twitter data to estimate the relationship between

short-term mobility and long-term migration. In: Proceedings of the 2017 ACM on web science conference. ACM,
New York, pp 103–110

61. Pelechrinis K, Krishnamurthy P (2016) Socio-spatial affiliation networks. Comput Commun 73:251–262
62. Phithakkitnukoon S, Smoreda Z, Olivier P (2012) Socio-geography of human mobility: a study using longitudinal

mobile phone data. PLoS ONE 7(6):39253
63. Pennacchiotti M, Popescu A-M (2011) A machine learning approach to Twitter user classification. In: Fifth

international AAAI conference on weblogs and social media.
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/viewPaper/2886

64. Cheng Z, Caverlee J, Lee K (2010) You are where you tweet: a content-based approach to geo-locating Twitter users.
In: Proceedings of the 19th ACM international conference on information and knowledge management, CIKM’10.
ACM, New York, pp 759–768. https://doi.org/10.1145/1871437.1871535

65. Zhu Z, Blanke U, Tröster G (2014) Inferring travel purpose from crowd-augmented human mobility data. In:
Proceedings of the first international conference on IoT in urban space. URB-IOT ’14. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, pp 44–49.
https://doi.org/10.4108/icst.urb-iot.2014.257173

https://doi.org/10.1109/TSMC.2014.2327053
https://doi.org/10.3141/2430-08
https://doi.org/10.1007/s11116-016-9719-1
https://doi.org/10.1126/sciadv.aav0042
https://doi.org/10.1109/9780470544341
http://tweepy.readthedocs.io/en/v3.5.0/
https://doi.org/10.1038/nature03459
https://www.trafa.se/en/travel-survey/travel-survey/
https://doi.org/10.1126/science.1177170
https://doi.org/10.1007/978-3-642-00234-2
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.statista.com/statistics/526617/sweden-population-density-by-county/
https://doi.org/10.1038/nature04292
https://doi.org/10.1140/epjds/s13688-018-0147-7
https://doi.org/10.1038/ncomms9166
https://doi.org/10.3929/ethz-b-000300714
https://doi.org/10.1038/s41598-017-17093-8
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/viewPaper/2886
https://doi.org/10.1145/1871437.1871535
https://doi.org/10.4108/icst.urb-iot.2014.257173

	From individual to collective behaviours: exploring population heterogeneity of human mobility based on social media data
	Abstract
	Keywords

	Introduction
	Related work

	Methods
	Data collection and pre-processing
	Twitter data
	Swedish travel survey

	Geotagged activity pattern: feature construction
	Potential user groups: hierarchical clustering and down-sampling

	Results
	Descriptive analysis of geotagged activity dataset and its comparison with travel survey
	Behavioural categories
	The impact of geotweeting frequency on group identiﬁcation
	Collective behaviours: trip distance and diffusion in space
	Trip distance
	Diffusion process


	Discussion
	Four distinct geotagged activity patterns: population heterogeneity and collective behaviours
	Implications of human mobility and population heterogeneity
	Representativeness of geotagged social media data as a proxy for human mobility

	Conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


