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Abstract
The Modified Mercalli intensity scale (Mercalli scale for short) is a qualitative measure
used to express the perceived intensity of an earthquake in terms of damages.
Accurate intensity reports are vital to estimate the type of emergency response
required for a particular earthquake. In addition, Mercalli scale reports are needed to
estimate the possible consequences of strong earthquakes in the future, based on
the effects of previous events. Emergency offices and seismological agencies
worldwide are in charge of producing Mercalli scale reports for each affected location
after an earthquake. However, this task relies heavily on human observers in the
affected locations, who are not always available or accurate. Consequently, Mercalli
scale reports may take up to hours or even days to be published after an earthquake.
We address this problem by proposing a method for early prediction of spatial
Mercalli scale reports based on people’s reactions to earthquakes in social networks.
By tracking users’ comments about real-time earthquakes, we create a collection of
Mercalli scale point estimates at municipality (i.e., state subdivisions) level granularity.
We introduce the concept of reinforcedMercalli support, which combines Mercalli
scale point estimates with locally supported data (named ‘local support’). We use this
concept to provide Mercalli scale estimates for real-world events by providing
smooth point estimates using a spatial smoother that incorporates the distribution of
municipalities in each affected region. Our method is the first method based on social
media that can provide spatial reports of damages in the Mercalli intensity scale.
Experimental results show that our method is accurate and provides early spatial
Mercalli reports 30 minutes after an earthquake. Furthermore, we show that our
method performs well for earthquake spatial detection and maximum intensity
prediction tasks. Our findings indicate that social media is a valuable source of spatial
information for quickly estimating earthquake damages.

Keywords: Event damage assessment; Mercalli intensities

1 Introduction
The Modified Mercalli intensity scale (“Mercalli scale” for short) is an important mea-
surement scale that summarizes the effects of an earthquake on public infrastructure,
as well as in human damages. Unlike the moment magnitude scale, which quantifies the
size of an earthquake in terms of released energy, the Mercalli scale is a qualitative mea-
sure that indicates perceived effects. Energy and damages do not always go hand-in-hand;
an earthquake with the same magnitude in different regions may produce very different
Mercalli scale measurements. This discrepancy is due to a number of physical variables,
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Figure 1 Two earthquakes that released almost the same amount of energy. Two earthquakes that released
almost the same amount of energy, but with very different effects on the population. Tarapacá earthquake
recorded VII in Mercalli whilst Haití earthquake recorded XII

such as the depth of the seismic movement and the geological properties of the soil for
each location. In addition, damages to humans may vary, depending on construction stan-
dards used for buildings in each country. For instance, the 2005 Tarapacá earthquake oc-
curred on June 13 with an epicenter located near locality of Mamiña, in the north of Chile,
achieved 7.8 Mw in Richter (moment magnitude) producing 6 deaths. On the other hand,
the 2010 Haití earthquake occurred on January 24 with an epicenter located near Port-au-
Prince achieved 7.0 Mw producing 316,000 deaths. Damages vary significantly between
both events, as we show in Fig. 1.

Mercalli reports provide crucial information for timely emergency response and plan-
ning. Therefore, government agencies related to emergency management and geological
centers strive to provide intensity reports in a timely and accurate manner to help mitigate
disaster effects [1].

Mercalli reports are prepared by observers that have been appointed to different geo-
graphical areas. However, not all locations have appointed observers worldwide. Due to
the human effort involved in producing intensity reports, these are commonly released
hours or even days after a seismic movement. Many factors can obstruct the production
of fast reports, among them the quality of communications during a disaster or the ob-
server availability [2]. To improve intensity reporting, agencies such as the United States
Geological Survey (USGS) have even created crowd-sourcing tools to collect this data on-
line from regular people.a On the other hand, social media users are regarded as providers
of timely information, which allows the characterization of physical-world events [3]. Cur-
rent advances show promising results in the direction of event analysis. Some of the most
noteworthy studies address automatic event description and summarization using infor-
mation provided by users as a situational information source [4]. However, social media
data poses important challenges for information extraction, requiring researchers to de-
sign sophisticated methods for extracting useful knowledge from noisy data [5]. In the
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specific scenario of earthquake disaster management, the state-of-the-art shows efforts in
several tasks, such as earthquake detection and damage area detection [6–8], as well as
maximum Mercalli intensity estimation [9]. These works are focused on the earthquake
detection in a heavily populated city in which the earthquake was perceived by inferring
the Mercalli intensity. As more populated cities may have many social media users, these
events may produce a trending topic. Related work shows that it is possible to infer the
maximum intensity in the Mercalli scale using trending topics. However, these methods
have only been studied for the detection of high-energy events. Medium-scale events pro-
duce noisy data and often remain unexplored due to technical limitations.

We address the problem of early Mercalli scale estimation by studying how social media
can contribute to this task. In particular, we propose a new approach, which focuses on
the spatial estimation of Mercalli intensities and makes use of the volume and freshness of
social data. We use municipalities as units of spatial aggregation, mapping posts to cities
according to users’ locations.

Social media data can be very noisy. We deal with noise by introducing the concept of
“Reinforced Mercalli Support,” a key building block of our method. The idea behind “Re-
inforced Mercalli Support” is to process user posts that have high support at municipality
level. Locally supported posts help us detect local trends, validating data that might be oth-
erwise be ignored at more aggregated level of analysis (e.g., at state or country level). The
spatial dimension of the problem, namely how people are distributed across a territory,
and how this information affects the intensity inference process, is another key compo-
nent of our proposal. We use spatial smoothing to deal with this aspect of the problem.
Our method is inspired on the procedure used to elaborate Mercalli reports. These re-
ports, which are based on data provided by on-the-scene experts, make use of the spatial
distribution of the observers.

Our findings show that our approach can automatically provide spatial Mercalli reports
in a timely and accurate manner. In particular, in this article we extend the following con-
tribution introduced in our prior work [10]:

“We successfully deal with data at municipality level, detecting local trends in the specific
task of maximum Mercalli intensity detection”.

The novel, previously unpublished, contributions of this current article are:
1. We present the first approach that addresses the problem of spatial Mercalli

intensity inference based entirely on social media data.
2. We introduce a new concept, the reinforced Mercalli support estimate, which

successfully combines local trends and local support in a single variable.
3. We show empirically, using real-world data, that our method provides accurate and

fast Mercalli reports at a fine level of spatial granularity.
4. Our method can produce a spatial Mercalli report thirty minutes after an

earthquake, contributing to improve current intensity estimation time and provides
additional information to that given by human observers.

The paper is organized as follows. Section 2 presents a review of the relevant literature.
In Sect. 3 we introduce our method proposal. In Sect. 4 we present our experimental val-
idation, and we conclude in Sect. 5 with a discussion, conclusions, and outline of future
work.
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2 Related work
Twitter is an online social network with more than 300 million active users per month.b

This platform has become an huge source of real-time user-generated content. A sample
of Twitter’s streaming content is publicly available through the platform’s API. These fea-
tures have sparked notorious scientific interest during the past decade. Research includes,
among others, studies to understand collective behavioral patterns [11], and to find cor-
relations between social media and physical-world events [12].

During disaster situations and emergencies, many changes in the behavior of social me-
dia users have been observed, producing a mass convergence phenomena [3]. Social me-
dia has allowed researchers to gain insight into the dynamics of information propagation
during crisis situations [5, 13, 14], displaying collaborative patterns useful for informa-
tion filtering [15], and for the assessment of information credibility [16]. Social data has
also been used to analyze, for example: forest fires [17], power outages in electrical sys-
tems [18], large-scale protests [19], and bus accidents in public transportation [20]. All of
these systems place their efforts in the arena of providing situational awareness (local and
timely information) of an event. Specifically, research has proven that social media can
be valuable for rapidly assessing damage during large-scale disasters. Vieweg et al. [21]
show how Twitter contributes enhance situational awareness during two natural hazards:
the Oklahoma Grassfires and the Red River Floods in the U.S. Kryvasheyeu et al. [22], on
the other hand, studied Hurricane Sandy and discovered a strong relationship between
hurricane-related Twitter activity and the actual path of the hurricane. Furthermore, they
showed that for major disasters there is a correlation between damage and social media
activity. Other efforts have focused on communication infrastructure during earthquakes
by providing methods to favor message sharing during disasters in mobile networks [23],
providing access to spatio-temporal data during disasters [24], and testing communica-
tion infrastructure using simulated data [25]. Along this line, several text mining methods
have been used to elaborate reports, providing event summarization [4] (a short textual
description of the earthquake) or detecting local related events such as looting and pillage
[26].

Earthquake detection and analysis using social media is a particularly active field of
study. The first efforts in this subject date from the year 2010, where the correlation be-
tween the number of tweets and the intensity of an earthquake was observed for the first
time.c In 2011, during the earthquake in Tohoku, researchers noted the existence of a
high correlation between the number of user posts on Twitter (known as tweets) and the
earthquake’s intensity in certain locations [27, 28]. The relationship between tweet rates
and Mercalli intensity was later revisited by Kropivnitskaya et al. [29]. They showed that
tweets and Mercalli intensity correlated during three different earthquakes located in Cal-
ifornia, Japan, and Chile during 2014. An a related study, Crooks et al. [30] analyze the
spatio-temporal characteristics of the relationship between an earthquake’s seismic wave
and social media posts. They show that Twitter data is comparable to that gathered by
specialized crowdsourcing initiatives,d and more rapid.

In addition, several earthquake alert systems have been created for different countries,
such as for Australia [31], for Japan [6], and for Italy [7], as well as more general worldwide
monitoring systems [8, 12]. Most of these systems use some type of burst detection algo-
rithm over the tweet stream to report an earthquake, where a burst is defined as a large
number of occurrences of tweets within a short time window [32]. These systems are fo-
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cused on the specific task of earthquake detection, namely under which conditions we
may confirm or deny that an earthquake reported in social media really occurred. Despite
that the primary goal of these systems is to report that an earthquake happened in a given
location, they have shown that it is possible to infer more information from social media
data. Some of the most salient results on seismic event reports rely on the estimation of the
epicenter of an earthquake using only information recovered from Twitter [6, 33]. Also,
TwiFelt [34], which is an online system, uses the Twitter stream to estimate of the area in
which an earthquake was felt in Italy. The system uses only geolocated tweets, with good
performance for high-intensity earthquakes. However, reliability in this case depends on
the existence of geolocated tweets, which can be scarce in many countries (between 4%
and 7%) [35].

Regarding the problem of earthquake intensity estimation, Burks et al. [36] showed that
Twitter can provide useful data to estimate shaking intensity. They proposed an approach
that combines earthquake characteristics, measured using seismographs (such as moment
magnitude, source-to-site distance, and wave velocity), with Twitter data (extracted from
tweets that contained the term ‘earthquake’). Conditioned by a set of reports retrieved
from seismographs, they segmented the area around each recording station into nine ra-
dial subareas. They mapped to each of these areas, according to GPS location, all of the
earthquake-related tweets produced during the 10-minutes posterior to an earthquake.
They computed lexical features for each disc to study the correlation of these features with
the Mercalli intensity. The authors showed good prediction of earthquake shaking inten-
sity when combining earthquake measurements with tweets. In our work we use some of
the same tweet features used by Burks et al. However, our method differs from theirs in
that our goal is to provide rapid Mercalli estimates only using social media data, without
seismograph recordings. We aim towards understanding the full contribution of social
media for intensity estimation, as well as avoiding dependence on a dense seismographic
networks.

Possibly, the closest to our proposal is the work of Cresci et al. [9]. In their approach,
the authors studied how to estimate the maximum intensity in the modified Mercalli scale
using only Twitter features. Using linear regression models over a collection of aggregated
features, testing 45 different attributes. They showed that Twitter has enough predictive
power to infer the maximum intensity of an earthquake. The set of features tested were ex-
tracted from user profiles, from tweet content, and from time-based features of the Twit-
ter stream (e.g., tweet interval rates). Our proposal extends the work of by Cresci et al.,
but with focus on the value of message content and on producing accurate spatially dis-
tributed estimations (not only maximum intensity prediction). Another difference is that
our method uses only 12 lexical features, reducing dimensionality. In addition, we pro-
duce a spatial report of the event by enriching the process with spatial information like
the geographical distribution of users. Nevertheless, in Sect. 4 we compare our method
with Cresci et al. in the specific task of maximum intensity prediction.

In terms of spatially distributed data, we did not find at this moment prior work that gen-
erates spatial reports for earthquake intensity prediction. However, there is prior work that
deal with producing spatial metrics, such as ours, for other types of natural hazards [22,
30, 35]. These works face similar methodological issues to our approach, related to accu-
rate geolocation of messages, data density, and distance to the event location. Regarding
the use of geolocation authors such as Yin et al. [37] have shown that location accuracy can
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Figure 2 Architecture of our Mercalli inference system. Architecture of our Mercalli inference estimation
system based on social media characterization. The system considers three stages: data acquisition, region of
interest estimation, and spatial Mercalli estimation

be improved by inferring locations from text at different geographical levels. For a more
complete overview of the use of social media for mass emergencies and the challenges that
this involves we suggest referring to the survey by Imran et al. [5]

3 Early inference of Mercalli intensities
We propose a methodology, based on social media user activity, to perform early inference
of Mercalli intensities at municipality level. Social media data, in particular that of Twit-
ter, can be rapidly collected and summarized. This allows us to produce Mercalli reports
during the early stages of the aftermath of an earthquake. We divide our inference method
into three stages, as is shown in Fig. 2: The first stage, earthquake social effect character-
ization, discussed in Sect. 3.1, is the process of collecting and aggregating Twitter data
related to an earthquake occurrence. The data in this stage is aggregated at municipality
level, which is the smallest geographical subdivision used by our approach. The second
stage, region of interest estimation, discussed in Sect. 3.2, corresponds to the process of
estimating which municipalities were actually affected by an earthquake. The third stage,
spatial Mercalli estimation, discussed in Sect. 3.3, is in charge of predicting the spatial
Mercalli estimates for the event. Next, we detail each of these stages.

3.1 Earthquake social effect characterization
Our approach uses Twitter as a data source of user-generated information about earth-
quakes. To obtain this data, every time an earthquake hits, we retrieve messages from the
social platform that match any of the following keywords: sismo, temblor, temblando and
terremoto, which loosely correspond to the terms seismic, quake, shaking and earthquake
in Spanish. We collect these messages from the time of the earthquake up until 30 minutes
afterwards. Given that our goal is to produce early Mercalli estimates we do not use any
data posterior to 30 minutes after the event, because at that point the first partial Mercalli
reports (produced by specialized agencies) start to appear.

Once the data has been collected, we aggregate it at municipality level, which is the
smallest geographical subdivision used in our approach. We then process each municipal-
ity as an information unit, extracting features that describe how the earthquake affected
that particular region. Table 1 details the features that we extract for each municipality for
a particular earthquake.
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Table 1 Municipality-level features per event. The first eleven features are calculated over the set of
tweets that correspond to a specific municipality. The last feature corresponds to the municipality
population

Feature Description

NUMBER OF TWEETS No of tweets produced in the municipality
TWEETS NORM No of tweets produced in the municipality

divided by the number of users in the municipality
AVERAGE WORDS Avg. tweet length (in number of words)
AVERAGE LENGTH Avg. tweet length (in number of chars)

Fraction of tweets with. . .
QUESTION MARKS . . . question marks
EXCLAMATION MARKS . . . exclamation marks
UPPER WORDS . . . uppercase words

Fraction of tweets containing the . . .
HASHTAG SYMBOLS . . .# (hashtag) symbol
MENTION SYMBOLS . . .@ (mention) symbol
RT SYMBOLS . . .RT symbol
WORD EARTHQUAKE . . .word “earthquake”
POPULATION Municipality population

In order to perform the municipality-level aggregation of data required by our approach
we must examine each tweet for geolocation information. When available, the geolocation
allows us to map a message back to the geographical area where it was originated. Hence,
we will only use those messages for which we are able to extract a valid geolocation. In
order to geolocate tweets we use the following steps: (1) if available, we extract the exact
GPS coordinates from the tweet’s location field, (2) if the location field was not provided
by the user in their tweet, we then process the tweet’s textual content. This is, we analyze
the message’s text (e.g., “Earthquake in Valparaiso!!!”) to label possible location mentions
using Named Entity Recognition (NER), then for each labeled location we use a fuzzy
string matching proceduree in order to map the location to its corresponding municipality.
(3) At last, if all else fails, we apply the same procedure as in (2) but this time to the text
provided by the user in their profile information. We acknowledge that this procedure can
be noisy, since not all locations will be accurately mapped. However, we believe that spatial
patterns will still emerge. In this sense, more accurate methods for tweet geolocation could
improve this aspect of our approach. Nevertheless, this is an open problem that for the
time being we consider beyond the scope of our work.

Once all of the remaining tweets have been aggregated at municipality level, each mu-
nicipality is processed to extract 12 features, detailed in Table 1. These features provide a
high-level characterization of user activity related to the earthquake, for each geographical
subdivision.

3.2 Region of interest estimation
The next stage of our approach is estimating which municipalities were affected by the
earthquake. We refer to these municipalities as the region of interest of an earthquake.
Only those municipalities deemed as being affected by the earthquake will be used for
spatial Mercalli intensity estimation in the following stage. To estimate the geographical
subdivisions that were affected by the seismic event, we use a supervised classification
model. This model separates municipalities into two classes: unaffected by the earthquake
and affected by the earthquake.

To create this model we used a 0/1 classification algorithm, which we trained using
municipality-level data modeled as feature vectors (using the features shown in Table 1).
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The labels that we used for each municipality were class “0” if the earthquake was not
perceived by the population (i.e., the municipality had no official Mercalli intensity value
associated to it), and class “1” if the earthquake was perceived by the population (i.e., the
municipality had an official Mercalli value associated to it). The Mercalli intensity values
that we used to label the municipality-level data corresponded to values in official earth-
quake reports. More details on the technical and empirical aspects of the model creation
are presented in Sect. 4.

3.3 Spatial Mercalli estimation
We next create spatial Mercalli estimates for the municipalities that are part of the region
of interest of an earthquake. This process is divided into 3 steps: (i) reinforced Mercalli sup-
port estimation, (ii) adjusted Mercalli estimation, and (iii) spatial distribution of Mercalli
intensities. We proceed to describe each of these steps.

3.3.1 Reinforced Mercalli support estimation
As a first step to estimate spatial Mercalli values, we define a municipality-level variable,
which we call reinforced Mercalli support. The goal of this variable is to give more weight
to intensity estimations that come from regions that displayed a larger amount of social
activity. The rationale is to limit the effect of noisy reports by including only information
with high local support.

Let i be the index that denotes a municipality belonging to the region of interest of a
given earthquake. We then define the local support s(i) ∈ [0, 1] of the ith municipality, as
the ratio between users in i that reported the earthquake and the total number of different
users in i which have reported earthquakes in the entire (training) dataset. Next, we define
the Mercalli point estimate m(i) for the ith municipality, as an intermediate estimate for
the Mercalli value of i, which is obtained using a regression model. To estimate m(i) we
use a regression algorithm trained with earthquake Mercalli intensities and their corre-
sponding municipality-level features. The Mercalli intensities used for each earthquake-
municipality pair are based on official reports by governmental agencies. More details
on the technical and empirical aspects of the regression model creation are discussed in
Sect. 4.

Next, we combine s(i) and m(i) to obtain the reinforced Mercalli support (msupp) of i
using a soft min function:

msupp(i) =
2 · m(i) · s(i)
m(i) + s(i)

, (1)

where m(i) is the Mercalli point estimate at the ith municipality bounded to the [0, 1] in-
terval. This is obtained by normalizing the Mercalli scale estimate from {1 → 12} to [0, 1]
using m(i) = m(i)–1

11 . Therefore, since m(i) and s(i) are in the [0, 1] range, the reinforced
Mercalli support function is also in this range. We note that the reinforced Mercalli sup-
port function discards information from municipalities that do not have any local support
(defined in Sect. 3.3). Figure 3 shows a contour level plot of this function.

3.3.2 Adjusted Mercalli estimation
Our method considers each municipality as an earthquake sensor. We model the activa-
tion of a sensor for a given earthquake using an activation function, in this case the sigmoid
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Figure 3 The reinforced Mercalli support function. The reinforced Mercalli support function depicted using
contour levels. Low energy events or events with low support are filtered by the function. Medium energy
events will pass the filter if high support is observed. High energy events with high support will reach the
maximum of the function

function 1
1+e–x . We consider this sensor to be active when it reports a Mercalli intensity of 3

or greater, because 3 corresponds to the first level in the Mercalli scale for which an earth-
quake is perceived by humans. We incorporate this notion into our model by applying the
sigmoid function to msupp with an activation threshold of 3, i.e., (11 · msupp + 1){1,12} – 2)
and combining this with the Mercalli point estimate m(i). We refer to this value as the
adjusted Mercalli estimate (madj) for municipality i:

madj(i) = m(i) · Sigmoid
(
11 · [msupp(i)

]
– 1

)
. (2)

The adjusted Mercalli value is obtained from a surface that comprises a collection of
sigmoid functions in the Mercalli scale, stretching the sigmoid according to the Mercalli
intensity, as we show in Fig. 4.

3.3.3 Spatial distribution of Mercalli intensities
Municipalities are defined as areal partitions of a geographical region. Hence, it makes
sense that to predict municipality-level Mercalli intensities we consider the effect of its
spatial correlations with other nearby municipalities that are part of the region of interest.
To do this, we smooth the adjusted Mercalli estimate of each municipality in relation to
the adjusted Mercalli estimates of its nearest neighbors. The influence of a neighbor on
a given municipality is inversely determined by its geodesic distance to the municipality.
This distance is measured as the pairwise distance between the largest city of the munic-
ipality and its neighbor. Since the adjusted Mercalli estimate (Eq. 2) of a municipality is
conditioned to the local support that it had for the event (Eq. 2) by considering the largest
city in each municipality, we give a high level of confidence to the distance estimation.

The idea behind this spatial smoothing is to provide a robust Mercalli estimation for
municipalities that did not have sufficient support to provide a fair point estimate. This
problem affects rural areas where Internet access is limited and/or marginal in proportion
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Figure 4 The adjusted Mercalli estimate surface. The adjusted Mercalli estimate surface combines the effect
of Mercalli point estimates and support in a collection of sigmoids stretched by intensity. The level of
activation is a parameter of our intensity scale. For instance, this surface shows an activation level fixed at
Mercalli 6, driving the method towards detecting high energy events

to the municipality’s population. In these locations, the use of spatial smoothing is help-
ful to infer a Mercalli intensity estimate even when a low number of Twitter reports are
provided.

We describe the spatial smoothing process in detail next. First, we compute all possible
pairwise geodesic distances between the municipalities. Then, for each municipality, we
obtain its list of k-nearest neighbors, denoted as k-nn(i), where k is a parameter. For each
municipality i, we normalize its distance to each of its k-nearest neighbors by the sum of
the distances to all of the k-nn(i):

d(i, j) =
dgeo(i, j)

∑
j′∈k-nn(i) dgeo(i, j′)

. (3)

Note that
∑

j∈k-nn(i) d(i, j) = 1. To model the influence of each neighbor on the munici-
pality, we convert the distance into a similarity, as follows:

sim(i, j) =
1 – d(i, j)

∑
j′∈k-nn(i) 1 – d(i, j′)

. (4)

Finally, we create a smoothed Mercalli (msm) point estimate for i using a linear combi-
nation of the adjusted Mercalli point estimate of i and of its neighbors:

msm(i) = (1 – λ) · madj(i) + λ ·
∑

j′∈k-nn(i)

sim
(
i, j′

) · madj(j), (5)

where λ is a parameter within [0, 1] that controls the relative weight given to the point es-
timate and the neighborhood. As the Mercalli scale takes integers values, we round msm(i)
to its closest integer in the modified Mercalli scale {1 → 12}.

4 Experiments
In this section we present the experimental validation of our proposed method. In par-
ticular, we evaluate the performance of our approach for estimating Mercalli values at
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municipality level based on social media activity during earthquakes. First, we present a
description and characterization of our datasets, and secondly we present our results.

4.1 Dataset description and characterization
We use two datasets, the first a ground truth dataset obtained from a seismological agency
and the second is a Twitter dataset from which our method performs its Mercalli estima-
tions. We describe them next.

4.1.1 Ground truth earthquake dataset
As a ground truth dataset we used an earthquake catalog provided publicly by the National
Seismological Center of Chile, also known internationally as GUC. This catalog contains
information about earthquakes registered in Chile from January 2016 to June 2017. This
information is provided at municipality level and includes event magnitude, reported in
Moment Magnitude scale and, if the earthquake was perceived by the population, it con-
tains as well its Mercalli intensity report. The catalog contains 332 earthquakes perceived
by the population, which ranged from 2.2 Ml to 7.6 Mw in magnitude. Each entry in the
catalog corresponds to a earthquake-municipality pair with its corresponding intensity
value in the Mercalli scale. In total, the catalog comprises 8296 entries. We use a local-
scope catalog because this catalog contains fine-grained data about earthquakes in the
Chilean territory for all magnitude ranges, which are not otherwise available in global-
scope catalogs.

4.1.2 Twitter dataset
Our second dataset corresponds to data obtained from the public Twitter stream, using the
search API.f In order to retrieve conversations related to earthquakes, we collected tweets
that matched any of the following keywords (in Spanish) seismic, quake, shaking and earth-
quake. Overall, we collected 825,310 tweets, which were posted by 309,749 different users
during the time period of our study (i.e., from January 2016 to June 2017). From these
tweets, we wanted to keep only those that corresponded to earthquake mentions gener-
ated in Chile, so we could use them with our local-scope ground truth data. However, only
2200 of these tweets had GPS locations (0.26%). Therefore, we extracted additional loca-
tion information from users’ profiles using the heuristic approach described in detail in
Sect. 3.1. Using this approach we found that 207,015 users (i.e., 66.8%) registered a valid
location in their profile, of which 57,546 indicated to belong to Chile. For the users that
indicated being in Chile, we then used approximate matching to associate their profile in-
formation to a list of Chilean municipalities. This resulted in a total match of 41,885 users
to Chilean municipalities, which in turn yielded a total of 187,317 tweets mapped to 345
different municipalities in Chile.

Next, we performed a match between the earthquakes in our ground truth earthquake
dataset and our Twitter dataset. We matched each entry in the ground truth catalog
to its corresponding Twitter data municipality, to create municipality-level Twitter data
units, as described in Sect. 3. To create municipality-level Twitter data units we consid-
ered tweets from the time at which an earthquake occurred until 30 minutes afterwards.
This is, each information unit is composed by no more than 30 minutes of tweets. Over-
all, this process resulted in a total of 6790 municipality-earthquake pairs with Mercalli
information, and 6548 municipality-earthquake pairs without Mercalli information (i.e.,
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Table 2 Our dataset in terms of municipality-level local instances and the coverage of Twitter over
the GUC catalog

Intensity 1 2 3 4 5 6 7 Overall

GUC 2031 2212 2430 1121 355 133 14 8296
Twitter + GUC 1033 1808 2334 1116 352 133 14 6790

Not Covered 998 404 96 5 3 – – 1506
Coverage (%) 50.8 81.7 96 99.5 99.1 99.1 100 81.8

6790/6548 affected/unaffected municipality information units). The number of data units
of our dataset is shown in Table 2 disaggregated per Mercalli intensity level.

Table 2 shows number of data units at municipality level for the GUC catalog (“GUC”),
the intersections of both datasets (“Twitter + GUC”), the number of GUC events that did
not have coverage on Twitter (“Not Covered”), and the percentage of units covered (“Cov-
erage %”). According to Table 2, our dataset has large coverage of the events registered by
the GUC, with almost perfect coverage for medium to high-energy events. Low-energy
events are less reported on Twitter because many times they are not perceived by the
population. Overall, the intersection between Twitter and the GUC data produces 6790
municipality-level data instances, with an average coverage of 81.8%.

4.1.3 Data characterization
We first performed a data exploration process to analyze the relationship between
municipality-level features and Mercalli values. We studied the existence of correlations
between municipality-level propagation features, shown in Table 3.

The first 2-row block in Table 3 shows the correlation between the first variable, the tar-
get variable MERCALLI, and each of the twelve features used by our method. The second
2-row block shows correlation between the second variable, NUMBER OF TWEETS, and
each of the remaining features (except MERCALLI), and so on for the rest of the table.

There is a positive correlation between NUMBER OF TWEETS and TWEETS NORM.
There is a negative correlation between TWEETS NORM and POPULATION. An expected
correlation arises between AVERAGE WORDS and AVERAGE LENGHT, and also between
MENTION SYMBOLS and RT SYMBOLS, since the latter is a subset of the former. This
is because messages that are re-posted on Twitter (i.e., retweeted) always include a men-
tion to the author of the original message. As expected, the number of special symbols
increases with tweet length.

In Fig. 5, we show boxplots for each feature in relation to Mercalli intensity values. First,
we discuss the median, which as expected, forNUMBER OF TWEETS andTWEETS NORM

is correlated with MERCALLI. The use of normalization for TWEETS NORM reduced the
observed variance, shown in the relatively similar sizes of each box for this feature. The
medians of the AVERAGE LENGTH and AVERAGE WORDS plots tend to decrease when
MERCALLI increases. We say that this is only a tendency because high-energy events do
not follow that pattern. In particular, for earthquakes level 7 in Mercalli, the median in-
creases. The inversion of the pattern for high-energy earthquakes is also observed in other
features (see, for instance, NUMBER OF TWEETS and EXCLAMATION MARKS). In the
plots for QUESTION MARKS and EXCLAMATION MARKS, the median increases during
high-energy earthquakes. The use of uppercase is marginal in the dataset, showing more
presence during high-energy earthquakes. A similar pattern is observed in the boxplots
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Table 3 Spearman correlation coefficient for the features considered in our study. As expected, the
correlation between NUMBER OF TWEETS and TWEETS NORM is strong, as well as that between
AVERAGE WORDS and AVERAGE LENGHT, and between MENTION SYMBOLS and RT
SYMBOLS. The Spearman coefficients found are statistically significant, as the p-values show. Strong
correlations are indicated with bold fonts
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ρ 0.22 0.24 –0.11 –0.14 0.05 0.16 0.15 0.06 –0.12 –0.11 0.05 –0.02
p 2.2e–16 2.2e–16 2.2e–16 2.2e–16 3.3e–13 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 6.2e–12 0.0

ρ 0.52 –0.09 –0.18 0.29 0.38 0.22 0.21 –0.22 –0.17 0.25 0.3
p 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16

ρ –0.07 –0.16 0.19 0.29 0.18 0.12 –0.14 –0.11 0.14 –0.56
p 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16

ρ 0.86 0.02 –0.11 –0.08 –0.04 0.31 0.33 0.02 0.0
p 2.2e–16 9.5e–05 2.2e–16 2.2e–16 3.1e–10 2.2e–16 2.2e–16 0.002 0.201

ρ –0.08 –0.18 –0.1 –0.04 0.41 0.43 0.0 0.0
p 2.2e–16 2.2e–16 2.2e–16 1.1e–09 2.2e–16 2.2e–16 0.249 0.956

ρ 0.23 0.08 0.13 –0.04 –0.01 0.1 0.06
p 2.2e–16 2.2e–16 2.2e–16 3.1e–10 0.031 2.2e–16 2.2e–16

ρ 0.18 0.11 –0.14 –0.12 0.23 0.09
p 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16 2.2e–16

ρ 0.04 –0.07 –0.05 0.12 0.09
p 6.7e–10 2.2e–16 4.1e–11 2.2e–16 2.2e–16

ρ –0.13 –0.07 0.07 0.06
p 2.2e–16 2.2e–16 2.2e–16 2.2e–16

ρ 0.86 –0.07 –0.07
p 2.2e–16 2.2e–16 2.2e–16

ρ –0.07 –0.04
p 2.2e–16 9.8e–09

ρ 0.15
p 2.2e–16

for WORD EARTHQUAKE, which increases when MERCALLI increases. The use of HASH-
TAG SYMBOLS increases with MERCALLI, as expected. However, for MENTION SYM-

BOLS and RT SYMBOLS the median decreases with MERCALLI. Finally, POPULATION
shows a clear inverse relation of the median and MERCALLI, reinforcing the presence of
a negative linear correlation, as was shown in Table 3.

A second aspect that we analyzed was the variance. Boxplots in Fig. 5 show low variance
with MERCALLI in several cases (see boxplots for TWEETS NORM, AVERAGE LENGTH,
and AVERAGE WORDS). However, there are features which show high variance in rela-
tion to MERCALLI, such as HASHTAG SYMBOLS, RT SYMBOLS, and MENTION SYM-

BOLS.

4.2 Experiment and results
From the total of 332 earthquakes, 264 were selected for training tasks, and the remaining
68 earthquakes were reserved for testing and validation tasks. This represents a train-
ing/testing split of 80/20 percent. The training/testing split process was conducted using
stratified random sampling over earthquakes according to each Mercalli intensity level,
keeping the same proportions between intensities in training and testing folds, avoid-
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Figure 5 Boxplots for each feature of our dataset. Boxplots for each feature in relation to Mercalli intensity
values at municipality level granularity. Points outside each boxplot represent outliers. Some plots are in
logarithmic scale to improve the visualization of the data

ing over/under representations of low/high energy earthquakes in training and/or test-
ing folds. Training/testing proportions of instances according to the maximum Mercalli
intensity of each earthquake are shown in Table 4.
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Table 4 Training/testing partition for events according to the maximumMercalli intensity of each
seismic movement. High energy events are less frequent than low energy events. Note that this table
summarizes our dataset in terms of number of earthquakes, but for each of these earthquakes we
have many municipality-level local instances. In fact, as high energy earthquakes cover a wider area,
they produce many municipality-level instances

Max intensity 2 3 4 5 6 7

Training 11 105 103 39 4 2
Testing 3 26 26 10 2 1
Overall 14 131 129 49 6 3

Table 5 Training accuracy per class for the region of interest estimation, using 5-fold cross validation

Class FP Rate Precision Recall F-measure ROC Area

0 0.189 0.736 0.575 0.646 0.693
1 0.425 0.675 0.811 0.737 0.693
W. Avg. 0.312 0.705 0.698 0.693 0.693

Table 6 Testing accuracy per class for the region of interest detection task. Low precision indicates
that the problem is hard to solve using classification at fine level granularity. However, a simple 0/1
classifier is sufficient to infer the region of interest with 0.816 recall

Class FP Rate Precision Recall F-measure ROC Area

0 0.184 0.765 0.517 0.617 0.667
1 0.483 0.594 0.816 0.687 0.667
W. Avg. 0.323 0.685 0.656 0.650 0.667

4.2.1 Region of interest estimation
Training/testing municipality data batches accounted for 10,491/2847 instances at munic-
ipality level. As detailed in Sect. 3.2, in order to define the region of interest of an earth-
quake, we train a 0/1 classifier to estimate which municipalities were affected/unaffected
by earthquakes. In the training fold, 5021 instances corresponded to class 0 (unaffected)
and 5470 to class 1 (affected). Using Weka 3.7,g we trained a support vector machine
(SVM) using five-fold cross validation, using C-SVC (C-support vector classification) with
a radial basis function kernel. Since our focus was to detect class 1 instances, we used cost-
sensitive learning, penalizing class 1 false negatives to maximize recall, at the cost of an
increased FP-rate (false positive rate). We tested other algorithms such as naive Bayes and
multilayer perceptron; SVM displayed the best results, with 7325 correctly classified in-
stances, representing an overall accuracy of 69.82%. Table 5 shows detailed accuracy per
class.

We applied the resulting model, obtaining 1867 correctly classified instances, over a
total of 2847 instances, achieving an accuracy of 65.57%. This shows that the classifier
generalizes well, since the overall accuracy of training and testing partitions are similar.
Low precision for this task illustrates that this problem is difficult to solve probably due to
the presence of noise at fine level aggregation. However, what remains important is that
the testing recall is high, indicating good predictability for class 1.

Nevertheless, Table 6 shows the testing accuracy per class, indicating that the simple
0/1 classifier is enough to recover the region of interest of an earthquake with good recall
(0.816). Hence, each region of interest is over-estimated (shown by the low precision on
class 1), but it still achieves good coverage of the actual region of interest (shown by the
high recall).
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Table 7 Testing performance according to the actual Mercalli intensity for the region of interest
detection task. A 0/1 classifier is sufficient for medium and high energy events at municipality level,
showing good performance in terms of recall

Act. Pred. - 1 2 3 4 5 6 7

0 0 790 – – – – – – –
0 1 737 – – – – – – –
1 0 – 66 85 62 25 5 – –
1 1 – 130 234 351 198 65 95 4

Instances 1527 196 319 413 223 70 95 4
Error rate 0.48 0.33 0.26 0.15 0.11 0.07 – –

To better understand how the 0/1 classifier behaves, in Table 7 we disaggregated test-
ing instances according to the actual level of Mercalli intensity. We can observe that false
negative rate is very low, and as the intensity of the earthquake increases, the error rate de-
creases. High-energy earthquakes (from Mercalli 5 and above) present almost perfect per-
formance. The largest part of the error occurs for low-intensity earthquakes (from Mercalli
3 and below). This is intuitive since for this segment of the Mercalli scale most people will
not perceive the earthquake, because it can only be perceived under extremely favorable
conditions (e.g., in the top floor of a building). Conversely, for the 0/1 classifier, it is dif-
ficult to distinguish municipalities that reported the earthquake in their social networks,
but in which the actual event was not perceived, producing false positives. We handle this
overestimation of the region of interest using spatial smoothing, described next.

4.2.2 Using regression and spatial smoothing to estimate Mercalli intensities
As detailed in Sect. 3.3, we performed the experimental validation for regression and spa-
tial smoothing procedures to estimate Mercalli intensities. We used a support vector re-
gression model with a sequential minimal optimization (SMO) algorithm implemented
in Weka 3.7. We trained using five-fold cross-validation using as training instances mu-
nicipalities where an earthquake was perceived with Mercalli values ranging from 1 to
7. To deal with intensity unbalance, we applied instance re-sampling biased to class uni-
formity, achieving a total of 5470 training instances. To calculate the support vectors, we
used a normalized polynomial kernel with an exponent equal to 2. During the training
process, the fitted model achieved a correlation coefficient of 0.65 with mean absolute
error (MAE) of 1.15. The same configuration was used to fit an SMO regression model
over a reduced set of features, with high correlation with the Mercalli intensity (NUM
TWEETS, NUM TWEETS NORM, and POPULATION), achieving a correlation coefficient
of only 0.304. Therefore, after corroborating that the best values for correlation coeffi-
cient in the regression were achieved using all features, we discarded the model based on
the reduced set of features. We selected the model based on all 12 features as a baseline
predictor of Mercalli at municipality level (denoted by m(i) in Equation (2)).

After re-evaluation on the test set, the correlation coefficient decreased to 0.26 with a
MAE of 2.26. This result indicates that the sole use of a regression is insufficient to per-
form accurate predictions. We show next that the use of our adjusted Mercalli estimation
and the inclusion of spatial smoothing boosts the method’s accuracy, outperforming the
baseline.

After calculating the reinforced Mercalli estimate and the adjusted Mercalli, we applied
spatial smoothing using k-NN with k = 5. Then, we tuned λ by evaluating the MAE mea-
sured between the actual Mercalli and the Mercalli estimate given by our method. For
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Table 8 Overall MAE at different values of λ

λ 0 0.2 0.4 0.6 0.8 1.0

Overall MAE 2.078 1.841 1.551 1.207 0.876 1.029

each earthquake in the testing set, we averaged the MAE over municipalities and obtained
a single MAE estimate per earthquake. Then, we stratified the MAEs via the maximum
Mercalli intensity per earthquake and calculated the MAE estimation per Mercalli level.
(For instance, MAE(2) is the MAE averaged over all the earthquakes in the testing set with
maximum intensity 2 in the Mercalli scale). As the distribution of earthquakes per Mercalli
level of intensity is unbalanced, we weighted the error in proportion to the intensity of the
earthquake, paying high costs in high-intensity earthquakes and low costs in low-intensity
earthquakes. We named this measure Overall MAE and defined it as follows:

OVERALL MAE =
∑

M∈MERCALLI SCALE MAE(M) · M · #INSTANCES AT M
∑

M∈MERCALLI SCALE M · #INSTANCES AT M
.

The Overall MAE for values of λ ranging in {0, 0.2, 0.4, 0.6, 0.8, 1.0} is shown in Table 8.
Table 8 shows the value of using spatial smoothing for our method. On the one hand,

when spatial smoothing is dismissed (λ = 0), the method achieves its worst result with
an Overall MAE at 2.078, which is almost the same value achieved using the baseline.
On the other hand, when the prevalence of the spatial component increases, the error
decreases. The best value is achieved at λ = 0.8.

Now, we show the disaggregated error at each level of Mercalli intensity. For each earth-
quake in the testing set of earthquakes, we measured the absolute error in each munici-
pality of Chile. These results are shown in Fig. 6. Figure 6 shows the errors stratified per
intensity, where each boxplot indicates errors related to earthquakes with the intensity
indicated in the x-axis. The figure shows that our proposal outperforms the baseline in
all the comparisons, which is only based on regression at municipality level. For instance,
for intensity 5, our method shows its best performance in an earthquake with an absolute
error of 0.2 (median minus deviation). The median of the boxplot is located at 1 mean-
ing that in average our method records an absolute error of one degree at this level of the
Mercalli intensity scale. This result indicates that the use of highly supported regressors
helps to reduce the estimation error. The prediction of medium-scale energy events shows
great performance (see the error measures achieved in the range of {3, 5}), outperforming
the baseline by up to 2 points of error, on average.

To better understand the quality of our results, note that the results displayed in Fig. 6
correspond to the errors of a complete spatial Mercalli report, which is a result signifi-
cantly distinct from those observed in state-of-the-art methods, where the Mercalli esti-
mation is focused on the aggregated estimation of the maximum intensity per earthquake.
We remark at this point that our method is the first to provide a complete spatial Mercalli
report.

To verify the existence of sufficient evidence to sustain that our method outperforms
the baseline, we conducted a non parametrical statistical test of differences in absolute er-
rors. To do this we conducted a Wilcoxon rank sum tests on errors stratified per intensity.
Wilcoxon statistics, p-values and 95 percent confidence intervals of location displacement
at each level of intensity are shown in Table 9.
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Figure 6 Differences in means of absolute errors between the proposed method and the baseline. Boxplots
of absolute errors between the proposed method and the baseline. The figure shows boxplots stratified
according to the maximum intensity of each earthquake

Table 9 Wilcoxon rank sum test results for differences in absolute errors between our method and
the baseline. The second column indicates the Wilcoxon statistic per each level of the test

W p-value Displacement Confidence interval

2 0 2.2e–16 –1.68 [–1.81, –1.57]
3 1987 2.2e–16 –1.71 [–1.77, –1.63]
4 13,709 2.2e–16 –0.99 [–1.02, –0.96]
5 149,490 2.2e–16 –1.02 [–1.07, –0.96]
6 22,640 0.03692 –0.02 [–0.05, –0.01]
7 61 2.2e–16 –1.22 [–1.28, –1.16]

4.2.3 Maximum intensity prediction task using social media
We compare our method with the state-of-the-art technique for the specific task of max-
imum intensity prediction using social media. According to our literature review, the
method proposed by Cresci et al. [9] is the only one that we can be directly compared
to ours, in the sense that it relies solely on Twitter data; as such, it can be evaluated us-
ing the same dataset used by our method. As we noted in our related work overview, in
Sect. 2, the work by Burks et al. [36] also uses Twitter data to estimate intensity. How-
ever, their approach is not directly comparable to ours because their model uses Twitter
in combination with actual seismograph measurements. Since the goal of our work is that
of providing spatial Mercalli intensity reports based only Twitter data, we consider it be-
yond the scope of our current work to compare with approaches that use seismograph
measurements. Regardless, we do believe it is important to understand the relationship
between seismograph recordings and how Twitter data, in our case, can complement this
data. We present further discussion on this in Sect. 5.

Table 10 shows the results of our proposal in relation to the work by Cresci et al. for the
task of maximum intensity estimation. As mentioned earlier in Sect. 2, our method uses
less features than the one by Cresci et al.. In addition, ours considers support and spatial
smoothing.
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Table 10 Testing averaged MAE of the maximumMercalli intensity for each earthquake

Proposal Cresci et al. [9] Baseline

2 〈1.00, +1.0, –1.0〉 〈2.00, +0.0, –0.0〉 〈4.12, +0.6, –0.4〉
3 〈0.69, +1.3, –0.6〉 〈1.05, +0.9, –1.0〉 〈3.04,+1.0,-0.8〉
4 〈1.25, +2.7, –1.2〉 〈0.20, +0.7, –0.2〉 〈1.27, +1.4, –0.8〉
5 〈0.55, +0.4, –0.5〉 〈0.73, +1.2, –0.7〉 〈0.94, +0.8, –0.6〉
6 〈1.00, +1.0, –1.0〉 〈0.50, +0.5, –0.0〉 〈1.00, +1.0, –1.0〉
7 〈1.00, +0.0, –0.0〉 〈7.00, +0.0, –0.0〉 〈1.00, +0.0, –0.0〉

As Table 10 reveals, our method performs well in the specific task of maximum inten-
sity prediction, being competitive with the state of the art. The method of Cresci et al.
[9] outperforms our method at intensity 4 but at the cost of much less accurate predic-
tions for low- and high-energy seismic movements. Note that at intensity 7, the method
of Cresci et al. cannot detect the earthquake, while our method reaches only 1 point in
MAE. This noteworthy result is because this earthquake was located at a rural locality in
Chile (Limache), an area of the country that is sparsely populated. This earthquake pro-
duced a local trend in the region of interest but was practically uncommented on in the
capital of Chile during the first half hour before the event. Then, the event just produced
a local trend in the region of interest that was successfully detected by our method and
discarded by our competitor.

The improvement of our method over the baseline is important for low- and medium-
energy events. Note that the baseline corresponds to a regression over the 12 lexical fea-
tures at municipality level, picking the maximum value detected in each earthquake. Our
proposal applies spatial smoothing over highly supported regressors to finally pick the
maximum. The results show that spatial smoothing is also useful for the maximum inten-
sity detection task of low- and medium-energy events.

4.3 Illustrative examples
In Table 11, we show some examples of Mercalli reports provided by the National Seismo-
logical Center in Chileh and reports generated by our method. We show one earthquake
(chosen at random) per level of intensity. To build each report, we included in the list
the municipalities with the largest populations, excluding municipalities with fewer than
25,000 inhabitants. A similar procedure is used by the Seismological Center to construct
its national reports. Each list was sorted in decreasing order according to Mercalli inten-
sity.

Table 11 shows that our method works well, providing accurate spatial reports. The
estimation of the maximum intensity is accurate, and it also detects the epicenter. Thus,
our method can detect the maximum intensity of the earthquake as well as the location
in which it was registered. The use of spatial smoothing gives excellent results in terms
of damage detection along the national territory. As expected, high-intensity earthquakes
produce longer reports, showing an almost perfect match with the actual report. The use
of reinforced Mercalli support helps to detect medium- and low-energy events. Note that
the earthquake at intensity 3, located in Talca, was successfully detected by our method
and also matched for localities close to where the event was perceived.

5 Discussion and conclusions
In this paper, we propose the first method for predicting the distribution of spatial Mercalli
intensities for earthquakes using only social media features. Our literature review shows
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Table 11 Illustrative examples of spatial Mercalli reports comparing actual and predicted Mercalli
intensities

M Actual report Predicted report

3 Talca (3), Constitución (3), Maule (4), Talca (3),
Maule (3), Navidad (2), Constitución (3),
Santiago (1) Curepto (3)

4 Coquimbo (4), Ovalle (4), Coquimbo (3), Colina (3),
Melipilla (2), Santiago (2) Til–Til (3), Santiago (3)

5 La Serena (5), Coquimbo (5), La Serena (5), Coquimbo (5),
Vicuña (4), Ovalle (4), Vicuña (4), Ovalle (4),
Illapel (3) Illapel (3)

6 Quintero (6), Valparaíso (5), Quintero (6), Valparaíso (6),
Quilpue (5), Quillota (5), Viña del Mar (6), Quilpue (5),
Viña del Mar (4), Ovalle(3), Quillota (5), San Felipe (4),
Santiago(3) Santiago (4), La Serena (3)

7 Limache(7), Santiago (6), Limache (6), Viña del Mar (6),
Viña del Mar (6), Valparaíso (6), Valparaíso (6), Santiago (5),
Coquimbo (5), La Serena (5), Coquimbo (5), La Serena (5),
Ovalle (5), Rancagua (5), Rancagua (5), Curicó (5),
Curicó (4), Coronel (3) Ovalle (4), Quirihue (3)

many efforts towards earthquake detection using social media: mostly, the location where
an earthquake was felt and the maximum earthquake intensity. Our proposal performs
well for both the aforementioned tasks and is competitive in relation to the state-of-the-
art. However, these are not the main goals of our work. Our main objective is to predict the
spatial distribution of Mercalli intensities, without depending on geological models or on
using signals captured by spatially distributed seismographs [36]. Our empirical evalua-
tion shows that social media provides valuable spatial information, which is helpful for the
task of producing spatial intensity reports for earthquakes. In addition, we were successful
in revealing local trends by using local-level high-support regressors. Our method uses a
fine level of granularity in its spatial analysis (as opposed to prior approaches that use a
more coarse-grained analysis) which allows us to detect an provide reports for medium-
energy and high-energy events. Our experimental results show that our estimated reports
are almost identical to those produced by experts.

On the other hand, our approach is not without its limitations. The main restriction on
our proposed method is its dependency on the availability of spatially distributed social
media data, specifically from Twitter. We think is possible to generalize our method use
data from other social media platforms that contain textual messages and location infor-
mation (given that this data is available). However, our method cannot work without some
type of social media content. Therefore, in geographic places where there is little or no so-
cial media coverage we will not have enough data to produce accurate estimates. A similar
situation can also occur when faced with disasters in which digital communications are
interrupted and people are not able to post on social media. This type of limitations are
not exclusive to our system, but they correspond to a drawback of all crisis informatics sys-
tems that rely solely on social media as a data source. Nevertheless, we do not see social
media dependency as a threat, given that our system is designed for the purpose of pro-
viding social media information during crisis situations to enhance emergency response
when possible.

In addition, another limitation is the quality of message location estimation. Currently,
our approach uses a more or less standard heuristic method to infer message geolocation.
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This is needed due to the lack of GPS data associated to Twitter usage in Chile (and in many
other countries). This can induce noise in our location data, thus, by incorporating bet-
ter geo-mapping techniques our method could improve its accuracy. Recent work shows
promising results in this direction [38], proving that methods based on the user friendship
network obtain high values of accuracy in geolocation inference. However, finding the best
approach for location estimation is beyond the scope of our current work. On this note,
we believe that our method can be scaled to other countries. This notion of scalability is
supported by the fact that the existing literature provides more than sufficient evidence
of the usefulness of Twitter in different countries (e.g., Italy, New Zealand, Australia, the
U.S., the U.K., and Japan) for rapidly gaining situational awareness. Furthermore, coun-
tries such as the U.K. show a much wider adoption in the use of GPS enabled devices,
which could actually improve the performance of our approach for these countries.

In summary, in this article we have presented a method for spatial inference of damages
after an earthquake releasing results in the Mercalli scale. Our contribution is that of pro-
viding a tool to allow for early response and to improve coverage in locations where there
are no expert observers. Gaining accurate situational awareness as soon as possible after
a disaster in extremely valuable for emergency response agencies and governments.

Future work includes dealing with open issues, such as measuring and understanding
the contribution of social media data in relation to other data sources such as seismo-
graph recordings. We note that we do not expect Twitter to outperform methods that
include seismograph measurements, which can be extremely accurate, but rather to study
how the combination with social media can enhance report immediacy and quality. To
achieve this one possibility would be combine features from both sources, as was done
by Burks et al. [36]. Another open problem is that of studying our method’s sensitivity to
location estimation quality and also to the keyword-based approach used to retrieve rele-
vant tweets. It is possible that these terms could induce message undersampling, since we
could miss relevant tweets that do not include the selected terms. However, by including
more keywords we also risk adding more noise to our dataset. In this sense, we the key-
words that we are currently using are the same as in those used in [39], which have showed
excellent recall for earthquakes in Chile. This is supported by Table 2, which shows that
the selected terms allow us to achieve good coverage in our dataset for all relevant events
in the country. Hence, we think that these terms offer a good trade-off between noise and
relevant messages, given the linguistic variations found in Chile. Nevertheless, in other
countries, where language is more diverse depending on the region, this could be an im-
portant limitation.

Additionally, in the future we contemplate extending our work to incorporate more fea-
tures. Time-based features extracted from the Twitter stream (e.g., tweet interval rate)
are a valuable source of information in the earthquake detection task. We believe these
types of features can also be helpful in the elaboration of spatial intensity reports. In ad-
dition, since the reports produced by our method are almost identical to those produced
by experts, we plan to embed Twitter-based intensity estimations into the state-of-the-art
earthquake detection and visualization system Twicallii [39].
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