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Abstract

Understanding the importance of links in transmitting information in a network can
provide ways to hinder or postpone ongoing dynamical phenomena like the
spreading of epidemic or the diffusion of information. In this work, we propose a new
measure based on stochastic diffusion processes, the transmission centrality, that
captures the importance of links by estimating the average number of nodes to
whom they transfer information during a global spreading diffusion process. We
propose a simple algorithmic solution to compute transmission centrality and to
approximate it in very large networks at low computational cost. Finally we apply
transmission centrality in the identification of weak ties in three large empirical social
networks, showing that this metric outperforms other centrality measures in
identifying links that drive spreading processes in a social network.

Keywords: Social networks; Link centrality measures; Diffusion processes; Weak tie

1 Introduction

The importance of nodes and links in networks is commonly measured through central-
ity measures. Their definitions generally rely on local and/or global structural informa-
tion. Centrality measures using local information, like the node degree or link overlap, are
computed efficiently as they only require knowledge about the neighbors of a given node
or link. On the other hand, these measures cannot provide information on which nodes
or links play global roles in the network structure. On the contrary, centrality measures
based on global information about the network structure, like betweenness and closeness
centrality [1, 2], Katz centrality [3], k-shell index [4, 5], subgraph centrality [6] and in-
duced centrality measures [7] may better characterize the overall importance of a node or
link. Unfortunately, although effective algorithms for approximating these quantities have
recently been proposed [8, 9], estimating these measures in large scale networks is still
computationally challenging.

While global centrality measures have been very successful in identifying structurally
important nodes or links in networks, it has been argued [10] that they do not evidently
identify nodes or links with a key role in dynamical processes. Other centrality metrics,
which directly use dynamical processes to assign importance were found to be more suc-
cessful in this sense. The best examples are metrics based on random walkers like Page-
Rank [11], eigenvector centrality [12], or accessibility [13]. Other examples are local met-

rics like the expected force [14], or percolation centrality [15]. These measures are based
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on random diffusion processes, but do not fully capture the basic mechanisms behind
contagion mediated spreading phenomena. Here we define a new link centrality measure,
transmission centrality, tailored to identify the role of nodes and links in controlling conta-
gion phenomena. The transmission centrality measures the average number of nodes who
are reached by the contagion process through each link during the spreading of a stochas-
tic contagion process. This provides a direct measure of the centrality of the link in hin-
dering or facilitating the contagion process. In real contagion processes, links correspond
to specific interactions among individuals, or specific exchanges of information, or indi-
viduals in the case that the nodes represents specific subpopulations. Controlling single
contagion routes instead of completely isolating an individual may result in a convenient
option for mitigating the spreading of epidemics or enhancing the velocity of information
diffusion [16—18]. In the case of very large-scale network, we propose a heuristic calcula-
tion of transmission centrality, which is both computationally efficient and can be easily
extended for weighted, directed, or temporal networks or even for nodes. Furthermore, to
demonstrate the usefulness of transmission centrality we present a case study where we
use this metric to identify weak ties [19, 20] in social networks and characterize their role
in contagion processes.

As it follows, after a brief discussion of related works and utilized datasets, we formally
introduce transmission centrality and discuss a heuristic method for its approximate cal-
culation. Then we discuss its properties and correlations with local centrality measures in
three large-scale real world social networks. Finally, we present simulation results of SIR
spreading processes to demonstrate the capacity of combined local measures and trans-
mission centrality in designing effective strategies to enhance or hinder information dif-

fusion in social networks.

2 Related works

Node centralities have been widely studied, from classical static centralities like degree,
closeness, betweenness, eigenvector [21] to centrality measures based on dynamical pro-
cesses, such as random walk (e.g. PageRank [11]). Among these, betweenness centrality
is one of the most popular measures as it quantifies the importance of a node by consid-
ering the global structure of a network instead of local information. Unfortunately, the
efficiency of algorithms to calculate betweenness centrality is still challenging in the case
of large-scale social networks as its best computation method has O(|V||E|) complexity
for unweighted networks and O(|V||E| + |V|*1og |V]) for weighted networks [8]. While
many variants and approximation algorithms have been proposed to improve its algorith-
mic efficiency [22-27], researchers have also proposed alternative measures to quantify
the importance of nodes in terms of dynamical processes on top of a network, such as
K-path centrality [28] and percolation centrality [15]. K-path centrality [28] applies self-
avoiding random walks of length k and counts the probability that a message originating
from a given source traverses a node. The percolation centrality [15] measures the rel-
ative importance of a node based on both network structure and its percolated states.
Single-node-influence centrality and Shapley centrality assess the importance of a node in
isolation and in a group respectively in social influence propagation processes [29]. [30]
simulates epidemic models (SIS and SIR) to estimate node centralities on top of temporal
social networks. Interestingly, this study shows that spreading processes fail to character-
ize the centrality measures like degree and core numbers of infected nodes. Dynamics-
sensitive centrality [31], which counts the outbreak size in an epidemic model to quantify
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spreading influence of nodes, can better capture the importance of nodes particularly in
epidemic spreading processes.

Most centrality algorithms have also been generalized to the estimation of link centrality
measures, such as edge betweenness centrality, spanning edge betweenness centrality [32,
33], and K-path edge centrality [34]. As node centralities aim to characterize the impor-
tance of nodes in a network, edge centralities provide quantitative perspectives to measure
the importance of links in a network structure [35-40].

3 Materials and methods

3.1 Network data descriptions

In the following study, we will discuss centrality algorithms by using three distinct sets
of data recording communications between thousands or millions of individuals. For each
dataset, first we aggregate the sequence of interactions to a static social network, excluding
possible commercial communications. To do so, we only draw links between individuals
who had at least one pair of mutual interactions during the observation period. In addition,
to avoid leaf links we extract the k-core (k = 2) structure [41, 42] of each network and use
their largest connected component (LCC).

The first dataset we investigate is collected from the mobile phone call (MPC) commu-
nication sequences of 4,256,137 individuals during 4 weeks with 1 second resolution [43,
44]. Individuals are anonymous users of a single operator with 20% market share in a Euro-
pean country. The static social network contains 5,279,169 mutual links. The final k-core
(k = 2) structure of the LCC includes 1,926,787 nodes and 3,269,634 edges.

The second social network is aggregated from the sequence of wall posts of Facebook
users (FB) [45-47]. The data records interactions from September 2004 to January 2009
between 31,720 users connected by 80,592 mutual links. The k-core (k = 2) structure of
the LCC of this network contains 20,244 nodes and 70,132 edges.

The last social network is a Twitter conversation network (TW), which was constructed
from tweets from October 2010 to November 2013, which were collected through the
Twitter Gardenhose [48]. We restrict our dataset to tweets with live GPS coordinates pro-
viding us over 420 million communication events, which represent a 1-2% of the entire
volume. We construct a social network based on mutual conversational tweets (@men-
tions) between 4,155,700 users connected by 6,506,519 links. The k-core (k = 2) struc-
ture of the LCC of the Twitter conversation network consists of 966,779 nodes linked by
2,779,524 edges.

3.2 Transmission centrality

Transmission centrality aims to measure for each link in a network its influence in dissem-
inating some globally spreading information. More precisely it measures the number of
nodes who received information during a diffusion process through a given link. Its defini-
tion intrinsically assumes a diffusion process to unfold on a network structure. In our defi-
nition we use the simplest possible information spreading process, the Susceptible-Infected
model [49], however this can be replaced by any other diffusion process. The Susceptible-
Infected (SI) process is defined on a connected network G = (V, E), where nodes u € G.V
can be in two mutually exclusive states, either susceptible (S) or infected (J). Initially each
node is susceptible (S) except a randomly selected seed node, which is set to be in state I. In
one iteration step each infected node can infect its susceptible neighbors with rate 8 until
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Input: G=(V,E), B,s
Output: Gpr = (Vp1, Epr) branching tree of spreading

—

: Q=queue() // queue of I nodes with susceptible neighbors

2: Gpr.Ver =¥  // the branching tree
3: Ger.Egr =0
4: for each vertex u € G.V - {s} do
5. ustate=S§
6: u.asc=NIL
7: end for
8: s.state=1
9: ENQUEUE(Q, s)
10: while Q #¥ do
11: u=DEQUEUE(Q)
122 SN =False //remaining susceptible neighbor of node
13:  for each v € sort(G.Adj[u]) do // we check neighbors of node u in a sorted
fashion
14: if (v.state == S) then
15: if (rand() < B) then
16: v.state =1
17: u.asc=u
18: Ggr.Var.add(v)
19: Ggr.Egr.add((1,v))
20: ENQUEUE(Q, v)
21: else
22: SN = True
23: end if
24 end if
25: if SN == True then
26: ENQUEUE(Q, u)
27: end if

28:  end for

29: end while
Algorithm 1: Susceptible-infected process

every node becomes infected in the network. Note that the parameter § here scales with
the speed of information spreading, with value 8 = 1 corresponding to the fastest possible
information diffusion process determining the shortest diffusion routes between the seed
and any other node in the network. (We set 8 = 1 in this study if not noted otherwise.) This
diffusion process can be simulated with a modified breath-first-search algorithm [50] as
written in Alg. 1. There, during the unfolding of the diffusion we keep infected nodes with
susceptible neighbors in a Q queue and record the branching tree Ggr = (V3T, EpT) Of the
process by keeping track of the direct ascendant of each node from which it received the
information. Note that by exploring the neighbors of an infected node in a sorted fashion

(seeline 13 in Alg. 1) makes this algorithm fully deterministic in case of 8 = 1. Exploiting
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the structure of the actual branching tree, transmission centrality is formally defined as

Coliy) = max (| desc(u)|, | desc(v)|), if (u,v) € Egr, )
0, otherwise,

where | desc(i)| denotes the number of descendant nodes of node i in the branching tree
of the actual spreading.

The branching tree Ggr, which is a subgraph of G, encodes the diffusion paths that the
information takes to reach the vertices of the network. Using its structure we can easily
measure the actual C,, value of each link by performing a second step of calculation based
on the river-basin algorithm [51]. In practice, taking the initial seed s as the root of Ggr,
and starting from the leafs of the branching tree we can count the number of descendant
nodes of each link, i.e., who received the information via the actual link. The algorithm is

summarized in Alg. 2, illustrated in Fig. 1.

Input: G =(V,E) and Ggr = (Vpr, EBT)

Output: C,, dictionary of transmission centrality values
: Cy = dict()

. for (u4,v) € G.E do

=

2

32 Cu((w,v))=0 // set counter to zero for each link
4: end for

5. while Ggr.EgT # ¥ do

6: forve Gpr.Var do

7 if k, == 1 then

8
9

p = asc(v) // parent node of v
gp = asc(p) // grandparent node of v
10: Cu((v,p)) = Cu((v,p)) +1
11: Cu((pgp)) = Cu((p, gp)) + Cur((v, p))
12: Ggr-Epr <— Gpr-EpT — {(v, )}
13: Ggr. VT <— GpT1.VaT — {V}
14 end if

15:  end for

16: end while
Algorithm 2: Transmission centrality

L 1 ™~ 1 1
AV AV N NS NS
. A N N VA VAR
/| AN /1| N\, AN N\, /1|3 N T N

(a) (b) (c) (d) (e) (f)

Figure 1 Calculation of transmission centrality of links. (@) A network with a randomly selected seed node;
(b) the branching tree rooted from the initial seed (root and edges in the tree are colored in red); (c) for each
leaf edge in the branching tree increase the counter by 1; (d)-(f) remove leafs and increase the counter of
their ascendant by the counter of the removed leafs
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Input: G=(V,E),B
Output: C'" dictionary of average transmission centrality values
1. C2" =dict()
2: for (u,v) € G.E do
3 CY'((u,v))=0 /1 set counter to zero for each link
4: end for
5. forve G.V do
6:  Gpr <— Susceptiblelnfected(G, B)
7. C¥' «— TransmissionCentrality(G, Ggr)
8. for (u,v) € G.E do
9 C2((u,v))+ = C2*((u, v)) /! summing realisations
10  end for
11: end for
12: for (u,v) € G.E do
132 CY'((4,v)) = CY"((4,v))/|G.V| /] computing averages

14: end for
Algorithm 3: Average transmission centrality

First we define a dictionary Cy,, which associates a counter to each link (i, /) € G.E, that
we set to zero initially (lines 1-3 in Alg. 2). Then we recursively do the following for every
node v € Gpr.VpT, which appears with degree k, = 1 in Gpr:

(a) Increase by one the counter Ci((v,p)) of the (leaf) edge er = (v, p) € Gpr.Epr, which

connects v to its parent node p = ascgr(v) in Gpr.Vpr (line 10 in Alg. 2).
(b) Increase by Cy:((v,p)) the counter C,((p,gp)) of its ascendant edge
ascer(er) = (p,gp), where gp = asc(p) is the grandparent node of v in Gpr.Var
(line 11 in Alg. 2).
(c) Remove v from Ggr.Vpr and e from Ggr.Epr (lines 12 and 13 in Alg. 2). The final
transmission centrality value of the actual link ef = (v, p) is stored in C((v, p)).
By repeating I1.(a)—(c) recursively for each appearing leaf edge we assign a non-zero value
for each link in the branching tree as it is demonstrated in Fig. 1(c)—(f).

The transmission centrality of a link can take values between 0 (for links, which are not
in the branching tree) and (N — 1) (e.g. in the case the seed is propagating information via
a single link). Its actual value depends on the choice of the seed node and on the structure
of the branching tree determined by the stochastic diffusion process. In this way centrality
values of the same link may vary from one realization to another. To eliminate the effects
of such fluctuations the final definition of transmission centrality of links is taken as the
average centrality value for each link computed over processes initiated from every node
in the network (for a algorithmic definition see Alg. 3). Note that from now on Cy, always
assigns an average quantity if not stated otherwise.

4 Results

4.1 Heuristic calculation of transmission centrality

One iteration to measure C, performs with O(|E|) time complexity, in this case where
we initiate its calculation from every node v € V, its overall complexity is O(|V||E|). It is
however possible to define a heuristic estimate of transmission centrality at a consider-
ably small computational cost. As the branching trees of different realizations may largely
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overlap, a relatively small number of independent realizations, initiated from a reduced
set of randomly selected seeds, could provide a good approximation to transmission cen-
trality. Link transmission centrality initiated from a single node provides a locally biased
measure as it assigns higher values to links closer to the actual seed. This bias is averaged
out if we initiate the spreading process from every node in the network, but in case of a
limited number of seeds it has residual effects. One way to eliminate this residual bias is by
assigning zero centrality values to links connecting nodes closer than a distance d to the
actual seed. The best value of d depends on the network; however this can be estimated
by parameter scanning, as demonstrated in Fig. S1 (Additional file 1).

To illustrate the computation of the heuristic estimate, we use the FB network with
20,244 nodes (for more details see Sect. 3.1) and compute the average transmission cen-
trality for each link via the exact method by initiating an SI process from each node and
the heuristic method where we initiate processes from 5000 random seeds (i.e. ~25% of all
nodes) and eliminate biases in distance d = 3 around each seed (for more on the selection
of this value see Fig. S1 (Additional file 1)). In Fig. 2(a) we present a heat-map plot about
the correlation between the exact (assigned as C{, here) and the approximated (assigned as
Cyr) centrality values of each link. It is evident that there is a strong correlation between the
exact and approximated values of centralities, quantified by an r = 0.96 (p < 107°) Pearson
correlation coefficient. Consequently, this unbiased sampling method can provide very
close approximations to the exact transmission centrality values, while considerably re-
ducing the computational cost (~25% in this case). Note that this correlation analysis was
not repeated for the other two empirical networks as the computation of the exact method
would take extremely long on such large networks due to its computational complexity.

Subsequently, we applied the approximate method to compute transmission centrality
in the MPC network (with 2000 seeds and d = 8) and TW network (with 5000 seeds and
d =7) as well. We consistently found that the average unbiased transmission centrality of
links, measured in the three empirical systems, are broadly distributed (see in Fig. 2(b)—(d)
respectively for the MPC, FB and TW networks) with power-law tails with exponents
a =3.08, 3.39 and 2.44 for the MPC, FB and TW networks respectively, determined by
the fitting method explained in [52]. This demonstrates the high variance of importance
of links in transmitting information, which can be duly the consequence of the community
rich structure of the three investigated social networks.

Transmission centrality can be generalized in various ways. First, it can be easily defined
as a node centrality metric by counting for each node the number of their descendant nodes
in the branching tree. Moreover it can be extended for directed and/or weighted networks
by restricting the SI process to respect the direction of links during spreading or by scaling
the transmission rate with the normalized weight of links. In addition, for an SI process
one can explore central links in the case when the process does not diffuse along the short-
est paths. By taking B < 1, longer spreading paths become plausible allowing the inference
of links, which are central in any scenario. Transmission centrality can be easily defined
for temporal networks [53] as well. Contrary to static networks, in temporal structures in-
formation can transmit between nodes only at the time of their interactions. As a result,
information can travel only along time-respecting paths in the network, which drastically
restricts the final outcome of any global contagion processes [54] and has evident con-

sequences on the measured centrality values. Links, which appeared unimportant in the
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Figure 2 (a) Correlation heat-map plot between the Cf. exact and approximated i, transmission centrality
values of the FB network. Approximate measures were initiated from 5000 seeds and unbiased in d =3
distance. (b), (c), (d) F(Cr) = P(C{, < Ce) cumulative distribution functions of transmission centrality values in
the MPC, FB, and TW networks respectively. C, values were averaged for each link from respectively 2000,
5000 and 5000 random realizations with un-biasing distances d = 8, 3, and 7. Power-law functions (dashed
orange lines) fitted with exponents a >~ 3.08, 3.39, and 2.44 respectively [52]

static structure may be central in the temporal network as they could lay on several time-
respecting paths due to their specific interaction dynamics.

Finally, note that although transmission centrality is not equivalent, it naturally relates to
the concept of betweenness centrality (and other centrality measures based on the counts
of shortest paths between nodes). As explained in details in Sect. S3 and Table S1 (Addi-
tional file 1), the difference between the two measures is rooted in their definition. While
betweenness centrality considers all shortest paths between every pairs of nodes, trans-
mission centrality takes only a single one from the potentially many other. This is especially
true when g = 1 (always the case in this work), when the SI process is fully deterministic.
To demonstrate these differences, we further completed a link percolation study to iden-
tify which measure, overlap or transmission centrality, is more effective to identify links
connecting the network structure. Results, shown in Fig. S4(a) and discussed in the cor-
responding section of Additional file 1, indicates that transmission centrality provides a
better strategy to identify weak ties holding the network structure together.

4.2 Case study: weak tie identification to control contagion processes in social
networks

To demonstrate the potential of transmission centrality here we present a case study,

where we use our new metric to identify ties in social networks in order to efficiently

control contagion processes. Ties in social networks are associated with various strengths

[55-57] and commonly categorized into two mutually exclusive groups: weak and strong

Page 8 of 16
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ties. Following the terminology introduced by Granovetter [19, 20], weak ties are main-
tained via sparse interactions, bridging between tightly connected communities to keep
the network connected [55], and play an important role in disseminating information glob-
ally [43, 58—64]. On the other hand strong ties, sustained by frequent communications,
are crucial in shaping the local connectivity of social networks, they are responsible for
emerging clustered topology [62, 63, 65], and keeping information locally [43, 59, 60, 64].
A precise measure of tie strength would allow the efficient differentiation among these
types and to identify weak ties in social networks in order to control globally spreading
contagion processes.

Conventional measures of social tie strengths ~Several measures of social tie strength have
lately been proposed in the literature, such as the link overlap

n ij

(ki = 1)+ (ki = 1) = ny’

0(i,j) = 2)
capturing the fraction of common friends in the neighborhood of connected nodes i and j
[19, 55, 58]. Here, k; and k; assign the degree of node i and j respectively, and 7 is the
number of their common neighbors. Weak ties are associated with small overlap values,
while the contrary is not always true. Leaf links, structural holes, or merely the fact that
networks are sparse may induce links with small overlap, which leads to some ambiguity
when identifying weak ties in this way.

Another way to assign the strength of social ties is via the intensity of dyadic commu-
nication [49, 58, 66]. It can be measured as the frequency, total duration, or the absolute
number of interactions between connected peers. In this study, assuming discrete com-
munication events, we define dyadic tie strength as the number of interactions between
individuals i and j as

T

w(i,j) =Y 8(t,i)), ®)

t=0

where the sum runs over the observation period T. §(¢,4,j) = 1 if an event appears between
i and j at time ¢ regardless of its direction, otherwise it is 0 [58]. Dyadic tie strength may
capture mutual commitment or emotional closeness between people; however, as a local
measure, it is subjective to individual characteristics like communication capacity or the
egocentric network size. In this way, it is unable to indicate the role of a link in the global
structure in the context of the emergence of any collective phenomena. In addition its
broadly distributed values prohibit an evident categorization of social ties.

As shown in Fig. 3(d)-(f) and in other studies [55, 58], dyadic tie strength and link
overlap are positively correlated in accordance with Granovetter’s theorem [19]. At the
same time, transmission centrality and overlap show strong negative correlations (see
Fig. 3(a)—(c)) as weak links, with small overlap values, are commonly situated between
communities, and thus transmitting information to a large set of nodes. More interest-
ingly, dyadic tie strength and transmission centrality values do not show strong correla-
tions (see in Fig. 3(g)—(i)). Although both are correlated with link overlap, they capture
notably different and seemingly independent features of social ties. For the precise Pear-
son correlation coefficients (and p-values) see Table 1.
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Figure 3 Correlations between transmission centrality G and overlap O ((a)-(c)), dyadic tie strength w and
overlap O ((d)-(f), and between transmission centrality Cy, and dyadic tie strength w values ((g)—(i)) of links in
the MPC ((a), (d), (g)), FB ((b), (e), (h)), and TW ((c), (f), (i)) networks. The colors of the binned heat maps assign
the distribution of links with the given pair of tie strength values, while blue symbols show their average over
the y-axis as a function of the x-axis values (quantitative measures of correlations between link properties can
be found in Table 1)

Table 1 Pearson correlations between transmission centrality, overlap and dyadic tie strength

Network Pearson correlation (p-value)

Ow) (e, O) (@70
MPC 0.097 (107°) -0.126 (107%) -0.023 (107°)
FB 0.151 (107) -0.148 (107°) -0.098 (107
T™W 0.102 (1079) -0.021 (107%) -0.002 (1073)

While overlap has been shown to identify weak ties efficiently [55, 58], this measure has
a major limitation. It assigns a zero overlap value for an unrealistically large fraction of
links including weak ties but also leaf links, links surrounded by structural holes, or links
situated at sparsely connected parts of the network. It is indeed true in the investigated
systems where 48.2%, 49.8%, and 45.2% of social ties appear with O = 0 (resp. in the MPC,
EB, TW networks). Relying merely on the link overlap one cannot differentiate between

these links, thus they are treated equivalently. On the other hand, the Granovetterian crite-
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ria suggest that weak ties are not only characterized by small overlap, but they also exhibit
small dyadic tie strengths, and high transmission centrality. Based on these conditions we
design two combined strategies where we differentiate between zero overlap links using
their w or Cy, values. We first rank ties in an increasing order of overlap, and then sort
again links of the same overlap value increasingly by their dyadic tie strength (assigned
as (O,w)), or by their inverse transmission centrality values (assigned as (O, C;!)). Note,
that we report a link percolation study in the Sect. S2 of Additional file 1, where we take
the different single and combined weak tie measures to remove links from the network
in a sorted order while measuring the average size of the remaining largest connected
component. This results show that from single measures the link overlap, while from the
combined measures the (O, C;!) strategy provides the best way to disconnect the network
(see Fig. S2).

Controlled SIR spreading The precise identification of the weakest weak ties is impor-
tant, because by suppressing interactions on this limited set of links, we may effectively
control globally spreading processes in the network. To model such scenarios we take a
network structure and introduce a weight w;; for each link (with values defined later). To
select the weakest links to control, we consider one of the two candidate sorting strategies,
(O,w) or (O, C.}). After sorting links by one of these metrics, we select the f weakest frac-
tion of them to control by linearly rescaling their weights as £2;; = w;;, with the parameter
0<é<1.

In this way, we weaken interactions on the selected ties, and such that we can exert fur-
ther control on dynamical processes, like the Susceptible-Infected-Removed (SIR) model.
The SIR process [49] is a well known model of epidemics and rumor spreading [67, 68] and
itis defined on a network where nodes can be in exclusive states of susceptible (S), infected
(D), or recovered (R) [49]. At each iteration connected nodes are updated as S + 1 A 21, or
15 Rwith g and 1 being the infection and recovery rates respectively. In this scenario,
we fix u = 0.1 and B = 0.25, and re-scale the transmission probability for each controlled
link as Elj = QB (for a sensitivity analysis regarding this choice see Fig. S5 (Additional
file 1)). After initiating the process from a randomly selected seed we simulate it until full
recovery and monitor R, the number of recovered nodes giving the number of nodes ever
got infected during the process.

In our first experiment we assign w;; = 1 for each link assuming that the network is un-
weighted at the outset. To study the effects of link control, after sorting links by (O, C;!)
or (O,w), we choose the weakest 12%, 24%, 36%, or 48% of links (see Fig. 4(a), (b), and
(c)). In addition, as a reference we use a network where the same fraction of randomly se-
lected links are controlled in the same way, i.e., by re-scaling their weights with §. Finally
to quantify the effects of increasing control, we measure the ® c:l A8) = RO’Ct_rl (8)/Ryana(8),
and ®,,,(8) = Row(8)/Rrand(8) ratios of recovered nodes in scenarios of targeted and ran-
dom control strategies for various § values. If the targeted strategy performs comparable
to the random one, these ratios are equal to one; otherwise the stronger control a targeted
strategy enforces, the smaller the corresponding ratio becomes. Note, that the dependency
of the SIR process on the choice of its parameters is studied in Sect. S4 (Additional file 1).

When we set § = 1 the ratios of endemic population size are trivially one as no control
is applied (see Fig. 4(a), (b), and (c)). However by decreasing §, thus by increasing control,
large differences appear between the targeted and random cases. Effects are stronger when
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D, (8) = Row(8)/Reand (8) (dashed line) of final recovered population sizes are shown as the function of &
rescaling parameter in case of (0, C,,'), (O, w) and random control strategies when we control the 12% (gray),
24% (orange), 36% (green), 48% (blue) of links. We present results for unweighted (a) MPC, (b) FB, (c) TW and
weighted (d) MPC, (e) FB, (f) TW networks. Results were obtained averaging over SIR spreading processes with
parameters B =0.25 and p = 0.1 initiated from 1000 random seeds

a larger fraction of weakest links are re-scaled with smaller and smaller § factor. The dif-
ferences between the (O, C;!) (solid lines) and (O, w) (dashed lines) strategies are maximal
when we control an intermediate 24% or 36% of links, while they perform similarly when
the controlled fraction is small (12%) or large (48%). It is also evident that the (O, C,')
strategy outperforms the (O, w) and provides remarkably better control in reducing the
final infected population, specially for smaller § values.

To bring our experiments closer to reality we repeat our measurements on weighted net-
works where we define link weights as w; = w;;/ (w), i.e. the number of interactions between
nodes i and j normalized by the (w) average number of interactions per link calculated over
the whole network. In the case where w;; > (w) we set the corresponding weight w;; = 1.0.
This choice is necessary as weights are heterogeneously distributed in this case, and thus
severely slow down the simulated spreading to reach full prevalence. On the other hand,
since controlled links with small overlap values tend to have small weights, negligible effect
of this approximation is expected. The different control strategies qualitatively provide the
same results on the weighted FB and TW networks (Fig. 4(e), (f)); however, their effects
are considerably stronger on the MPC structure (Fig. 4(d)). There, the (O, C;') strategy
appears to be the more efficient even after controlling only the 12% of the ties. Moreover,
this strategy can lead to 90% reduction of the infected population in the case of re-scaling
36% of links with § = 0.01. Note that the observed differences between different strate-
gies cannot be the result of the limited communication on zero overlap links only, as we

observed qualitatively the same effects in weighted and unweighted networks.
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To directly highlight the differences between the targeted strategies we further investi-
gate the strongest controlled case. We set § = 0.01 and repeat our experiments by control-
ling various f fractions of links to measure the ® c;rl,w(/[ )= RO’Ct—rl (8)/Ro,w(8) fraction of en-
demic recovered population sizes, i.e., the ratio of the two performance functions. Results
in Fig. 5(a), (b), and (c) evidently show that the (O, C;;!) strategy almost always outper-
forms the (O, w) strategy, especially when we consider weights. In addition, the minimum
points of the CDC&]'W(f ) curves in Fig. 5 assign the best pay-off between the controlled f
fraction of links and the effectiveness of contamination control using the (O, C;') strat-
egy. This minimum point indicates that ~30% of the weakest ties are enough to control
and mostly efficiently hinder the spreading processes on the investigated social networks.
Note, that we performed similar experiments to measure CI)Ct—rl7Cb (f) = Rovct—rl (8)/Ro,c, (8)
ratio, which compares the performance of strategies using combined measures of over-
lap, transmission centrality and betweenness centrality. Results on the Facebook network
shown in Fig. S4(b) indicates that transmission centrality outperforms betweenness cen-
trality in this matter as well.

5 Discussion
In this study we introduced a new link centrality measure, called transmission central-
ity, which sensitively quantifies the importance of links in global diffusion processes. We
defined an algorithm to compute transmission centrality, demonstrated on three large-
scale networks its general properties, and discussed possible ways of how this measure
can be generalized for directed, weighted or temporal networks or even as a node central-
ity measure. Finally in a case study, we showed that the combined information of overlap
and transmission centrality serves as the best way to identify weak links to gain maximum
control of spreading processes. Although here we demonstrated the effectiveness of trans-
mission centrality in identifying weak ties in social networks specifically, the same metric
can be applied in any other type of networks to identify links with specific structural role
and importance in controlling the emergence of various collective phenomena.

We discussed that the main limitation of this new centrality measure is rooted in its com-
putational complexity, which scales as the best known algorithm for betweenness central-
ity. However, we proposed a way around this limitation by defining a heuristic method
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to approximate transmission centrality values in very large networks at a considerably
cheaper cost.

Most of earlier methods to control spreading processes were focusing on influential
nodes as their removal provided efficient ways to hinder epidemics. Controlling links in
a network is in a way more expensive process but on the other hand it provides the ad-
vantage to control epidemics without isolating nodes (e.g. a person) from the rest of the
network but only from a limited number of neighbors. At the same time, the control of a
large fraction of links in a social network is virtually impossible. This is where our method
provides an advantage by indicating the minimum set of most important links to control
in order to suppress epidemics effectively.

Several extensions of this method are possible by considering other probing processes
other than SI process, or arbitrary weight definitions, directed links, temporal interactions,
or node transmission centrality. Furthermore, several straightforward applications can be
foreseen. Examples are in viral marketing, rumor contamination, or intervention designs;
their identification can be the subject of future studies. Our aim here is to ground a new
metric of link centrality and to contribute to the design of effective methods to identify
ties, which play an indisputably important role in the structure and dynamics of social
networks.

Additional material

Additional file 1: The supplementary information includes additional results on radius bias analysis, correlations
between link transmission centralities and link betweenness centralities, and sensitivity analysis for controlling weak
ties experiment. (PDF 1.6 MB)
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