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Abstract
Social networks are made out of strong and weak ties having very different structural
and dynamical properties. But what features of human interaction build a strong tie?
Here we approach this question from a practical way by finding what are the
properties of social interactions that make ties more persistent and thus stronger to
maintain social interactions in the future. Using a large longitudinal mobile phone
database we build a predictive model of tie persistence based on intensity, intimacy,
structural and temporal patterns of social interaction. While our results confirm that
structural (embeddedness) and intensity (number of calls) features are correlated with
tie persistence, temporal features of communication events are better and more
efficient predictors for tie persistence. Specifically, although communication within
ties is always bursty we find that ties that are more bursty than the average are more
likely to decay, signaling that tie strength is not only reflected in the intensity or
topology of the network, but also on how individuals distribute time or attention
across their relationships. We also found that stable relationships have and require a
constant rhythm and if communication is halted for more than 8 times the previous
communication frequency, most likely the tie will decay. Our results not only are
important to understand the strength of social relationships but also to unveil the
entanglement between the different temporal scales in networks, from microscopic
tie burstiness and rhythm to macroscopic network evolution.
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1 Introduction
Social networks are dynamic objects, they grow and change over time through the addi-
tion of new ties or the removal of old ones, leading to an ongoing appearance and disap-
pearance of interactions in the underlying social structure [1, 2]. Identifying the different
mechanisms by which ties form or decay is a fundamental and challenging question of in-
dividual human behavior. But also it can unravel the processes behind group, community
and network dynamics that shape our social fabric. And in turn, how network evolution
impacts important processes in our society like cooperation [3], disease spreading [4] or
information diffusion [5–7]. On the other hand, understanding tie persistence may shed
light on the circumstances under which an observed interaction can actually be consid-
ered a genuine social relationship [8, 9]. This will lead to predict its presence and future
potential strength in the different processes happening in social networks.
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Most of the understanding on the dynamics of tie formation and decay comes from
the determination of microscopic factors governing tie formation and persistence [10].
Special attention has been given to endogenous factors, i.e. those properties that can be
extrapolated from the network itself to predict future tie behavior. Intensity of previous
interactions, reciprocity, network proximity, triadic closure or the existence of common
friends are not only predictors of tie formation [11], but also of its persistence in the future
[8, 12]. In the context of Granovetter’s theory of strength of weak ties, strong ties are those
which are more likely to persist, since they are structurally embedded (common friends)
and are more intense (number of interactions). On the other hand bridges between com-
munities are weak and, as Burt found in [13], they are more likely to decay in the future.
Intensity and embeddedness are thus commonly acknowledged as properties behind a
strong and/or persistent tie.

Despite these findings, we still have not a comprehensive understanding of what are the
main properties of human interaction that make social ties to persist. This is largely due to
the lack of quality data: although some online social networks have explicit mechanisms to
‘unfollow’ (Twitter) [14] or ‘unfriending’ (Facebook) [15] other users, access to structural
or intensity data in those platforms is limited. On the other hand, most studies infer tie
decay from absence of tie activity in large databases [8, 12]. This is a potential problem
since, given the large burstiness of human interaction [6, 16], large inactivity periods could
be mistaken as tie decay events. Thus, although previous studies agree on the general
importance of tie structural embeddedness, intensity or reciprocity to predict its future
persistence [8, 12], they still provide an incomplete picture of what are the main properties
that make ties persistent. As it was done in the problem of tie prediction, can we build
efficient models based on endogenous properties of ties to predict if a social relationship
is bound to decay?

In this paper we address those questions by studying tie persistence in human commu-
nication using a large longitudinal database of 19 month of mobile phone calls. The large
duration of the database allows us to accurately assess the presence of a tie by using the
method introduced by Miritello et al. [17] which splits the observation period in different
time windows and uses each of them to characterize and assess tie presence. But more
importantly, having a detailed and large longitudinal database for human communication
allows us to characterize better the patterns of communication within a tie and see if tem-
poral properties of human interaction are predictors of tie persistence. Although simple
temporal properties have been considered before in the problem of tie prediction [18] and
strength estimation [12, 19], here we show that the tie persistence is also encoded in the
bursty patterns of communication between people. Furthermore, by building a highly ac-
curate predictive model based on different tie features (structural, intensity, intimacy and
temporal) we are able to show that temporal properties are indeed as important as inten-
sity and much more than structural properties in predicting tie persistence. Our results
show that it is possible to build simple predictive models of network evolution based only
on the temporal and intensity properties of the human interaction.

2 Measuring the strength of a tie
We study a sample of 100,000 ties drawn randomly from the Call Detail Records (CDR)
of 20 million people from a single mobile phone operator over a period of 19 months. As
in [17] we divide the time interval in three periods: the 7 months in the middle � define
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Figure 1 Detecting tie decay and strength.
Definition of observation periods and examples of
call activity for 4 given ties. Any vertical segment is a
call between the users in a particular tie. Our 19
months database is divided in three periods, where
the 7 months in the middle � is our observation
period where all the tie features will be measured.
The period �after is used to asses if ties are
persistent, i.e. if there is activity in the tie. For
example, ties (A) and (D) are persistent, while ties (B)
and (C) are said to have decayed in �after . All ties
have similar values of number of calls in the observation period with wij ∈ [30, 40]. We also show specific
examples of one inter-event time δij (tie (B)) and freshness fij (tie (C)).

our observation and measurement period for the ties. We only select 60,592 ties in which
there are at least 5 calls in � between users, and among those calls there has been at least
one call in each direction. We only consider ties which have been observed at least for 50
days, to prevent very short ties. As in [17], the first and last periods of 6 months �before and
�after are used to assess whether the tie has formed and/or decayed. In our particular case
and since there is no explicit information about whether social interactions stop, we will
say that the tie between user i and j has decayed if there are no calls between them in �after.
This functional definition of the existence of a tie underestimates the possibility of having
another call after those 6 months, but as it was shown in [17], only 3% of ties contain such
long inter-event times δij between calls (see Figure 1), which shows that our method is
subject only to a small error. It is important to understand that since activity within ties is
bursty, large inter-events between interactions are likely and thus they might be mistaken
as tie decay. In particular, in our database we find that the average time between calls in a
tie is δij = 14 days (with a standard deviation of 18 days), and thus we might get spurious
effects if �after is of the order of a month, as interactions may fall outside the �after period.
See the Methods section for further description of the mobile phone dataset. We have also
considered another (smaller) database of Facebook communication through wall posts.
Since the results on both databases are similar we discuss here only the mobile phone
database and refer to the Methods section for further details about the Facebook database
analysis.

To characterize the strength of the tie we will find those features that can anticipate its
persistence. Thus, we will implicitly identify strong relationships with persistency, while
weak ties are those more likely to decay. This dynamical definition of strength is then a
much more functional form of describing its utility in present and future social processes
and operationalizes Granovetter’s idea that strong ties are those which are more likely to
persist. To describe which tie features are related with its dynamical strength (persistence),
we will also follow Granovetter’s notion of static strength of an interpersonal tie [20]: ‘the
strength of a tie is a combination of the amount of time, the emotional intensity, the in-
timacy (mutual confiding), and the reciprocal services which characterize the tie’. Within
that framework, we define four categories of tie features: intensity, temporal, structural
and intimacy features, and we will try to characterize which ties are the strongest (more
persistent) according to these variables. Intensity, frequency and intimacy features will
refer to properties of the communication patterns between users, while structural vari-
ables are those derived by understanding how the tie is embedded in the rest of the social
network. Given the nature of our data, our features will be constructed solely taking into
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account the information about call events between users. Our working assumption is that
there is enough information in those events to predict the persistence of the tie.

Some of the variables are adapted from previous works both in tie formation and decay
prediction [12, 15, 17, 21], but others are introduced for the first time in this work. Specif-
ically we introduce a number of variables that take into account the temporal patterns of
the communication between users [1, 17]. Contrary to the static and aggregated version
of relationships and networks, ties and networks are always evolving: not only communi-
cation between users is highly bursty and correlated in time [6, 7], but also the dynamical
strategies by which users create and destroy ties are very different [17, 22]. The hypothesis
we investigate in this paper is whether those patterns convey information about the fate
of a social relationship. For example, if the periodicity or burstiness of how two people
communicate or if they are involved in very fast social creation and destruction of ties can
inform us about the persistence of social ties.

2.1 Intensity features
The first group of variables describe the amount of communication between users.
Stronger relations imply a more frequent relationship which we can quantify by the num-
ber of calls wij between users. This variable is highly heterogeneous in our database in a
similar way as other similar works in the literature [23] (see Figure 5). Specifically we find
that the average number of calls is wij = 76 while it varies from a minimum of 5 and a max-
imum of 2468 calls per tie. To take into account this heterogeneity, the rest of the variables
we will consider are calculated with respect to that level of activity per tie. For example,
instead of considering the total duration of calls per tie we will consider the average dura-
tion dij. On the other hand, several works have found that if the tie is highly reciprocal, the
relationship is stronger and thus is less likely to decay [8, 12, 24]. Our database contains
information about which user initiates the call so we can measure w→

ij , the number of calls
between i to j initiated by i. Using this, we define the level of reciprocity in between users
i and j as

rij =
∣
∣
∣
∣

w→
ij

wij
–

1
2

∣
∣
∣
∣
. (1)

Note that this variable take values between 0 and 1/2. When user i initiates most of the
calls in the tie, then w→

ij � wij and rij � 1/2. On the contrary, when the number of calls
from i to j is equal to the number of calls from i to j, we have that w→

ij � wij/2 and then
rij = 0. Thus larger values of rij indicate less reciprocity.

2.2 Structural features
Formation and decay of a tie is also related with the social structure around it. People tend
to form groups and in particular, people tend to form relationships with friends of friends
(triadic closure) which leads to high clustering around a tie [10]. This is the reasoning
behind Granovetter’s influential ‘strength of weak ties’ argument which implies that not
also structural embedded ties are more likely to arise in a social network but they are also
more persistent, a result corroborated by Burt in different works [13, 25]. Although there
are many metrics to quantify embeddedness of a tie within the social network, we will
use the topological overlap oij defined as the fraction of neighbors of i and j which are
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commonly shared [23]. Specifically,

oij =
|ni ∩ nj|
|ni ∪ nj| , (2)

where ni and nj are respectively the set of neighbors of nodes i and j and |ni| indicates the
number of them. Note that, this variable takes values between 0 and 1, because if i and j
have no common neighbors, then oij will take value 0. On the contrary, if i and j call to the
same circle of id’s oij will take value 1. The topological overlap is then a variable measuring
the (normalized) number of ‘common friends’ between two nodes.

The topological overlap is a particular way to measure the structural information around
a tie. Another metric we will consider is the level of social connectivity around a tie. In
particular, if ki and kj are the number of neighbors of i and j we will construct the geometric
mean of connectivity kij =

√

kikj. This variable is introduced to take into account the effect
of the different importance of a tie for the users involved in the relationship. If kij is small,
the tie between i and j is important for both or one of them, while if kij is large, then it is
just another tie among the many they have. Variations of structural connectivity around a
tie have been considered in other works studying tie strength and dynamics [12, 19].

2.3 Intimacy features
Following Granovetter’s hypothesis of a strong tie, the intimacy (mutual confidence) be-
tween two nodes could provide a better characterization of the tie and allow a more ac-
curate prediction of its dynamics. As opposed to other studies in social networks [19] our
mobile phone database does not contain any information about the context and content
of the call. Thus we quantify the mutual confidence by the day or hour when the calls are
made. Specifically, we consider the fraction of calls within a tie that are made after 8 pm
and during the weekend, μint

ij . As was shown recently, calls made in the evening and at
night are typically focused on a small number of emotionally intense relationship [26] and
thus, quantifying the amount of communication happening at that time of the day can give
us a proxy for intimacy.

On the other hand, demographic differences between users have an impact in tie dy-
namics. For example, the temporal communication patterns formed by groups of males
or females are different [27], and those patterns can be associated with the different prefer-
ence strategies of both sexes across the lifespan [28]. To quantify those relationship pref-
erences, we consider the age and gender difference between the users participating in a
tie. Age difference ageij is measured as the absolute value of the difference in years while
gender difference is a dichotomous variable where genderij = 1 if both users have same
gender and genderij = 0 if they are different.

2.4 Temporal features
Finally we characterize the temporal patterns within and around the tie. Since communi-
cation within the tie is very heterogeneuous (see Figure 1), we want to understand whether
that heterogeneity might reveal something about the persistence of the tie. The first vari-
able we consider is the freshness of the tie fij, i.e. the time since the last call between i and
j at the end of � [12, 19]. Since activity within ties is very heterogeneous, we consider the
relative freshness as the relative time elapsed from the last call compared to the typical time
between calls in the tie f̂ij = fij/δij where δij is the average inter-event time between calls.
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At the same time we also consider the age of the tie as the time of the first call between
users in our database tmin

ij measured in days.
Another feature we consider is the burstiness of the communication patterns. The hy-

pothesis we want to test is whether more regular communication patterns could reflect
stronger/more persistent ties. For example, strong relationships like family and close
friends require constant communication and thus they might have more regular patterns
than acquaintances (see [29] and references therein). Although there are many ways to
characterize burstiness of events [30], we will use two simple metrics. The first one is
the coefficient of variation of the inter-event times cvij = σij/δij, where δij is the average
inter-event time between two calls and σij is their standard deviation [2]. If cvij � 1 then
communication is very bursty, with large untypical periods of time in which users didn’t
communicate (see for example tie B in Figure 1), while if cvij � 1, communication was
very regular, happening almost at the same time intervals (see tie A in Figure 1). The value
cvij = 1 correspond to the Poissonian homogenoeus case in which inter-event times are
distributed randomly along the � period [30]. Another way to characterize the burstiness
is to quantify how many communication events happened in bursts or rapid consecutive
successions of calls (we will call them chats) [6, 31]. To do that we calculate the fraction of
calls μchats

ij that happened only with 5 minutes difference between them.
Finally, another reason why a tie decays is simply because users involved in the tie have

very different dynamical social strategies. As was found in [17] humans constantly create
and destroy ties and they have different strategies to do that. While some individuals create
and destroy a lot of ties (explorers), others tend to maintain their social circle (keepers). If
both users in a tie are explorers, the probability for the tie to decay is high. To measure
how dynamical are the strategies of users in a tie we consider ai, the number of ties created
by user i in period �. As in [17] we say that a tie is created in � if there is no call between
users in �before. The ratio between the number of created ties and the total number of ties
ai/ki ∈ [0, 1] describe how frequent user i changes her social neighborhood. If ai/ki � 1 it
means that most of the ties of user i where created during � (i.e. the user social explorer),
while if ai/ki � 1 most of the ties are stable (social keeper). To characterize how dynamical
are the strategies of both i and j we consider the geometrical mean

aij =
√

ai

ki
· aj

kj
. (3)

If both i and j are explorers, aij � 1 and the tie is more likely to decay since it connects
users with highly dynamical social strategies, while if they are both keepers, aij � 0 and
the tie most likely will persist.

Table 1 summarizes the features considered to assess the dynamical strength of persis-
tent ties. Before constructing our models and because of the large heterogeneity found in
connectivity, activity and burstiness across ties in social networks, we scale and normalize
our variables before using them in a model. For example, we consider log wij instead of wij

since the distribution of number of calls per tie is heavy skewed in mobile phone databases
[23]. On the other hand burstiness within ties make variables like cvij or f̂ij also very heavy-
tailed across our dataset. Thus we also use a logarithmic scaling for them. Although they
are logarithmically scaled, in the rest of the paper we denote them by its original name for
sake of clarity, unless were numerical values are given (for example in Figure 3). Finally,
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Table 1 Features of ties between user i and j considered to characterize the dynamical
strength (persistence) of the ties, including their (normalized) complexity measured in
computational time

Type Feature Description Computational complexity

Intensity wij Total number of calls 1.00
Intensity dij Average duration of calls 1.00
Intensity rij Reciprocity of calls 1.12

Structural oij Topological overlap 1.82
Structural kij Connectivity diversity 1.33

Intimacy μint
ij Fraction of calls after 8 am and weekends 1.05

Intimacy ageij Age difference in years 0.18
Intimacy genderij Gender difference 0.15

Temporal f̂ij Relative freshness 1.01
Temporal tmin

ij Age of tie (in days). 1.01
Temporal cvij Inter-event time coefficient of variation 1.11
Temporal μchats

ij Fraction of consecutive calls (5 mins.) 1.31
Temporal aij Users’ Activity diversity 1.21

since the correlation between the variables is small, we keep all features in our analysis
excepting tmin

ij which is moderately correlated with wij (see Methods section to learn about
the preprocessing and selection of variables).

3 Results
A simple inspection of how persistence depends on some tie features corroborates some
results found in the literature. For example, as Burt found in [13] we observe that weak
ties with small topological overlap have a higher probability to decay (see Figure 2(A)), i.e.
bridges are more likely to decay while persistent ties are those embedded within commu-
nities. Note that this effect can amount to a 50% change in probability from ties with no
overlap oij = 0 to the largest overlap observed in the database oij � 0.5. The same happens
for tie age: the older the tie, the more persistent it is as we can see if Figure 2(D). Similarly
to [19] we find that the time since the last communication also reveals how likely it is to
observe activity in the tie again: most recent activity implies that the tie will persist in the
future (see Figure 2(B)). Finally, we find that some temporal features are strongly corre-
lated with tie persistence. For example in Figure 2(C) we find the interesting result that
more bursty communication within a social tie is correlated with tie decay.

Although these individual results demonstrate the potential predictive power of our tie
features, to get a complete picture of tie persistence we build a predictive model of tie decay
based on all the features introduced in the last section. We define two different prediction
models depending on the reference frame used to characterize tie strength features. In the
first one (Model 1) we used a fixed reference frame for all ties, namely we try to predict if
the tie decays in �after by observing its features along �. Although this is the traditional
setting for tie persistence prediction, the features calculated during � might be impacted
by the fact that the tie decayed early in the interval � (see for example tie C in Figure 1).
If this happens, variables like the number of calls, their duration, or the structural overlap
are going to be naturally smaller just because the tie decayed earlier, making it difficult to
disentangle what part of the prediction power comes from properties of the tie before or
after it decays. For this reason we will build another predicting model Model 2 in which
we will only consider those ties that have a call within the last two weeks of �. This way we
will use a relative reference frame in which we want to understand what properties of an
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Figure 2 Impact of some features on tie persistence. Conditional probability of persistence as a function
of the different variables of the tie: (A) topological embeddedness, (B) relative freshness, (C) coefficient of
variation and (D) time of the first call in our database. In (C) only ties with wij ∈ [20, 50] are considered. The

vertical line in (B) indicates the critical relative freshness f̂ij = 8.33, where � = 1/2. Error bars are showed when
they are bigger than symbol size.

existing tie have more impact in its immediate future stability. Both models are important
to understand the dynamics of a tie, its stability, and in general, the evolution of networks.
But Model 2 might give a more direct understanding of what defines a strong social rela-
tionship without requiring a long time interval to observe if there is a significant decay in
the activity of the tie.

To predict tie persistence we build a classification model using simple logistic regression
(LogR) models where the positive class is tie persistence, that is, that we observe at least
a communication event in �after. We use a train dataset using 75% of our ties and 10-fold
cross validation to fit the probability for a tie to persist using the inverse logit function

�(tie ij persists) =
1

1 + e–β0–
∑n

l=1 βlxl
, (4)

where xl are the features introduced in the last section and βl are the coefficients obtained
in the fit. Note that positive values of βl indicate that the variable xl has a positive effect in
the persistence of the tie: larger values of xl increase the probability for the tie to persist.
The performance of the model (see Table 2) is measured using the rest 25% of our ties,
achieving values around 0.8 for its accuracy, sensitivity and specificity, showing the good
balance of our model detecting both classes (persistent and decaying ties). Details of how
the predicting model was constructed can be found in the Methods section.
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Table 2 Regression results for the tie persistence using generalized linear models for the two
prediction models

Feature Model 1 Model 2

Full Simplified Simplified′ Full Simplified

wij 1.491∗∗∗ 1.180∗∗∗ 2.096∗∗∗ 2.229∗∗∗
(0.021) (0.015) (0.060) (0.057)

dij 0.105∗∗∗ 0.109∗∗
(0.012) (0.034)

rij –0.094 –0.044∗∗
(0.012) (0.032)

oij 0.241∗∗∗ 0.286∗∗∗
(0.017) (0.046)

kij 0.039∗∗ –0.026
(0.012) (0.033)

μint
ij 0.084∗∗∗ 0.151∗∗

(0.012) (0.032)
ageij 0.001 –0.021

(0.012) (0.034)
genderij 0.079∗∗∗ 0.035∗

(0.012) (0.033)

f̂ij –1.102∗∗∗ –0.660∗∗∗ –0.611∗∗∗
(0.016) (0.008) (0.007)

cvij –0.362∗∗∗ –0.653∗∗∗ –0.759∗∗∗
(0.014) (0.037) (0.034)

μchats
ij 0.029∗ 0.036

(0.014) (0.038)
aij –0.310∗∗∗ –0.316∗∗∗

(0.013) (0.036)

Constant 0.681∗∗∗ –2.364∗∗∗ 1.053∗∗∗ 0.779∗∗∗ 0.748∗∗∗
(0.014) (0.042) (0.014) (0.039) (0.034)

Number of points 45,444 45,444 45,444 6684 8268
AUC 0.864 0.847 0.755 0.875 0.866

Performance Model 1 Model 2

Full Simplified Simplified′ Full Simplified

Accuracy 0.802 0.766 0.721 0.803 0.796
Sensitivity 0.828 0.777 0.652 0.815 0.808
Specificity 0.767 0.753 0.781 0.787 0.760

Coefficients are shown with uncertainties (standard errors) in parentheses. Model Full include all the features described in
the text, while model Simplified/Simplified′ only includes the most important two/one feature(s). Note: ∗p < 0.1; ∗∗p < 0.05;
∗∗∗p < 0.01.

The results for the different models are presented in Table 2, where we can see that, as
expected, variables like the number of calls wij, mean duration dij or topological overlap oij

have a positive effect in tie persistence [8, 12]: the larger they are the more likely the tie will
persist in the future. Interestingly, the same happens with gender difference: ties between
individuals with equal gender are more persistent than those between persons of different
gender, a reflection of the same-gender homophily previously found in the most stable re-
lationships [28]. However, other well-studied variables like reciprocity, connectivity levels
or age difference seem not to be important for tie persistence.

Temporal variables play a major role in the models. Specifically, in Model 1 the persis-
tence of the tie is highly determined by the (relative) freshness f̂ij, i.e. how much time has
passed since the last communication between users: as we can see, the coefficient is nega-
tive, which means that larger times since the last communication mean smaller probability
for the tie to persist. Other temporal variables like the coefficient of variation and number
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Figure 3 Feature importance in tie persistence. (A) Importance of the variables in the full models in
Table 2. Importance is measured as the normalized % of the t-statistics for each model parameter. (B) Density
plot of the average persistence of ties as a function of the two most important variables in (A), namely,
normalized freshness and total number of calls for model 1 and coefficient of variation and total number of
calls for model 2. The dashed line shows the solutions of equation � = 1/2 for the simplified models in
Table 2.

of chats have some impact on the persistence of the tie. For example, larger number of
rapid consecutive calls (larger μchats

ij ) or more regular patterns (smaller cvij) yield to better
stability of ties, an interesting result showing that high frequency patterns of communi-
cation between users also encode some information about how strong the tie is. Finally,
the coefficient for aij is negative, i.e, if users participating in the tie have more explorer
behavior, the tie has lower probability to persist.

However, not all the variables have equal importance in the persistence model. All to-
gether, temporal variables are the most important variables in the model: they amount
to around ∼51% of the importance in our predictive model (see Figure 3), while intensity
variables giving ∼36% of the importance and finally structural and intimacy variables rep-
resenting less than ∼10% (each) of the model importance. The relative small importance
of well studied properties like the topological overlap oij could be due to the Granovetter
effect, i.e. because oij and wij are moderately correlated, the former will have less impor-
tance in the model since its effect is already included in wij. As we can see in Figure 3 it
is remarkable that just two variables (number of calls wij and relative freshness f̂ij or co-
efficient of variation cvij) have most of the importance in the model to the point that a
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simplified model based on only those two variables achieve similar levels of performance
(see Table 2) to the full model. In the case of Model 1, actually, just the number of calls
and the relative freshness achieve a high accuracy (77%), a result that can be shown graph-
ically in Figure 3 where the diagonal dashed line corresponds to the � = 1/2 probability.
Interestingly, similar level of accuracy is found for the really simple model based on just
the relative freshness (horizontal line in Figure 3). In that case � = 1/2 corresponds to
a critical relative freshness of f̂ij = 8.33 so ties with larger/smaller values have less/more
than 50% probability to persist. This result shows that ties in which the natural rhythm of
their communication is halted have higher probability to decay. Specifically we find this
happens when the last interaction between users happened at least 8.33 times their typical
inter-event time. As an example, if two users typically called themselves each day in the
past and more than 2 weeks have elapsed since their last communication, the tie might
have decayed.

In the case of Model 2 we also find that intensity and temporal properties are the most
important variables to explain tie persistence giving respectively ∼51% and ∼32% of the
importance of the model, as we can see in Figure 3. But also we can explain most of its accu-
racy by a simplified model in which only the number of calls and the coefficient of variation
are considered, see diagonal dashed line in Figure 3. The strong importance of cvij in the
model signals a very interesting fact: for a given level of activity wij, ties which are more
bursty (high cvij) have more probability to decay. This finding suggest that special attention
paid by users to maintain a periodic communication might be an indication of a stronger
and more persistent relationship, while highly bursty and heterogeneous call patterns
might be a sign of an informal or casual relationships that could decay in the near future.

Another dimension controlling the effectiveness of the different variables in a predic-
tive model is their complexity. While some of the variables are easy to compute for a given
dataset, other features like topological overlap oij or users activity diversity aij are very
complex, i.e. they need larger computational time. Table 1 shows the computational time
(in seconds) of our own code to compute each tie feature normalized to the time it takes
to compute wij. Although the actual times could depend on the different code implemen-
tation, our results agree with the expected result that metrics that require to compute
next neighbors’ properties are very costly. For example, structural features like topologi-
cal overlap or social connectivity take up to 1.82 times the total number of calls. On the
other hand, temporal features are cheaper to compute. This result, together with the low
predictive power of traditionally considered variables like oij or rij shows that temporal
features could be much more efficient to detect and predict future tie persistence in a
social network.

4 Discussion
Human behavior display very different temporal patterns due to many constrains like cir-
cadian rhythms, cognitive limits or finite capacity to perform tasks [1, 32]. Since most of
those constrains are common to human nature, those patterns show also a large degree
of universality across individuals. Interestingly, deviations from universal rhythms can in-
form us about changes of behavior related to, for example, unemployment [33], health con-
ditions [34], or crowd events [35, 36]. Along this line, our research also shows that future
network dynamics is encoded in the relative properties of the temporal patterns of com-
munication between individuals and that those temporal properties have more predicting
power than structural, intensity or intimacy features of the communication. Specifically,
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we find that if tie activity is not observed for more than 8 times its typical inter-event
time, the tie has a great probability to decay, a result that indicates that each tie has a nat-
ural rhythm and that when communication is halted for a long time it will probably decay.
More importantly, although recent research has found that burstiness affects a large num-
ber of human activities and some explanations have been given to explain its universality
[16], our results show that relative burstiness could be also related to the weakness of ties
and that those ties that show excessive burstiness might decay in the future. Since bursti-
ness in ties slows down information spreading [6], we have found that more bursty ties
are not only weaker to transmit information, but also they are more prone to disappear,
making them extremely fragile for the structural and functional processes happening in
social networks.

Our analysis reveals that there is a large entanglement between the different time scales
present in social networks and that analyses based on pure structural static features of hu-
man relationships might give a partial and biased description on the evolution of our com-
munities, groups and societies [1, 37]. For example, short time scales (minutes, time be-
tween calls in a tie) seem to foresee the decay of ties in the future (month time scale). More
importantly, it seems that temporal properties of ties are better and more efficient descrip-
tions of tie persistence than structural features, which will allow faster and simpler detec-
tion of changing events in the topology of social networks. In fact we find that structural
features like topological overlap play a minor role in our model. This is probably the result
of the moderate correlation between the strength and embeddedness in social networks
(the Granovetter effect [20]), but also shows that a better picture of strong/persistent ties
can be obtained just by looking at temporal and intensity features of social relationships.
Our results are in line with recent measures of strength of social ties in social media [19]
where structural variables account only for 4.5% of tie strength. The same small impact of
common friends was found in detecting tie persistence [12]. This body of research and our
results seem to imply that, although structural features are very important (and probably
the only) predictors of future formation of a tie [11], once the tie is formed its strength or
persistence is immediately encoded into the intensity and temporal features of the interac-
tion. Thus, structural features are important in the tie prediction problem, while temporal
properties might be more efficient in the persistence problem.

Finally, a possible explanation of our results might be in the way people share their atten-
tion and time over their relationships, giving more frequent and more regular attention to
stronger ties than to the weak ones. As we know, humans are bounded by time, money or
cognitive limits and they make decisions to share their time across tasks (including the so-
cial ones) causing irregular (bursty) activity. Our findings show that strong and persistent
ties suffer less from those bursty patterns, indicating that those ties might have different
weight in evaluating how to share our time [22, 38]. We hope our results will help future
research to identify better what is the origin of the temporal signs of strong and/or weak
ties in social networks.

5 Methods
5.1 Mobile phone data
As in [17] the data used in this study has been obtained from the Call Detail Records (CDR)
database of a unique mobile phone operator in a single country. We focused exclusively on
voice calls records, filtering out short text messages, multimedia messages and operator
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calls. Each subscription is anonymized such that it is not possible to recover personal
information of the users. We filtered out all the incoming or outgoing calls that involve
other operators due to the partial access we have to the activity of other providers. To
avoid business-like subscriptions, which usually appear as users with a huge number of
connections and calls never returned, we only retain ties which are reciprocated, which
leads to the removal of about the 50% of the total links in our database. This restriction
also eliminates calls to wrong numbers, telemarketing-type calls, customer service lines,
etc. But it might eliminate genuine social interactions in which calls are not reciprocated.
However, given that the observation window is 7 months long, the probability that there
is not a reciprocated call in a genuine social connection in such a long window is very low.
Within this approach, we neglect the directionality of links and consider a call from user
i to user j equivalent to a call from j to i.

To disentangle the dynamics of ties creation/removal from their call activity, we use
the first 6 months to determine if ties have being created (crucial to determine the aij

variable) and the last 6 months to assess the persistence of the tie. Since we are interested
only in tie dynamics between individuals, we have to take into account the problem of
subscription and churn of users in our database. For example, subscription of a new user
and its communication with other users in our database results into formation of many
new ties for the new subscriber. The same would happen for the decay of ties of a subscribe
that churns from the company. To mitigate this problem, we only keep active users in
our data set: in particular, we only consider those users who are involved (as calling or as
called party) at least in one communication event in each of the three subintervals in the 19
months and also if they are present in the database at least one month before � and are still
active one month after �. This latter filter prevents spurious effects in the analysis of tie
dynamics just because individuals subscribe/unsubscribe just before/after �; for example,
we could have observed an apparent rapid growth of their social network at the beginning
of the observation window or a fast dissolution at its end [5]. These results in the removal
of about the 17% of nodes and the 37% of reciprocated links within �. In our analysis we
have considered 100,000 random ties from the remaining reciprocated links of the mobile
phone graph that have some activity in �. Finally, in our modeling we have only consider
the 60,592 ties which are sufficiently active (more than 5 communication events in �) that
have a duration of more than 50 days to prevent very short ties.

5.2 Prediction models
To predict tie decay/persistence we have used a simple logistic regression model where
the positive class is that the tie persists, that is, that we observe at least a communication
event in �after. Since the fraction of ties that decay is small (only 20% in our sample) our
classification problem is slightly unbalanced, which might cause problems when training
our algorithm. To palliate this problem we use the SMOTE algorithm [39] to generate
synthetic cases for the minority class (decay) so that the number of ties that persist and
decay is around 50%. We split our new dataset into a train and test samples which contain
respectively 75% and 25% of the ties and use 10 fold cross-validation to train the model
with Area Under the Curve (AUC) as the performance metric. Final performance of the
model is evaluated using the 25% test sample of the data.

To test that our results are not due to the particular algorithm used to predict tie persis-
tence, we have also used other prediction models for this two-classes classification prob-
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Figure 4 Comparison with other algorithms. Comparison of the importance of the variables for the two
models using different algorithms, namely Random Forests (RF), Logistic Regression (LogR) and Generalized
Boosted Regression Models (GBM). As we can see models agree on the relative importance of individual and
group variables. Color of the variables correspond to the intimacy (light blue), structural (orange), temporal
(blue) and intensity (red) groups.

lem. Specifically we have used Random Forests (RF) and Generalized Boosted Regression
Models (GBM) [40]. As we can see in Figure 4 results are very similar for the different
importance of variables. However accuracy is bigger in RF (90% in Model 1 and 87% in
Model 2) and GBM (83% for Model 1 and Model 2) when compared with the logistic re-
gression (LogR). This comparison shows that our results do not depend on the actual algo-
rithm used to build the predictive algorithm and that the importance of temporal variables
is a genuine finding in our data.

Finally, we have also tested the sensibility of our results on the threshold in the number
of calls used to consider the ties. Figure 3 shows already that the effect of variables like
relative freshness f̂ij and coefficient of variation cvij is important even for large values of
wij. To further support this observation, we have trained models 1 and 2 using different
thresholds for wij. Results are presented in Table 3, where we can see that the performance
and relative importance of the variables is maintained for different thresholds.

5.3 Normalization and selection of tie features
In the logistic regression classifier is common to implement some kind of normalization of
variables through transformations. This is specially important when variables have highly
skewed distributions as is typically found in variables describing human activity and be-
havior. In our case variables like the intensity wij, average duration dij, relative freshness
f̂ij, time since the first call tmin

ij and coefficient of variation cvij are heavy-tailed distributed
and thus we have log-transformed them before using them in our models. As we can see in
Figure 5, after this transformation, the histogram of the main variables used in our models
is more homogeneous.

Finally, the variables constructed might be all relevant to our predicting model, but they
can carry redundant information about the ties, i.e., they can be highly correlated. It is
well known that correlated variables can diminish the predicting power of the model and
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Table 3 Regression results for tie persistence using generalized linear models for the two
prediction models and different thresholds for the number of calls wij

Feature Model 1 Model 2

wij > 5 wij > 10 wij > 20 wij > 5 wij > 10 wij > 20

wij 1.491∗∗∗ 1.440∗∗∗ 1.331∗∗∗ 2.096∗∗∗ 1.793∗∗∗ 1.367∗∗∗
(0.021) (0.029) (0.045) (0.060) (0.072) (0.093)

dij 0.105∗∗∗ 0.049∗∗ 0.036 0.109∗∗ 0.131∗∗ 0.115
(0.012) (0.019) (0.032) (0.034) (0.046) (0.067)

rij –0.094 –0.085∗∗∗ –0.127∗∗∗ –0.044∗∗ –0.143∗∗∗ –0.142∗
(0.010) (0.018) (0.030) (0.032) (0.041) (0.064)

oij 0.241∗∗∗ 0.215∗∗∗ 0.245∗∗∗ 0.286∗∗∗ 0.340∗∗∗ 0.413∗∗∗
(0.017) (0.023) (0.038) (0.046) (0.061) (0.082)

kij 0.039∗∗ 0.035 0.031 –0.026 0.032 –0.019
(0.010) (0.018) (0.029) (0.033) (0.045) (0.066)

μint
ij 0.084∗∗∗ 0.109∗∗∗ 0.101∗∗∗ 0.151∗∗ 0.127∗∗ 0.147∗

(0.012) (0.017) (0.029) (0.032) (0.041) (0.062)
ageij 0.001 0.031 –0.008 –0.021 0.003 –0.036

(0.012) (0.018) (0.031) (0.034) (0.044) (0.064)
genderij 0.079∗∗∗ 0.121∗∗∗ 0.189∗∗∗ 0.035∗ 0.097∗ 0.239∗∗∗

(0.012) (0.018) (0.031) (0.033) (0.043) (0.064)

f̂ij –1.102∗∗∗ –1.414∗∗∗ –1.931∗∗∗
(0.015) (0.024) (0.044)

cvij –0.362∗∗∗ –0.422∗∗∗ –0.539∗∗∗ –0.653∗∗∗ –0.724∗∗∗ –0.853∗∗∗
(0.014) (0.020) (0.035) (0.037) (0.048) (0.074))

μchats
ij 0.029∗ –0.001 0.017 0.036 –0.036 0.046

(0.014) (0.019) (0.033) (0.038) (0.048) (0.069)
aij –0.310∗∗∗ –0.282∗∗∗ –0.307∗∗∗ –0.316∗∗∗ –0.290∗∗∗ –0.269∗∗∗

(0.013) (0.019) (0.034) (0.036) (0.048) (0.071)

Constant 0.681∗∗∗ 0.743∗∗∗ 0.852∗∗∗ 0.779∗∗∗ 0.708∗∗∗ 0.590∗∗∗
(0.014) (0.021) (0.035) (0.039) (0.050) (0.070)

Number of points 45,444 23,400 9744 6684 3822 1638
AUC 0.864 0.884 0.919 0.875 0.867 0.845

Performance Model 1 Model 2

wij > 5 wij > 10 wij > 20 wij > 5 wij > 10 wij > 20

Accuracy 0.802 0.808 0.844 0.803 0.808 0.778
Sensitivity 0.828 0.818 0.859 0.815 0.828 0.814
Specificity 0.767 0.794 0.824 0.787 0.782 0.731

Coefficients are shown with uncertainties (standard errors) in parentheses. Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

thus we must understand the explanatory power between them first in order to construct
a statistical significant model. This process which is known as selection of variables will
be addressed qualitatively in this section using the correlation matrix between them. As
we can see in Figure 6 most of the variables we have selected are highly uncorrelated, with
correlation coefficients below ρ = 0.2. As expected, we can see a moderate relationship
between number of calls and topological overlap, i.e. the Granovetter effect [20, 23] (ρ =
0.32 ± 0.01). Larger correlation is found for the variable tmin

ij with wij (ρ = 0.41 ± 0.01) and
thus we discard it in our models. We keep the rest of variables since correlation coefficients
remain below ρ = 0.4.

5.4 Facebook data
We have also analyzed other communication data to test the independence of our results
to the particular mobile phone setting. In particular, we have studied the 90,269 users of
the New Orleans Network crawled during December 29th, 2008 and January 3rd, 2009 by
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Figure 5 Distribution of features. Histograms of the different features considered in our models. Each row
of histograms correspond to a different group of features: intensity, structure, intimacy and temporal features
from top to bottom. Note that as mentioned in the text, some variables are log-transformed, specifically wij ,

dij , f̂ij , cvij and tmin
ij .

Figure 6 Correlation between features.
Correlation matrix for the different tie features
considered in the model. Each entry shows the
Pearson correlation coefficient between two
variables. Size is proportional to the absolute value
of the correlation coefficient, while color shows also
its sign. We only show correlation coefficients which
are significantly different from zero (with a 95%
confidence interval).

Vismanath et al. [41]. The data consists of communication events between users through
Facebook wall. Contrary to the mobile phone data, the Facebook data is not steady in
time, since the database extends over the early days of Facebook growth and thus it shows
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Table 4 Regression results for the tie persistence using generalized linear models for the two
prediction models in the Facebook dataset

Feature Model 1 Model 2

Full Simplified Full Simplified

wij 0.839∗∗∗ 1.228∗∗∗ 1.709∗∗∗ 2.041∗∗∗
(0.044) (0.066) (0.180) (0.105)

rij 0.118∗∗∗ 0.470∗∗∗
(0.034) (0.111)

oij 0.269∗∗∗ 0.384∗∗∗
(0.035) (0.111)

kij –0.008 –0.231∗
(0.031) (0.099)

μint
ij –0.0139 0.006

(0.030) (0.095)

f̂ij –0.608∗∗∗ –0.306∗∗∗
(0.0390) (0.016)

tmin
ij –0.329∗∗∗ –0.402∗∗

(0.039) (0.128)
cvij –0.286∗∗∗ –0.229∗ –2.394∗∗∗

(0.037) (0.103) (0.224)
μchats

ij 0.024 –0.047
(0.035) (0.114)

aij 0.122∗∗∗ 0.115
(0.036) (0.111)

Constant 0.435∗∗∗ 1.951∗∗∗ 0.686∗∗∗ –4.525∗∗∗
(0.032) (0.155) (0.115) (0.265)

Number of observations 5466 5466 667 667

Performance Model 1 Model 2

Full Simplified Full Simplified

Accuracy 0.690 0.688 0.798 0.799
Sensitivity 0.770 0.780 0.814 0.802
Specificity 0.583 0.567 0.776 0.797

Coefficients are shown with uncertainties (standard errors) in parentheses. Model Full include all the features described in
the text, while model Simplified only includes the most important two features. Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

a growth in the activity over years, which translates in more wall posts and also more users
as a function of time.

To minimize this effect we have chosen only communication events between users that
did show any activity in the observation window � (the time interval between 1000 and
1212 days in the database) and also which were present 20 days before and after �. We
do not consider the ties to be reciprocated in order to have more data accessible for our
analysis. With this filter our database contains 125 × 103 communication events of ∼104

users and 69 × 103 ties. We have considered only 5466 ties which are more active (more
than 5 communication events) and build a predictive model similar to the one for the mo-
bile phone data. However, since we do not have information about the age and gender of
the users, we have discarded the variables related to their difference. Results of our model
for the Facebook data are presented in Table 4 where we can see a qualitative match with
the ones for the mobile dataset, although the predictive power of the models is smaller
than in that case. Apart from the number of communication events, both the normalized
freshness and the coefficient of variation have a similar relevant role in predicting tie per-
sistence. In particular, we find that the critical relative freshness is now f̂ij = 16.6, which
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is double that the one found in the mobile phone calls. This could be a signature of the
different rhythm of communication of users on different channels.
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