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Abstract

The structure of scientific collaborations has been the object of intense study both for
its importance for innovation and scientific advancement, and as a model system for
social group coordination and formation thanks to the availability of authorship data.
Over the last years, complex networks approach to this problem have yielded
important insights and shaped our understanding of scientific communities. In this
paper we propose to complement the picture provided by network tools with that
coming from using simplicial descriptions of publications and the corresponding
topological methods. We show that it is natural to extend the concept of triadic
closure to simplicial complexes and show the presence of strong simplicial closure.
Focusing on the differences between scientific fields, we find that, while categories
are characterized by different collaboration size distributions, the distributions of how
many collaborations to which an author is able to participate is conserved across
fields pointing to underlying attentional and temporal constraints. We then show that
homological cycles, that can intuitively be thought as hole in the network fabric, are
an important part of the underlying community linking structure.

Keywords: homology; communities; scientific collaborations; triadic closure;
computational topology

1 Introduction
Since early on in the study of complex networks, the structure of scientific collaborations
has been the object of intense interest [1-5], because of the potential societal and scientific
impacts that understanding progress and innovation could have [6-8], the theoretical in-
terest in the detection of overlapping groups or communities [9-13] and the accessibility
and richness of publication data [14, 15]. Existing approaches have however predominantly
put their focus on network-based descriptions that translate the original publication data
in structures that are fully characterized by links between pairs of authors [16—18]. Others
have instead proposed models for the growth of team size [19] or for prediction of their
success [20] which rely on group dynamics that were essentially mean-field models.
However, the units of collaboration are usually shared scientific publications, which de-
scribe group micro-interactions and often involve small groups of authors rather than just
two [19]. Hence, it would be beneficial to develop a language that encodes explicitly higher-
order connectivity patterns and can distinguish them from sums of low order interactions.
When adopting a network perspective, this information is not completely lost naturally,
because it is in some measure hidden in the clique structure of the resulting network and
can therefore be accessed to some degree via clique percolation techniques [21, 22], as for
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1140/epjds/s13688-017-0114-8
http://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-017-0114-8&domain=pdf
http://orcid.org/0000-0002-3047-4376
mailto:alice.patania@isi.it

Patania et al. EPJ Data Science (2017) 6:18 Page 2 of 16

example in the case of social groups and proteins [9]. Looking at the k-clique structure is
however not sufficient to characterize the mesoscopic shape of academic collaborations,
as described by how the clique- and community-structure of the networks link and wrap
on themselves. To avoid this, we need to take a topological perspective, which allows to
extract, in a principled way, a notion of shape for a dataset. That is, we adopt a new de-
scription framed in the language of topological data analysis [23, 24], which has at its core
the notion of multi-agent interactions: simplicial complexes [25]. It is mesoscopic because
it relies on the coordination of a large number of collaborations and does not rely on local
properties or global distributions. It goes beyond k-clique descriptions because it allows to
distinguish between sums of pairwise interactions, and genuine higher-order ones. It also
grants access to the homology of a dataset, that encodes a notion of multi-dimensional
shape of a system [23, 26].

The aim of this paper is to introduce a higher-order language for the study of co-
authorship data and illustrate the type of novel information it provides. In the following,
after introducing the dataset, we describe in simple terms the notions required for the
topological description of the collaboration data. We then look at the properties of arXiv
data in terms of their higher-order elements, maximal simplices called facets. We show that
different patterns of collaboration exist across the various scientific communities within
arXiv at the individual and group level, in terms of distribution of collaboration sizes and in
terms of how sparse locally collaborations grow into denser, larger co-authorship groups.
We then focus on the linking patterns among network communities, finding them to be
well correlated with the hole structure of an associated topological object, highlighting
an unexpected separation between the local and long range collaboration scales. Our re-
sults suggest thus that different mechanisms might be at play that structure the high-order
connectivity features of scientific collaborations.

2 Dataset description

The dataset we analyze here has been scraped in raw xml format (see the IOA help of
arXiv.org for details). The data span 9 years, from 2007 to 2016, and are split according to
the 18 major categories of arXiv. This major categories correspond to different thematic
areas and thus can be used as rough representative of different scientific fields. Due to
arXiv’s history, there is a bias toward mathematical and physical topics, although the cat-
egories also cover computer science and quantitative finance. The full list of categories is
reported in Table 1, where we also report the size in terms of number of papers and au-
thors per category. For each published paper, we know the complete list of authors and in
which category and sub-category it is classified.

Note that the number of authors and papers can change by various orders of magnitude
across categories, e.g. the smallest category by far is quantitative finance (g-fin), while
the category with the largest number of authors is astrophysics (astro-ph) and the one
with most papers is condensed matter (cond-mat). Because of structural properties of
simplicial complexes, we only retain papers that have author sets that are not fully con-
tained in the author sets of other papers. These are akin to maximal cliques and are called
facets of a simplicial complex. We explain these concepts in detail in the next section (Sec-
tion 3.1).

In Table 1 we report the percentage of retained papers (facets), showing how the use
of this approach impacts the study of the different categories. For hep-ex and nucl-
ex the percentage of papers in each category that are also facets of the relative simplicial



Patania et al. EPJ Data Science (2017) 6:18 Page 3 of 16

Table 1 arXiv statistics. For each category we show the number of authors, the number of
papers and the percentage of the papers retained for the analysis

# authors # papers % facets
astro-ph 209,901 89,076 87.84%
cond-mat 187,034 128,301 83.66%
cs 86,505 52,864 86.24%
gr-qc 24,078 16,684 82.28%
hep-ex 44,493 6,074 95.19%
hep-lat 9,512 7,574 80.50%
hep-ph 55,292 47,713 79.11%
hep-th 31,948 35,095 78.09%
math 91,717 89,270 84.33%
math-ph 14,540 9,506 87.22%
nlin 13,073 7,653 86.29%
nucl-ex 33,782 4,999 94.30%
nucl-th 19,681 14,230 80.28%
physics 129,236 43,662 88.59%
g-bio 21,730 8,295 89.74%
g-fin 4210 2417 88.83%
quant-ph 42,155 31,779 81.72%
stat 13,404 7,249 89.92%

complex is higher than for other categories. For the former the percentage is above 94%
(95.19%, 94.30% respectively) while for the latter, i.e. the more theoretical aspects of these
disciplines (high energy physics lattice, phenomenology and theory - hep-lat, hep-ph,
hep-th-, and nuclear physics theory - nucl-th -), the values drop to a range between
81% and 78%, suggesting that in these categories the same group of authors tends to publish
more than one paper together.

For this work, we consider as the same individual authors with same surname and same
first initial [3]. As previously stated, we consider the papers whose author set is not con-
tained in any other. Therefore, in order to assess the impact of the author name ambiguity
on our results, we performed large random sub-samplings of the author set in each cate-
gory, and found there were no relevant statistical changes in the paper size distribution and
mesoscopic features of the resulting simplicial complex. We then also checked for changes
under removal of the most connected authors and found non-significant changes to the
dataset properties. Moreover, for computational reasons (see Section 3.2.1 for details) we
removed up to 0.0001% of the authors with most publications in hep-ex, physics, cs,

nucl-ex, hep-ph.

3 Methods

3.1 Asimplicial language: complexes and networks

Networks have proven themselves an extremely powerful language to describe the pat-
terns of interactions that characterize complex systems [3]. They allow to make predic-
tions about the structure and evolution of such systems [27], and to even control them in
some cases [28]. There is however an implicit assumption made when using network de-
scriptions: that the system’s structure can be fully described by combinations of pairwise
interactions. This assumption is justified when studying certain types of processes, as for
example in the case of epidemic models where the probability of a node becoming infected
is determined by which of its neighbors are themselves infected. Other types of complex
contagions too can be faithfully represented on networks [27]. There are however certain
systems (and datasets) that come naturally in a richer format and that could benefit from
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a higher-order description than the network one. Data about co-authorship of scientific
papers is one of these: each paper is a multi-node interaction and the number of authors
per paper naturally varies greatly. Formally, we say that each paper is a simplex and is de-
fined by its set of authors (or vertices in general settings). A paper with k authors is then
a (k — 1)-simplex, where the k — 1 comes from the fact that we also allow single author
papers which are then mapped to a single point, a zero-dimensional simplex. A set of sim-
plices constitutes a simplicial complex in a similar way to how a set of edges constitutes
a network. There is a caveat: a simplicial complex K is valid only if, for each k-simplex
o =[po,...,pr1] € K, all sub-simplices ¢’ C o are in K too. This is a formal requirement
in our case and we fulfill it by considering the maximal simplices, usually called facets, of
the simplicial complex, these correspond to the set of papers whose author set is not con-
tained in any other paper’s author set. Considering facets (and implicitly all their subsets)
is sufficient to have a complete description of a simplicial complex.

To gain an intuitive understanding of the differences between a network and a simplicial
representation of the same data, consider the following toy example. Let us imagine that
we are given seven papers with the following list of author sets:

[a’ b’ C, d]’ [67 f’ g]’ [a’ b]? [a’ h]’ [b" h]’ [d’ e]’ [g7 h]

as shown in Figure 1. Consider first the papers [a,b], [b, 4], [a,h]. These three papers
from a network point of view create a triangle. However, also the paper [a, b, 1] would
be described as the corresponding triangle in a co-authorship network. Adopting a sim-
plicial language instead, we have immediately access to a richer interactions codebook
from which to choose: the three papers [a, b], [b, k], [a, h] are mapped in a set of three 1-
simplices (as defined by their author set), while the paper [e,f,g] is a 2-simplex is defined
by its three authors and represented as a filled triangle. Already in such a simple example,
we see that simplices and simplicial complexes are able to capture richer and more varied
layouts as compared with networks.

Note that, while cliques are closely related to the concept of simplices, the latter retain a
deeper descriptive power. Indeed, it is easy to see that, when comparing a simplicial and a
network description of the same data, each (k —1)-simplex in the simplicial complex will

(@) (b) .

Coauthors’ papers
[a,b,c.d].[ef,g].,[a,b][a h],[b h],[d €] [g h] 1 s

Network A Simplicial Complex 2 4

A 9
Figure 1 Simplicial complexes vs networks. The figure shows the advantages of the simplicial compared
to a network approach. A co-authorship dataset can be encoded both as a network, and as a simplicial
complex (a). It easy to see how the simplicial complex approach are able to capture a richer layouts
compared with networks. In fact the three papers [a, b], [a, h], [b, h] are mapped in an empty triangle
in the simplicial complex, while the single paper [e, £, g] is represented as a filled triangle. This difference is
crucial in the detection of holes in the simplicial complex. In both cases depicted in (b) the cycle

[1,2,3,4,5,6]is cordless in the network representation, but only in the bottom case it corresponds to
meaningful information, and can be considered a homological cycle.
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be associated with a k-clique on the same vertices in the network. However, the converse is
not true: not every k-clique in the network corresponds to a (k —1)-simplex in the complex,
just like the three edges in Figure 1 do not correspond to the filled triangle. This is a direct
example of how high-order information cannot always be reconstructed from lower-order
interactions.

3.2 Simplicial measures

Simplicial complexes provide access to a larger set of local and mesoscopic observables. At
the local level, we focus on two main features of the simplicial complexes: the distribution
P(s) of sizes s of facets (maximal simplices); and the distribution P(d) of simplicial degree
d of authors, defined as the number of facets that an author belongs to.

We can also ask new questions: for example, we can study a simplicial version of struc-
tural holes [29]. Where at the network level one looks for how many of the existing wedges
are closed by a third edge, hence probing the local clustering structure, at the simplicial
level we can ask how many of the set of three edges (1-simplices) that are arranged in a
triangle are covered by a full triangle (2-simplex). The two possibilities are shown in Fig-
ure 1(a), where we see that the authors e, £, g collaborated together on one paper, while
the authors a, b, h published in pairs, but never all of them together. Therefore measuring
the number of filled triangles over the total number of possible triangles measures how
much collaborations are integrated in a given field. Note also that this distinction could
not have been made using the network projection (shown too in Figure 1).

Configurations like the empty triangle just described, and more general pattern of dis-
connectivity, are captured by the homology of a simplicial complex. Homology can be
thought intuitively as the study of the holes in all dimensions of a certain dataset, and
then implicitly of its shape. It provides a representation of the dataset complementary to
that obtained by looking only at the dense regions (communities), and which is impossible
to obtain from k-clique decompositions or other standard network methods [30, 31]. To
compute homology means to detect and identify the empty spaces that are bounded by
k-simplices. At low dimensions the results can be easily interpreted as connected compo-
nents and holes in the simplicial complex, but higher-order cavities can be of more difficult
interpretation.

We are going to focus on the study of 1-dimensional homological cycles, i.e. two-
dimensional holes bounded by edges, of the co-authorship simplicial complex. Homology
is not only limited to small cycles (like triangles), but can probe larger holes which span
significant parts of a simplicial complex. These features give a unique prospective, since
they represent the cycles in the network (cordless closed paths) which cannot be reduced
to a point when collapsing all the 2-simplices (triangles) in the simplex. This fundamental
property is depicted in Figure 1. The two complexes in Figure 1(b) are composed by the
same facets (the six full triangles). They have however a different shape (or technically,
one-dimensional homology): the top one is essentially a large disk and can be contracted
to a point, while the bottom one is akin to a ring, since the simplices bound an empty cy-
cle. Note also that the cycle [0,1,2,3,4,5] is cordless in both cases, but only in the
bottom case it cannot be contracted and hence it corresponds to meaningful information.
In this sense, it provides mesoscopic information and we will use it to study the shape of
the co-authorship simplicial complexes at different scales.

In particular, we will calculate explicitly all the cycles that bound one-dimensional holes.
Using this information, we then calculate first the fraction of empty triangles over all the
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possible closed paths of length three. This gives us a higher-order notion of structural co-
hesiveness, inspired by that of structural holes, but informed by homological information.
We dub this measure simplicial closure for short. We then consider all the 1-dimensional
homological cycles and analyze their trajectories through the simplicial complex. As by
definition homological cycles bound holes, we study how they link dense parts of the
complex together. In order to do this, we detect communities (using InfoMap [32]) on
the simplicial complex and study how cycles link different communities with each other.

Note also that we ignore the quantity of papers published by the same group of authors,
acknowledging only their collaboration as a simplex in the simplicial complex. Naturally,
repeated collaborations - similarly to collaboration networks - can be encoded by assigning
weights to simplices. In this case one would need to employ a parameterized version of
homology, called persistent homology, which allows to deal with weighted simplices, as
for example was done in [31]. However, we found that in our dataset adding weights did
notyield significant additional information and thus restricted ourselves to an unweighted
representation.

3.2.1 Simplicial contraction and complexity reduction

The rich information encoded in simplicial complexes comes at the expense of an in-
creased computational cost. Although storing a simplicial complex as a list of facets is
extremely parsimonious, the calculation of homology requires to list all the possible sub-
sets. Therefore, even though the algorithm is polynomial, it can be very impractical when
working with large simplices. This is due to the fact that each (s — 1)-facet gives rise to 2°
simplices and thus the complexity of the computation of homology scales exponentially
with the dimension of the simplicial complex O(m%) > O([2°]), where m is the number
of simplices in the simplicial complex, and § is its dimension. This prevents us from di-
rectly computing the homology of systems where large simplices are present - as is the case
of the whole arXiv dataset. It is however possible to solve this exponential escalation in
complexity and memory usage by studying an appropriately reduced but similar simplicial
complex: we take inspiration here from the tidy set [33] and the simplicial strong collapse
[34] to build a new simplicial complex, which contains fewer simplices but has the same
homology groups. Each facet of the original simplicial complex K is represented by a node
in a new one x(K), and k + 1 nodes in x (K) span a k-simplex if the corresponding facets
have at least one node (author) in common. The simplicial complex created this way is
homologically equivalent to the original one due to the nerve theorem [25]. In fact, the
complex x (K) is what in mathematics is defined as the nerve of an open covering - in this
case, the simplicial complex K bestowed with the Alexandrov topology [25]. We illustrate
the transformation with a toy example in Figure 2.

The correspondence x : K — x(K) described above however does not guarantee auto-
matically that x (K) will have fewer simplices as compared with the original one. Indeed, it
is possible to build simple examples showing a decided increase of the number of simplices
after the transformation, e.g. consider a simplicial complex composed by many simplices
all attached by a single node, which when transformed will yield a new simplicial com-
plex with a simplex of dimension the original node’s simplicial degree. More generally, if
max d > § = maxs, that is the maximum simplicial degree is much larger than the dimen-
sion of K, which is the maximum facet size in the original complex, then x (K) will very
likely have a larger number of simplices with respect to K and it is therefore not computa-
tionally advantageous to analyse the former. This is because each (s — 1)-facet gives rise to
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Figure 2 Reduction of simplicial complex size.
The figure shows an example of simplicial complex
(a) and its correspondent dual complex (b). Each
facet of the original simplicial complex is represented
by a node in the dual complex, and k + 1 nodes span
a k-simplex if the corresponding k + 1 facets have at
least a node in common. In both simplicial
complexes, the facets are colored according to their
dimension. It is easy to see that applying the
complexity reduction to the simplicial complex (a) reduces the total number of simplices from 91 to 28, while
fixing the homology (both complexes have one connected component, and one hole (1-dimensional cycle).

105 106 105
— K

c —— X(K)
5 104 105 e e e ee__ 107 e boundK >
.g SN -« bound X(K) __2**
2103 Ne. . 104 103 e
3 ERRRR R, ':7;‘\'”‘\" STt . e
2 abiieaty ° i - - £
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Figure 3 Performance of reduction of simplicial complex size. The panels show the total simplex number
(solid lines) and the upper bound (dashed lines) for simplicial complexes built with facet size sequence
sampled from the exponential (left), Zipf distribution (middle) and Poisson (right). On the x-axis we plot (from
left to right) the power law exponent y, the average value A and the exponent v. It is easy to see that in all
cases and for a range of parameters there is a large reduction in simplex number going from K to x (K).
Moreover, the bounds on n(K) and n(x (K)), although not tight, reflects closely that between n(K) and n(x (K))
and can therefore be used as a good proxy to decide whether applying the simplicial reduction x is
appropriate or not.

2% simplices and thus the number of simplices n(K) of a simplicial complex K with facet
size sequence {k} is bounded by ) _, 2°, which for large s is dominated by 2™***. Under the
transformation x each node in K becomes a (d —1)-simplex in x (K), hence a first heuristic
to perform y is that maxs > maxd.

This criterion relies on the fact that the presence of large tails in the facet size distribu-
tion will create a very large number of simplices if one does not transform to x (K). In Fig-
ure 3 we give evidence for this by generating random simplicial complexes with facet size
taken from a three different distributions: exponential (p(x) ~ e™/"), Zipf’s (p(x) ~ x77)
and Poisson (p(x) ~ A*e™*/x!). In all cases, we find a reduction of a few orders of magnitude
of n going from K to x(K). As expected, we also find the largest reduction n(K)/n(x (K))
happening when the facet size distribution f(K) is characterized by longer tails (respec-
tively lower y for Zipf, larger A for Poisson and smaller v for exponential), as the tails

represent large facets in K that are mapped to a single point in y (K).

3.3 Information-theoretic comparison of size distributions

In order to assess whether two categories share common statistical properties - for exam-
ple of their facets or degrees - we need a robust measure of the distance between distri-
butions. Here we adopt the Jensen-Shannon Divergence [35] (JSD) that for two distribu-
tions P and Q is defined as: JSD(P, Q) = %DKL(P|M) + %DKL(Q|M), where M =P + Q and
Dy (PIQ) ==, P(x)log % is the Kullback-Leibler divergence. It is easy to see how this

measure is symmetric and alway positive. Moreover, it is bound in (0,1n2).
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In our case, we will need to compare distributions defined on very different supports,
e.g. the facet size distributions of math and hep-ex. Moreover, we want to compare
the different functional dependencies of the distributions we are testing, rather than how
different their supports are. So for all the JSD results, we first map both distributions from
their original supports to the support (0,1) in the natural way and then calculate the JSD
between the two distributions.

4 Results

4.1 Summary statistics

Table 2 gives a summary of some of the characteristics of the categories of the arXiv data
set and in Figures 4 and 5 we show respectively the facet size and simplicial degree dis-
tributions for all categories. Excluding the two experimental physics categories hep-ex,
nucl-ex, we find that the average number of authors on a paper for the entire arXiv
dataset is (s) = 4.5 with a standard deviation of o; = 11.8, which is consistent with the val-
ues of (s) obtained by restricting to individual categories. We also remark that the standard
deviations and medians of s are smaller for the mathematical disciplines, highlighting the
known patterns of small collaborations in mathematics [36].

Unsurprisingly, the two outliers, hep-ex and nucl-ex, have verylarge (s) and oy, likely
due to large-scale experiments (e.g. the The STAR Experiment in Brookhaven National
Laboratory, or the ATLAS experiment in CERN). They however display different median
s values, 4 for hep-ex and 9 for nucl -ex suggesting that most of the collaborations are
smaller in experimental high energy physics than in nuclear physics.

The average number of disjoint collaborations an author belongs to, described by the au-
thor’s simplicial degree, is (d) = 2.52, with standard deviation o, = 6.46, and is consistent
across all categories, with the exception of hep-ex. Moreover, we also find coefficient of
variation across categories for ¢,({(d)) = 0.54 is much smaller than for (s) and the number
of papers and authors (¢,({s)) = 1.59, ¢, (# papers) = 1.05, ¢, (# authors) = 1.03). We also find

Table 2 Facet and simplicial degree statistics. For each category we show the maximum,
mean (with standard deviation), and median of the facet and simplicial degree sequences

Simplex size Node degree
Max s (s) Median s Max d (d) Mediand
astro-ph 1,309 8.51(23.75) 4 3,163 346 (11.13) 1
cond-mat 51 442 (2.76) 4 981 2.74 (6. 06) 1
cs 287 338(2.02) 3 310 1.86 (2.77) 1
gr-qc 944 462 (34.12) 3 66 2.89 (4.85) 1
hep-ex 2,812 57.13(160.81) 3 706 7.74(24.77) 1
hep-lat 35 4.78 (3.59) 4 147 3.33(7.03) 1
hep-ph 317 3.55(5.20) 3 270 262 (5.09) 1
hep-th 32 2.88(1.05) 3 117 2.60 (4.25) 1
math 60 2.60(0.88) 2 153 220(2.85) 1
math-ph 14 2.66 (0.90) 2 39 1.55(1.57) 1
nlin 81 321(1.72) 3 75 1.68 (2.20) 1
nucl-ex 974 26.76 (71.80) 9 187 3.93(7.59) 1
nucl-th 189 3 74 (2.58) 3 173 2.32(4.24) 1
physics 800 41 (13.39) 4 374 1.72 (2.40) 1
g-bio 147 3 81 (3.37) 3 64 1.36 (1.27) 1
g-fin 13 2.84(1.03) 3 26 148 (1.47) 1
quant-ph 60 3.75(2.12) 3 182 247 (435) 1
stat 28 3.14(1.31) 3 36 1.57 (1.65) 1
Overall 2,812 45(11.8) 3 3,163 2.52 (6.46) 1
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(bottom left).

that, while most papers are written by small groups of authors (median s around 3-4 for
most categories), a large number of authors belongs to a single collaboration (median d = 1
for all categories).

4.2 Facet and simplicial degree distributions

Going one step further, we focus on the facet size distribution P(s) (Figure 4) and the
simplicial degree distribution P(d) of the nodes (Figure 5). Similar to many other social
systems [9], the two distributions for s and d for all categories span a few order of mag-
nitudes and all display broad tails, signaling the presence of both large collaborations and
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of authors with a large number of different collaborations. In order to quantify the sim-
ilarities among categories in terms of their facet and degree profiles we calculated the
Jensen-Shannon divergence (JSD) [35] between all pairs of distributions as described in
the Methods section. If we order the categories by increasing max s, three groups can be
clearly identified (Figure 4(bottom right)), highlighting that the three different P(s) pro-
files correspond to categories characterized by progressively larger s support. In particular,
the group characterized by small max s contains the more mathematical categories (hep-
th, g-fin, math-ph, stat), while the one characterized by large maxs contains the
experimental and high-energy physics categories (hep-ph, physics, gr-gc, nucl-
ex, astro-ph, hep-ex). In Figure 4(bottom left) we plot for each group the envelop
of the distributions of the corresponding categories. In Figure 5 we report the results of
the same analysis for the simplicial degree distributions. In this case in Figure 5(bottom
right) we ordered the categories by increasing max d, highlighting the presence of two cat-
egory subgroups, a small one containing g-fin, stat,math-ph, g-bio, thesecond one
containing the others. We also observe that the JSD values between the facet size distri-
butions (Figure 4(bottom right)) are consistently larger (of about an order of magnitude)
than those between the simplicial degree distributions (Figure 5(bottom right)), implying
that the simplicial degree distributions are much closer to each other than the facet size

ones.

4.3 Simplicial closure, large-scale structure and homological cycles

We are interested in probing both the local and the large scale structure - or shape, in short
- of co-authorship data. In general, this has been done by finding communities or dense
subgraphs which are generally thought to represent specific disciplines or subfields. How-
ever, this approach does not provide information about how such communities relate to
each other. To investigate these relationships, for all categories we computed the homol-
ogy of the associated simplicial complexes, that is we found all the (homological) cycles, as
described in Figure 1. In Table 3 we report the results for the number of one-dimensional
cycles in each complex.

We focus first on the shortest possible cycles, triangles. We find that the fraction of cycles
of length 3 that are not covered by a full triangle (2-simplex) is very small for all categories,
ranging between 10~ for nucl-ex and ~10~2 for math. In other words, adapting the
term from the network literature [29], we can say that we find evidence of a very strong
simplicial closure: in the great majority of cases whenever three authors have collaborated
in pairs, they also have collaborated on a paper together.

One might expect this to be related to the number of cycles, B;, present in the simplicial
complex, with a larger abundance of cycles implying a smaller triadic closure. However,
we find no significant correlation between the ratio of open triangles to closed triangles
and the total number of cycles (p > 0.05 for Spearman correlation). Interestingly, we find
instead a negative (Spearman) significant correlation (p = 0.02) between the number of
open triangles and the ratio B;/# of overall number of cycles 8, and the number of facets
n of the category’s simplicial complex.

We move our attention now to all homological cycles, not only the short ones. In Figure 6
we report the distribution of cycle lengths for all categories, shown in order of growing
values of B;/n. The JSD matrix shows again a clean 2-block structure once it is ordered by
growing order of B;/n, with a group formed by the large categories (hep-ex, hep-ph,
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Table 3 Analytics on Homological cycles. For each category we show the number of cycles in
the graph (1), B1 divided by n, the total number of authors in each category, and the
percentage of triangles in the graph that don't satisfy triadic closure, that is

# cycles of length 3
# triangles in the graph
of closed paths of length three in the co-authorship network

. Note that by number of triangles in the graph we mean the number

Cycles/triangles B Ba/n
cs 1.26e-04 11,781 0.26
gr-qc 6.49e-05 109,842 8.00
hep-ex 2.67e-04 2,575 044
hep-lat 5.05e-04 2,533 042
hep-ph 2.87e-05 17,410 046
hep-th 6.01e-03 10,989 0.40
math 8.84e-03 23,508 0.31
math-ph 7.33e-03 647 0.08
nlin 6.13e-04 724 0.1
nucl-ex 3.65e-07 3,401 0.72
nucl-th 1.34e-04 3,930 0.34
physics 2.98e-06 11,022 0.28
g-bio 4.48e-05 436 0.06
a-fin 3.79e-03 119 0.06
quant-ph 1.05e-03 10,385 040
stat 2.20e-03 803 0.12
Bi/n<0.2 0.2<p;/n<0.4 Bi/n>0.4
" j j 1 100 Fopn . ' ' ' 1 100 Fpm ‘ ‘ h‘ep—th 3
\" ""’u,( %\. hep-lat
101} e, J101l %N ® o hep-ex |4
. E o, \ S % hep-ph
N 102k % 1 102L ° 4 nucl-ex |
A ) : R .
8 . ] A . gr-qc
cs
E : , 103+ ® o physics 3 10%¢ . 3
4 math °
104 1 nucl-th [ 3 10% ¢ E
quant-ph
1 -5 L I 1 1 -5 1 1 1 1
a0 50 10 20 30 40 50 10 20 30 40 50
Cycle length (¢) Cycle length () Cycle Iength
100 c1
— group 1 afin
— group2 qebio 0.40
10 V‘ '“a"‘"v::
10 A, \ oo I
104 0.08
10* 0.00
10° 10" 107
Cycle length (¢)
Figure 6 Cumulative distributions of cycle length. We show the cycle length distributions (top) and their
Jensen-Shannon divergence (bottom right) for all categories, ordered by B1/n value. We find two main
groups of categories, which we highlight with different colors (bottom left). We groups categories in the
subplots by growing values of B1/n (top, from left to right) and note that as the cycle sparsity increases, the
maximum cycle length decreases.

gr-gc, nucl-ex), with a narrower distribution of cycle lengths, and a second with all

the other categories displaying cycle length distributions with broader tails. We observe

that the categories in the first group also display generally strong simplicial closure.
Finally, we study how homological cycles explore the complex’s structure. We do this

by first detecting communities on the simplicial complex and then quantifying how many
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Figure 7 Distribution of community sizes. In the green box, we plot the community size distributions
obtained from the underlying graph of the original simplicial complex. In the red box, we plot the community
size distributions for the categories for which we performed the simplicial reduction. The central matrix
shows: the JSD between the community size distributions of the original categories (green cells, upper
triangular matrix), the JSD between the community size distributions for the transformed complexes (red
cells, lower triangular matrix), and the JSD between the size community size distributions of the categories
before and after the reduction. In all cases we find that the differences between the various distributions are
small (JSD is defined in (0,10g 2)).

communities a cycle traverses as a function of its length. However, for gr-gc, hep-ex,
hep-ph, nucl-ex, nucl-th, physics, g-bio we need to perform the simplicial re-
duction (described in Section 3.2.1) to calculate the homology. Therefore, we detected
the communities also on the transformed simplicial complexes. In Figure 7 we show the
community size distributions for all categories in the green box, and for the transformed
categories in the red box. We found that overall the community size distributions are very
similar across all categories (average JSD across all pairs 0.05). Also, for the categories that
underwent the simplicial reduction, we find a very small distance between the distribu-
tions before and after the reduction (blue diagonal of matrix in Figure 7). Additionally,
we find a small accentuation of the distances between community size distributions for
categories. This can be seen by comparing the symmetric elements in the green and red
shaded regions of the matrix of Figure 7. Despite this the most distributions are still very
close after the transformation.

Since cycle bound regions of disconnectivity, we expect them to behave as bridges be-
tween communities and to go through a large number of them. If cycles were not associ-
ated with the bridging of communities, we would expect them to run through and around
communities randomly and hence the number of communities a cycle goes through
should be proportional to the fraction of total edges between communities multiplied by
the cycle length. We can therefore use this as a lower bound to assess whether cycles are
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Figure 8 Cycles and community counts. Color intensity represents the number of cycles of length £ linking
n communities. Red dashed lines represent the upper bound on the number of traversed communities, while
black dashed lines the random expectation. We provide also a linear fit to the data (black solid lines, with
confidence intervals) showing that cycles are strongly associated with community bridging.

actually bridging between communities or not. In Figure 8 we plot the diagonal as the up-
per bound on the number of communities a cycle can cross (a cycle cannot traverse more
communities that the number of its nodes) and the expected number of communities a
cycle of given length should traverse (black dashed line) as a proxy for whether cycles
tend to bridge between communities or not. We find indeed that in all case the number of
communities traversed by each cycle is much larger than random expectation, confirm-
ing their role as important features linking together different regions of the collaboration

simplex.

5 Discussion

In this paper we studied the topological structure of the collaboration data in different
scientific communities, constructed from data from arXiv. In particular, we looked at the
properties of arXiv categories in terms of their higher-order elements through topological
data analysis methods. This approach allows us to identify the set of different collabo-
rations that authors belonged to over the timespan covered by our dataset (2007-2016).
We found that, while categories, thought as a proxy for the corresponding scientific com-
munity, are characterized by different collaboration size distributions, the distributions
of how many collaborations an author belongs to appears to be much more similar (as
displayed by smaller JSD distances between P(d) than between P(s)). Moreover, we also
found that, despite different organizational and cultural differences across categories, the
individual capacity to participate in collaborations is similar - as displayed by the low val-
ues of average and median d for all categories -, while collaboration sizes themselves tend
to be more varied.
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We also identified three groups of categories on the basis of their different functional
forms for P(s). Although the JSD differences are obtained in a way as to make them inde-
pendent from the size of the category or of its max s, we find that indeed the maximum s
of a category predicts well the blocks observed in Figure 4. This is also reminding of the
observations made in [20, 37] about the performance of teams of small, medium and large
size. In our dataset, we do not have measures of performance, hence we cannot make a
direct link between a category’s structural properties and its success. However, we do see
the group’s P(s) change functional form, becoming broader and broader, as we move from
group sl to group s3 (Figure 4), highlighting different organizational structures likely due
to the different topics (e.g. group sl is mainly theoretical work, s3 is mainly experimental
work).

In fact, these results suggest that authors in experimental categories tend to collaborate
in more large and not fully overlapping groups. Again, thinking about the dynamics of
large experiments, this is reasonable since they acquire new authors and lose others over
time leading to different facets, whereas the lower number of papers that are also facets in
the most theoretical aspects of the same disciplines implies a slower turnover of members
in time, and smaller repeated collaborations within larger groups.

We also introduced a simplicial analog of the triadic closure, simplicial closure, which
could not be defined using networks or cliques alone. We found a very strong closure in
all categories, which implies that - with high probability - a triple of authors that collab-
orated in pairs will also collaborate as a group. This cohesiveness indicates the presence
of a higher-order clustering: instead of creating a link to the friend of my friend, what we
are seeing here is that the three of us become a group of three. Note also that this ob-
servation is possible because we are adopting a simplicial description. Interestingly, this
type of structural cohesiveness is consistent with what one would expect in models of lo-
cal growth by copying previously reported for co-authorship and social networks [38, 39].
However, the patterns of local cohesiveness did not correlate with the number of authors
or the size of collaborations. Interestingly, we also found that the local cycle structure
does not correlate with the large-scale (homological) cycle structure, encoded in the cycle
length distributions and in B;/n. For example, the group of categories characterized by
narrower cycle length distribution (blue distribution in Figure 6) have very different sim-
plicial closure values. These observations are consistent with local growth mechanisms
that are responsible for the local dense patterns but cannot justify the large scale cycles
that, instead, we find link together communities across the whole complex, acting as a
scaffold [40] supporting the dense communities, again highlighting a difference between
the (quasi)-local structure and the large-scale structure, possibly organized along funding
and academic leadership lines [7, 41].

An interesting direction for future work is to build minimal models reproducing these
multiscale properties, both the order of interactions and the range of scales form local
to mesoscales. Indeed, collaboration models built on networks cannot reproduce this by
construction, because they lack higher order interactions and because homology has been
shown to be poorly captured by network models [42]. A possibility would be to adapt to
this case recent simplicial growth models [43-4.6] which have been shown to create rich
local and non-local homological structure. Indeed, the difference we observed between
the individual (d) and the collaboration (s) levels suggests the presence of attentional and
temporal limit on the individual collaboration capacity (e.g. in- and out-groups [19]) and
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of infrastructural or organizational constraints [47], which would likely benefit from a
simplicial modeling. This would also open the door to generalizations of our observations
to the case of weighted simplices, which could be achieved with a persistent homology
approach [23], and to the inclusion of temporal features of the network, which again could
find a likely phrased within the framework of zigzag homology [48].
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