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Abstract
Social media expose millions of users every day to information campaigns - some
emerging organically from grassroots activity, others sustained by advertising or other
coordinated efforts. These campaigns contribute to the shaping of collective
opinions. While most information campaigns are benign, some may be deployed for
nefarious purposes, including terrorist propaganda, political astroturf, and financial
market manipulation. It is therefore important to be able to detect whether a meme
is being artificially promoted at the very moment it becomes wildly popular. This
problem has important social implications and poses numerous technical challenges.
As a first step, here we focus on discriminating between trending memes that are
either organic or promoted by means of advertisement. The classification is not trivial:
ads cause bursts of attention that can be easily mistaken for those of organic trends.
We designed a machine learning framework to classify memes that have been
labeled as trending on Twitter. After trending, we can rely on a large volume of
activity data. Early detection, occurring immediately at trending time, is a more
challenging problem due to the minimal volume of activity data that is available prior
to trending. Our supervised learning framework exploits hundreds of time-varying
features to capture changing network and diffusion patterns, content and sentiment
information, timing signals, and user meta-data. We explore different methods for
encoding feature time series. Using millions of tweets containing trending hashtags,
we achieve 75% AUC score for early detection, increasing to above 95% after trending.
We evaluate the robustness of the algorithms by introducing random temporal shifts
on the trend time series. Feature selection analysis reveals that content cues provide
consistently useful signals; user features are more informative for early detection,
while network and timing features are more helpful once more data is available.
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1 Introduction
An increasing number of people rely, at least in part, on information shared on social
media to form opinions and make choices on issues related to lifestyle, politics, health,
and products purchases [–]. Such reliance provides a variety of entities - from single
users to corporations, interest groups, and governments - with motivation to influence
collective opinions through active participation in online conversations. There are also
obvious incentives for the adoption of covert methods that enhance both perceived and
actual popularity of promoted information. There are abundant examples of recently re-
ported abuse: astroturf in political campaigns, or attempts to spread fake news through
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social bots under the pretense of grassroots conversations [–]; pervasive spreading of
unsubstantiated rumors and conspiracy theories []; orchestrated boosting of perceived
consensus on relevant social issues performed by governments []; propaganda and re-
cruitment by terrorist organizations, like ISIS [, ]; and actions involving social media
and stock market manipulation [].

The situation is ripe with dangers as people are rarely equipped to recognize propaganda
or promotional campaigns as such. It can be difficult to establish the origin of a piece of
news, the reputation of its source, and the entity behind its promotion on social media, due
both to the intrinsic mechanisms of sharing and to the high volume of information that
competes for our attention. Even when the intentions of the promoter are benign, we easily
interpret large (but possibly artificially enhanced) popularity as widespread endorsement
of, or trust in, the promoted information.

There are at least three questions about information campaigns that present scientific
challenges: what, how, and who. The first concerns the subtle notion of trustworthiness of
information, ranging from verified facts [], to rumors and exaggerated, biased, unveri-
fied or fabricated news [, , ]. The second considers the tools employed for the propa-
ganda. Again, the spectrum is wide: from a known brand that openly promotes its products
by targeting users who have shown interest, to the adoption of social bots, trolls and fake
or manipulated accounts that pose as humans [, –]. The third question relates to the
(possibly concealed) entities behind the promotion efforts and the transparency of their
goals. Even before these question can be explored, one would need to be able to iden-
tify an information campaign in social media. But discriminating such campaigns from
grassroots conversations poses both theoretical and practical challenges. Even the very
definition of ‘campaign’ is conceptually difficult, as it entangles the nature of the content
(e.g., product or news), purpose of the source (e.g., deception, recruiting), strategies of
dissemination (e.g., promotion or orchestration), different dynamics of user engagement
(e.g., the aforementioned social bots), and so on.

This paper takes a first step toward the development of computational methods for the
early detection of information campaigns. In particular, we focus on trending memes and
on a special case of promotion, namely advertisement, because they provide convenient
operational definitions of social media campaigns. We formally define the task of discrim-
inating between organic and promoted trending memes. Future efforts will aim at extend-
ing this framework to other types of information campaign.

1.1 The challenge of identifying promoted content
On Twitter, it is common to observe hashtags - keywords preceded by the # sign that
identify messages about a specific topic - enjoying sudden bursts in activity volume due
to intense posting by many users with an interest in the topic [–]. Such hashtags are
labeled as trending and are highlighted on the Twitter platform. Twitter algorithmically
identifies trending topics in a predetermined set of geographic locations. Although Twitter
recently included personalized and clustered trends, the ones in the collection analyzed
here correspond to single hashtags selected on the basis of their popularity. Unfortunately,
detailed knowledge about the algorithm and criteria used to identify organic trends is not
publicly available []. Other hashtags are exposed prominently after the payment of a
fee by parties that have an interest in enhancing their popularity. Such hashtags are called
promoted and often enjoy subsequent bursts of popularity similar to those of trending
hashtags, therefore being listed among trending topics.
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Table 1 Summary statistics of collected data about promoted and organic trends on Twitter

Promoted Organic
Dates 1 Jan-31 Apr 2013 1-15 Mar 2013
No. trends 75 852

Mean St. dev. Mean St. dev.

Number of tweets 2,385 6,138 3,692 9,720
Number of unique users 2,090 5,050 2,828 8,240
Retweet ratio 42% 13.8% 33% 18.6%
Reply ratio 7.5% 7.8% 20% 21.8%
Number of URLs 0.25 0.176 0.15 0.149
Number of hashtags 1.7 0.33 1.7 0.78
Number of mentions 0.8 0.28 0.9 0.35
Number of words 13.5 2.21 12.2 2.74

Figure 1 Time series of trending hashtags. Comparison of the time series of the volume (number of tweets
per hour in our sample) relative to promoted (left) and organic (right) trends with similar temporal dynamics.

Of course, once Twitter labels a hashtag as trending, it is not necessary to detect whether
or not it is promoted - this information is disclosed by Twitter. However, since it is difficult
to manually annotate a sufficiently large datasets of campaigns, we use organic and pro-
moted trending topics as a proxy for a broader set of campaigns, where promotion mech-
anisms may be hidden. Our data collection methodology provide us with a large source of
reliable ‘ground truth’ labels about promotion, which represent an ideal testbed to evalu-
ate detection algorithms. These algorithms have to determine whether or not a hashtag
is promoted based on information that would be available even in cases where the nature
of a trend is unknown. We stress that our goal of distinguishing mechanisms for promot-
ing popular content is different from that of predicting viral topics, an interesting area of
research in its own right [–].

Discriminating between promoted and organically trending topics is not trivial, as Ta-
ble  illustrates - promoted and organic trending hashtags often have similar characteris-
tics. One might assume that promoted trends display volume patterns characteristic of ex-
ogenous influence, with sudden bursts of activity, whereas organic trends would conform
to more gradual volume growth patterns typical of endogenous processes [, , ].
However, Figure  shows that promoted and organic trends exhibit similar volume pat-
terns over time. Furthermore, promoted hashtags may preexist the moment in which they
are given the promoted status and may have originated in an entirely grassroots fashion.
It is therefore conceivable for such hashtags to display features that are largely indistin-
guishable from those of other grassroots hashtags about the same topic, at least until the
moment of promotion.
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Figure 2 Cumulative fraction of tweets as a
function of time. On average, only 13% of the
tweets in the organic class and 15% of the tweets in
the promoted class are produced prior to the
trending point. The majority of tweets are observed
after the trending point, with a rapid increase
around trending time.

The analysis in this paper is motivated by the goal of identifying promoted campaigns
at the earliest possible time. The early detection task addresses the difficulty of judging
the nature of a hashtag using only the limited data available immediately before trending.
Figure  illustrates the shortage of information available for early detection. It is also con-
ceivable that once the promotion has triggered interest in a hashtag, the conversation is
sustained by the same mechanisms that characterize organic diffusion. Such noise around
popular conversations may present an added difficulty for the early detection task.

1.2 Contributions and outline
The major contribution of this paper, beyond formulating the problem of detection of
campaigns in social media, is the development and validation of a supervised machine
learning framework that takes into consideration the temporal sequence of messages asso-
ciated with a trending hashtag on Twitter and successfully classifies it as either ‘promoted’
(advertised) or ‘organic’ (grassroots). The proposed framework adopts time-varying fea-
tures built from network structure and diffusion patterns, language, content and sentiment
information, timing signals, and user meta-data. In the following sections we discuss the
data we collected and employed, the procedure for feature extraction and selection, the
implementation of the learning framework, and the evaluation of our system.

2 Data and methods
2.1 Dataset description
The dataset adopted in this study consists of Twitter posts (tweets) that contain a trending
hashtag and appeared during a defined observation period. Twitter provides an interface
that lists trending topics, with clearly labeled promoted trends at the top (Figure ). We
crawled the Twitter webpage at regular intervals of  minutes to collect all organic and
promoted hashtags trending in the United States between January and April , for
a total of N =  hashtags. This constitutes our ground-truth dataset of promoted and
organic trends.

We extracted a sample of organic trends observed during the first two weeks of March
 for our analysis. While Twitter allows for at most one promoted hashtag per day,
dozens of organic trends appear in the same period. As a result, our dataset is highly im-
balanced, with the promoted class more than ten times smaller than the organic one (cf.
Table ). Such an imbalance, however, reflects our expectation to observe in the Twitter
stream a minority of promoted conversations blended in a majority of organic content.
Therefore we did not balance the classes by resampling, to study the campaign detection
problem under realistic conditions.
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Figure 3 Screenshot of Twitter U.S. trends taken on Jan. 6, 2016. The hashtag
#CES2016was promoted on this date.

Hashtags may trend multiple times on Twitter. However, those in our collection only
trended once during our observation period. For each trend, we retrieved all tweets con-
taining the trending hashtag from an archive containing a % random sample of the public
Twitter stream. The collection period was hashtag-specific: for each hashtag we obtained
all tweets produced in a four-day interval, starting two days before its trending point and
extending to two days after that. This procedure provides an extensive coverage of the
temporal history of each trending hashtag in our dataset and its related tweets, allowing
us to study the characteristics of each trend before, during, and after the trending point.

Given that each trend is described by a collection of tweets over time, we can aggregate
data in sliding time windows [t, t + �) of duration � and compute features on the subsets
of tweets produced in these windows. A window can slide by time intervals of duration δ.
The next window therefore contains tweets produced in the interval [t + δ, t + � + δ). We
experimented with various time window lengths and sliding parameters, and the optimal
performance is often obtained with windows of duration � =  hours sliding by δ = 
minutes.

We have made the IDs of all tweets involved in the trending hashtags analyzed in this
paper available in a public dataset (carl.cs.indiana.edu/data/ovarol/trend-dataset.tar.gz).

2.2 Features
Our framework computes features from a collection of tweets in some time interval. The
system generates  features in five different classes: network structure and informa-
tion diffusion patterns, content and language, sentiment, timing, and user meta-data. The
classes and types of features are reported in Table  and discussed next. All of the feature
time series in this study are available in our public dataset.

.. Network and diffusion features
Twitter actively fosters interconnectivity. Users are linked by means of follower/followee
relations. Content travels from person to person via retweets. Tweets themselves can be
addressed to specific users via mentions. The network structure carries crucial informa-
tion for the characterization of different types of communication. In fact, the usage of
network features significantly helps in tasks like astroturf detection []. Our system recon-
structs three types of networks: retweet, mention, and hashtag co-occurrence networks.
Retweet and mention networks have users as nodes, with a directed link between a pair of
users that follows the direction of information spreading - toward the user retweeting or
being mentioned. Hashtag co-occurrence networks have undirected links between hash-
tag nodes when two hashtags have occurred together in a tweet. All networks are weighted

http://carl.cs.indiana.edu/data/ovarol/trend-dataset.tar.gz
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Table 2 List of 487 features extracted by our framework

Class Feature description No. of
features

Network (†) Number of nodes 1
Number of edges 1
(*) Strength distribution 8
(*) In-strength distribution 8
(*) Out-strength distribution 8
(*) Distribution of number of nodes in the connected components 8
Network density of whole and largest connected component 2
Network assortativity of whole and largest connected component 2
Mean shortest path length of the largest connected component 1

User (*) Sender’s follower count 8
(*) Sender’s followee count 8
(*) Sender’s number of favorite tweets 8
(*) Sender’s number of Twitter statuses posted 8
(*) Sender’s number of lists subscribed to 8
(*) Originator’s follower count 8
(*) Originator’s followee count 8
(*) Originator’s number of favorite tweets 8
(*) Originator’s number of Twitter statuses posted 8
(*) Originator’s number of lists subscribed to 8

Timing Number of tweets appeared in a given window 1
(*) Time between two consecutive tweets 8
(*) Time between two consecutive retweets 8
(*) Time between two consecutive mentions 8

Content (*) Number of hashtags in a tweet 8
(*) Number of mentions in a tweet 8
(*) Number of URLs in a tweet 8
(*,**) Frequency of POS tags in a tweet 64
(*,**) Proportion of POS tags in a tweet 64
(*) Number of words in a tweet 8
(*) Entropy of words in a tweet 8

Sentiment (***) Happiness scores of aggregated tweets 2
(***) Valence scores of aggregated tweets 2
(***) Arousal scores of aggregated tweets 2
(***) Dominance scores of single tweets 2
(*) Happiness score of single tweets 8
(*) Valence score of single tweets 8
(*) Arousal score of single tweets 8
(*) Dominance score of single tweets 8
(*) Polarization score of single tweets 8
(*) Entropy of polarization scores of single tweets 8
(*) Positive emoticons entropy of single tweets 8
(*) Negative emoticons entropy of single tweets 8
(*) Emoticons entropy of single tweets 8
(*) Ratio between positive and negative score of single tweets 8
(*) Number of positive emoticons in single tweets 8
(*) Number of negative emoticons in single tweets 8
(*) Total number of emoticons in single tweets 8
Ratio of tweets that contain emoticons 1

† We consider three types of network: retweet, mention, and hashtag co-occurrence networks. The hashtag co-occurrence
network is undirected. * Distribution types. For each distribution, the following eight statistics are computed and used as
individual features: min, max, median, mean, std. deviation, skewness, kurtosis, and entropy. ** Part-of-Speech (POS) tag.
There are eight POS tags: verbs, nuns, adjectives, modal auxiliaries, pre-determiners, interjections, adverbs, and pronouns.
*** For each feature we compute mean and std. deviation.
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according to the number of interactions and co-occurrences. For each network, a set of
features is computed, including in- and out-strength (weighted degree) distribution, den-
sity, shortest-path distribution, and so on (cf. Table ).

.. User-based features
User meta-data is crucial to classify communication patterns in social media [, ]. We
extract user-based features from the details provided by the Twitter API about the author
of each tweet and the originator of each retweet. Such features include the distribution
of follower and followee numbers, and the number of tweets produced by the users (cf.
Table ).

.. Timing features
The temporal dimension associated with the production and consumption of content may
reveal important information about campaigns and their evolution []. The most basic
time-related feature we considered is the number of tweets produced in a given time in-
terval. Other timing features describe the distributions of the intervals between two con-
secutive events, like two tweets or retweets (cf. Table ).

.. Content and language features
Many recent papers have demonstrated the importance of content and language fea-
tures in revealing the nature of social media conversations [–]. For example, de-
ceiving messages generally exhibit informal language and short sentences []. Our
system extracts language features by applying a Part-of-Speech (POS) tagging tech-
nique, which identifies different types of natural language components, or POS tags.
The following POS tags are extracted: verbs, nouns, adjectives, modal auxiliaries, pre-
determiners, interjections, adverbs, pronouns, and wh-pronouns (for details and examples
see www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html). Tweets can be therefore analyzed
to study how such POS tags are distributed. Other content features include the length and
entropy of the tweet content (cf. Table ).

.. Sentiment features
Sentiment analysis is a powerful tool to describe the attitude or mood of an online con-
versation. Sentiment extracted from social media conversations has been used to forecast
offline events, including elections and financial market fluctuations [, ], and is known
to affect information spreading [, ]. Our framework leverages several sentiment ex-
traction techniques to generate various sentiment features, including happiness score [],
arousal, valence and dominance scores [], polarization and strength [], and emotion
score [] (cf. Table ).

2.3 Feature selection
Our system generates a set I of |I| =  features (cf. Table ) designed to extract signals
from a collection of tweets and distinguish promoted trends from organic ones. Some
features are more predictive than others; some are by definition correlated with each other
due to temporal dependencies. Most of the correlations are related to the volume of data.
For instance the two most correlated features immediately prior to the trending point
are the size of the hashtag cooccurrence network and the size of its largest connected
component (Pearson’s ρ = .). This is why it is important to perform feature selection

http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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to eliminate redundant features and identify a combination of features that yield good
classification performance.

There are several methods to select the most predictive features in a classification task
[]. We implemented a simple greedy forward feature selection method, summarized as
follows: (i) initialize the set of selected features S = ∅; (ii) for each feature i ∈ I – S, consider
the union set U = S∪{i}; (iii) train the classifier using the features in U ; (iv) test the average
performance of the classifier trained on this set; (v) add to S the feature that provides the
best performance; (vi) repeat (ii)–(v). We terminate the feature selection procedure if the
AUC (cf. Section .) increases by less than . between two consecutive steps. Most of
the experiments terminate after selecting fewer than  features. The time series for the
selected features are passed as input to the learning algorithms. In the next subsections
we provide details about our experimental setting and learning models.

2.4 Experimental setting
Our experimental setting follows a pipeline of feature selection, model building, and per-
formance evaluation. We apply the wrapper approach to select features and evaluate per-
formance iteratively []. During each iteration (Figure ), we train and evaluate models
using candidate subsets of features and expand the set of selected features using the greedy
approach described in Section .. Once we identify the set of features that performs best,
we report results of experiments using only this set of features.

In each experiment and for each feature, an algorithm receives in input a time series with
L =  data points to carry out its detection. The length of the time series and its delay D
with respect to the trending point are discussed in Section ; different experiments will
consider different delays.

A set of feature time series is used to either train a learning model or evaluate its ac-
curacy. The learning algorithms are discussed in the next subsection. For evaluation, we
compute a Receiver Operating Characteristic (ROC) curve, which plots the true positive
rate (TPR) versus the false positive rate (FPR) at various thresholds. Accuracy is evaluated
by measuring the Area Under the ROC Curve (AUC) [] with -fold cross validation,
and averaging AUC scores across the folds. A random-guess classifier produces the diago-
nal line where TPR equals FPR, corresponding to a % AUC score. Classifiers with higher
AUC scores perform better and the perfect classifier in this setting achieves a % AUC
score. We adopt AUC to measure accuracy because it is not biased by the imbalance in
our classes ( promoted trends versus  organic ones, as discussed earlier).

2.5 Learning algorithms
Let us describe the learning systems for online campaign detection based on multidimen-
sional time-series data from social media. We identified an algorithm, called K-Nearest
Neighbor with Dynamic Time Warping (KNN-DTW), that is capable of dealing with mul-
tidimensional time series classification. For evaluation purposes, we compare the clas-
sification results against two baselines: SAX-VSM and KNN. These three methods are
described next.

.. KNN-DTW classifier
KNN-DTW is a state-of-the-art algorithm to classify multidimensional time series, illus-
trated in Figure . During learning, we provide our model with training and testing sets
generated by -fold cross validation. Time series for each feature are processed in paral-
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Figure 4 Wrapper method description for KNN-DTW. We present the pipeline of our complete system,
including feature selection and model evaluation steps. Input data feed into the system for training (green
arrow) and testing (blue arrow) steps.

lel using dynamic time warping (DTW), which measures the similarity between two time
series after finding an optimal match between them by ‘warping’ the time axis []. This
allows the method to absorb some non-linear variations in the time series, for example
different speed or resolution of the data.

For efficiency, we initially apply a time series coarsening strategy called piece-wise ag-
gregation. We split each original time series into p equally long sections and replace the
time-series values by the section averages, reducing the dimensionality from L to L′ = L/p.
For trend i and feature k, we thus obtain a coarsened time series f i

k = {f i
k,, f i

k,, . . . , f i
k,L′ }.

Then, DTW computes the distance between all pairs of points of two given trend time se-
ries f i

k and f j
k . Each element of the resulting L′ ×L′ distance matrix is Mij

k (t, t′) = (f i
k,t – f j

k,t′ )
.

Points closer to each other are more likely to be matched. To create a mapping between the
two time series, an optimal path is computed over the time-series distance matrix. A path
must start from the beginning of each time series and terminate at its end. The path be-
tween first and last points is then computed by minimizing the cumulative distance (γ )
over alternative paths. This problem can be solved via dynamic programming [] using
the following recurrence: γ (t, t′) = M(t, t′) + min{γ (t – , t′ – ),γ (t – , t′),γ (t, t′ – )} (in-
dices i, j, k dropped for readability). The distance γ

ij
k is used as the ij-th element of the

N × N trend similarity matrix �k .
The computation of similarity between time series using DTW requires O(L′) opera-

tions. Some heuristic strategies use lower-bounding techniques to reduce the computa-
tional complexity []. Another technique is to re-sample the data before adopting DTW.
Our coarsening approach reduces the computational costs by a factor of p. We achieved
a significant increase in efficiency with marginal classification accuracy deterioration by
setting p =  (L′ = ).

In the evaluation step, we use the K-Nearest Neighbor (KNN) algorithm [] to assign
a class score to a test trend q. We compare q with each training trend i to obtain a DTW
distance γ

iq
k for each feature k. We then find the K =  labeled trends with smallest DTW

distance from q, and compute the fraction of promoted trends sq
k among these nearest

neighbors. We finally average across features to obtain the class score s̄q. Higher values
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of s̄q indicate a high probability that q is a promoted trend. Class scores, together with
ground-truth labels, allow us to compute the AUC of a model, which is then averaged
across folds according to cross validation.

.. SAX-VSM classifier
Our first baseline, called SAX-VSM, blends symbolic dimensionality reduction and vector
space models []. Time series are encoded via Symbolic Aggregate approXimation (SAX),
yielding a compact symbolic representation that has been used for time series anomaly and
motif detection, time series clustering, indexing, and more [, ]. A symbolic represen-
tation encodes numerical features as words. A vector space model is then applied to treat
time series as documents for classification purposes, similarly to what is done in informa-
tion retrieval. In our implementation, we first apply piece-wise aggregation and then use
SAX to represent the data points in input as a single word of L′ letters from an alphabet ℵ.
This choice and the parameters |ℵ| =  and L′ =  are based on prior optimization [],
and variations to these settings only marginally affect performance. Each time-series value
is mapped into a letter by dividing the range of the feature values into |ℵ| regions in such
a way as to obtain equiprobable intervals under an assumption of normality []. In the
training phase, for each feature, we build two sets of words corresponding to organic and
promoted trends, respectively. In the test phase, a new instance is assigned to the class
with the majority of word matches across features. In case of a tie we assign a random
class. For further details about this baseline and its implementation, we refer the reader
to the SAX-VSM project website (github.com/jMotif/sax-vsm_classic).

.. K-nearest neighbors classifier
Our second baseline is an off-the-shelf implementation of the traditional K-Nearest Neigh-
bors algorithm [] for time-series classification. We used the Python scikit-learn package
[]. We selected KNN because it can capture and learn time-series patterns without re-
quiring any pre-processing of the raw time-series data. We created the feature vectors for
each trend by concatenating into a single vector the continuous-valued time series rep-
resenting each feature. The nearest neighbor classifier computes the Euclidean distance
between pairs of single-vector time series. For a test trend, the class score is given by the
fraction of promoted trends among the K =  nearest neighbors.

3 Results
In this section, we present results of experiments designed to evaluate the ability of our
machine learning framework to discriminate between organic and promoted trends. For
all experiments, each feature time series consists of  real-valued data points equally
divided before and after the trending point. Although in principle we could use the entire
time series for classification, ex-post information would not serve our goal of early detec-
tion of social media campaigns in a streaming scenario that resembles a real setting, where
information about the future evolution of a trend is obviously unavailable. For this reason,
we consider only a subset consisting of L data points ending with delay D since the trend-
ing point; D ≤  for early detection, D >  for classification after trending. We evaluate the
performance of our detection framework as a function of the delay parameter D. The case
D =  involves detection immediately at trending time. However, we also consider D <  to
examine the performance of our algorithms based on data preceding the trending point;

http://github.com/jMotif/sax-vsm_classic
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of course the detection would not occur until D = , when one would become aware of
the trending hashtag. Time series are encoded using the settings described above (L = 
windows of length � =  hours sliding every δ =  minutes).

3.1 Method comparison
We carried out an extensive benchmark of several configurations of our system for cam-
paign detection. The performance of the algorithms as a function of varying delays D is
plotted in Figure .

In addition, we introduce random temporal shifts for each trend time series to test the
robustness of the algorithms. In real-world scenarios, one would ideally expect to detect
a promoted trend without knowing the trending point. To simulate such scenarios, we
designed an experiment that introduces variations that randomly shift each time series
around its trending point. The temporal shifts are sampled from Gaussian distributions
with different variances. We present the results of this experiment in Figure .

KNN-DTW and KNN display the best detection accuracy (measured by AUC) in gen-
eral. Their performance is comparable (Figure ). The AUC score is on average around
% for detecting promoted trends after trending. In the early detection task, we observe
scores above %. This is quite remarkable given the small amount of data available before
the trending point. KNN-DTW also displays a strong robustness to temporal shifts, point-
ing to the advantage of time warping (Figure ). The KNN algorithm is less robust because
it computes point-wise similarities between time series without any temporal alignment;
as the variance of the temporal shifts increases, we observe a significant drop in accuracy.
SAX-VSM benefits from the time series encoding and provides good detection perfor-
mance (on average around % AUC) but early detection accuracy is poor, close to ran-
dom for D < . A strong feature of SAX-VSM is its robustness to temporal shifts, similar
to KNN-DTW.

Figure 5 Methods comparison. Classification
performance of different learning algorithms on
encoded and raw time series. The AUC is measured
for various delays D. Confidence intervals represent
standard errors based on 10-fold cross validation.

Figure 6 Temporal robustness. AUC of different learning
algorithms with random temporal shifts versus the standard
deviation of the shifts. We repeated the experiment for
various delay values D. Significance levels of differences in
consecutive experiments are marked as (*) p < 0.05 and
(**) p < 0.01.
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Figure 7 Distributions of KNN-DTW classifier
scores. We use Kernel Density Estimation (KDE), a
non-parametric smoothing method, to estimate the
probability densities based on finite data samples.
We also show the threshold values that separate the
two classes yielding an optimal F1 score.

Our experiments suggest that temporal encoding is a crucial ingredient for successful
classification of time-series data. Encoding reduces the dimensionality of the signal. More
importantly, encoding preserves (most) information about temporal trends and makes an
algorithm robust to random shifts, which is an importance advantage in real-world sce-
narios. SAX-VSM ignores long-term temporal ordering. KNN-DTW, on the other hand,
computes similarities using a time series representation that preserves the long-term tem-
poral order, even as time warping may alter short-term trends. This turns out to be a cru-
cial advantage to achieve both high accuracy and robustness.

Using AUC as an evaluation metric has the advantage of not requiring discretization of
scores into binary class labels. However, detection of promoted trends in real scenarios re-
quires binary classification by a threshold. In this way we can measure accuracy, precision,
recall, and identify misclassified accounts. Figure  illustrates the distribution of proba-
bilistic scores produced by the KNN-DTW classifier as a function of the delay for the
two classes of trends, organic and promoted. The scores are computed for leave-out test
instances, across folds. An ideal classifier would separate these distributions completely,
achieving perfect accuracy. Test instances in the intersection between two distributions
either are misclassified or have low-confidence scores. Examples of misclassified instances
are discussed in Section .. For D < , KNN-DTW generates more conservative scores,
and the separation between the organic and promoted class distributions is smaller. For
D > , KNN-DTW scores separate the two classes well. To convert continuos scores into
binary labels, we calculated the threshold values that maximize the F score of each experi-
ment; this score combines precision and recall. Trends with scores above the threshold are
labeled as promoted. The best accuracy and F score are obtained shortly after trending,
at D = .

3.2 Feature analysis
Let us explore the roles and importance of different features for trend detection. To this
end, we identify the significant features using the greedy selection algorithm described in
Section ., and group them by the five classes (user meta-data, content, network, sen-
timent, and timing) previously defined. We focus on KNN-DTW, our best performing
method. After selecting the top  features for different delays D, we compute the frac-
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Figure 8 KNN-DTW feature analysis. Stacked plot
showing how different feature classes are represented
among the top 10 selected features.

Table 3 Top 10 features for experiments with different values of D

Delay Features Classes

40 Number of tweets Timing
Max. proportion of pronouns in a tweet Content
Entropy of hashtag cooccurrence network degree Network
Entropy of time between two consecutive mentions Timing
Mean time between two consecutive tweets Timing
Entropy of emoticon scores Sentiment
Median time between two consecutive tweets Timing
Max. originator’s followers count User
Kurtosis of mention network degree distribution Network
Entropy of pre-determiner POS frequency in a tweet Content

0 Max. hashtag cooccurrence network degree Network
Entropy of number of originator’s friends count User
Max. originator’s statuses count User
Median time between two consecutive tweets Timing
Skewness of time between two consecutive mentions Timing
Median of sender’s lists count User
Min. originator’s lists count User
Median of mention network out-degree Network
Min. frequency of adjective POS in a tweet Content
Mean frequency of noun POS in a tweet Content

tions of top features in each class, as illustrated by Figure . We list the top features for
experiments D =  (early detection) and D =  (classification) in Table .

The usefulness of content features does not appear to change significantly between early
and late detection. In the early detection task, user features seem to contribute signif-
icantly more than any other class, possibly because early adopters reveal strong signals
about the nature of trends. As we move past the trending point, signals from early adopters
are flooded by increasing numbers of participants. Timing and network features become
increasingly important as the involvement of more users allows to analyze group activity
and network structure patterns.

3.3 Analysis of misclassifications
We conclude our analysis by discussing when our system fails. In Figure , we illustrate
how some key features of misclassified trends diverge from the majority of the trends that
are correctly classified. We observe that some misclassified trends follow the temporal
characteristics of the other class. This is best illustrated in the case of volume (number of
tweets).

An advantage of continuous class scores is that we can tune the classification thresh-
old to achieve a desired balance between precision and recall, or between false positives
and false negatives. False negative errors are the most costly for a detection system: a pro-
moted trend mistakenly labeled as organic would easily go unchecked among the larger
number of correctly labeled organic trends. Focusing our attention on a few specific in-
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Figure 9 Comparison between feature time series of misclassified and correctly classified trends. Time
series of the top five features (columns) for promoted (top) and organic (bottom) trends in the D = 40
detection task. The black lines and gray areas represent the average and 95% confidence intervals of time
series for correctly classified trends. Time series of misclassified trends are shown in red. Misclassified organic
trends (false positives) are: #bobsantigoldlive, #evildead, #galaxyfamily, #gethappy,
#madmen, #makeboringbrilliant, #nyias, #oneboston, #stingray, #thewalkingdead,
#timeto365, #watchsuitstonight, and #whyiwatchsuits. Misclassified promoted trends (false
negatives) are: #1dmemories, #20singersthatilike, #8thseed, #bnppo13, #ciaa,
#expowest, #jaibrooksforpresident, #justintimberweek, #kobalt400,
#mentionsomeonecuteandbeautiful, #nyc, #realestate, #stars, #sxsw, #wbc, and #wcw.

stances of false negatives generated by our system, we gained some insight on the reasons
triggering the mistakes. First of all, it is conceivable that promoted trends are sustained
by organic activity before promotion and therefore they are essentially indistinguishable
from organic ones until the promotion triggers the trending behavior. It is also reasonable
to expect a decline in performance for long delays: as more users join the conversation,
promoted trends become harder to distinguish from organic ones. This may explain the
dip in accuracy observed for the longest delay (cf. Figure ).

False positives (organic trends mistakenly labeled as promoted) can be manually filtered
out in post-processing and are therefore less costly. However, analysis of false positives
provides for some insight as well. Some trends in our dataset, such as #watchsuit-
stonight and #madmen, were promoted via alternative communication channels (tele-
vision and radio), rather than via Twitter. This has become a common practice in recent
years, as more and more Twitter campaigns are mentioned or advertised externally to
trigger organic-looking responses in the audience. Our system recognized such instances
as promoted, whereas their ground-truth labels did not. Those campaigns were therefore
wrongly counted as false positives, penalizing our algorithms in the evaluation. We find it
remarkable that in these cases our system is capable of learning the signature of promoted
trends, even though the promotion occurs outside of the social media platform.

4 Related work
Recent work on social media provides a better understanding of human communication
dynamics such as collective attention and information diffusion [], the emergence of
trends [, ], social influence and political mobilization [, –].

Different information diffusion mechanisms may determine the trending dynamics of
hashtags and other memes on social media. Exogenous and endogenous dynamics pro-



Varol et al. EPJ Data Science  (2017) 6:13 Page 15 of 19

duce memes with distinctive characteristics [, , , , ]: external events occurring
in the real world (e.g., a natural disaster or a terrorist attack) can generate chatter on the
platform and therefore trigger the trending of a new, unforeseen hashtag; other topics
(e.g., politics or entertainment) are continuously discussed and sometimes a particular
conversation can accrue lots of attention and generate trending memes. The promotional
campaigns studied here can be seen as a type of exogenous factor affecting the visibility
of memes.

The present work, to the best of our knowledge, is the first to investigate the early detec-
tion of promoted content on social media. We focus our attention on advertisement, which
can play an important role in information campaigns. Trending memes are considered an
indicator of collective attention in social media [, ], and as such they have been used
to predict real-world events, like the winner of a popular reality TV show []. Although
emerging from collective attention, communication on social media can be manipulated,
for example for political gain, as in the case of astroturf [, ].

Recent work analyzes emerging topics, memes, and conversations triggered by real
world events [–]. Studies of information dissemination reveal mechanisms governing
content production and consumption [] as well as prediction of future content popu-
larity. Cheng et al. study the prediction of photo-sharing cascade size [] and recurrence
[] on Facebook. Machine learning models can predict future popularity of emerging
hashtags and content on social media [, ]. Features extracted from content [], sen-
timent [, ], community structure [, ], and temporal signatures [–] are com-
monly used to train such models. In this paper we leverage similar features, but for the
novel task of campaign detection. Furthermore, our task is more challenging because we
deal with dynamic features whose changes over time are captured in high-dimensional
time series.

Another topic related to our research is rumor detection. Rumors may emerge organi-
cally as genuine conversation and spread out of control. They are characterized and sus-
tained by ambiguous contexts, where correctness and completeness of information or the
meaning of a situation is not obviously apparent []. Examples are situations of crisis or
topics of public debate []. Existing systems to identify rumors are based mostly on con-
tent analysis [, ] and clustering techniques [, ]. An open question is to determine
if rumor detection might benefit from the wide set of feature classes we propose here.

The proposed framework is based on a mixture of features common in social media data,
including emotional and sentiment information. The literature has reported extensively
on the use of social media content to describe emotional and demographic characteristics
of users [, , ]. The use of language in online communities is the focus of two recent
papers [, ]: the authors observe that the language of social media users evolves, and
common patterns emerge over time. The language style of users adapts to achieve better
fitness in the conversation []. These findings suggest that language contains strong sig-
nals, in particular if studied in conjunction with other dimensions of the data. Our study
confirms the importance of content for campaign detection.

Finally, our system builds on network features and diffusion patterns of social media
messages. Network structure and information diffusion in social media have been studied
extensively [, ]. Network features are highly predictive of certain types of social media
abuse, like astroturf, that attempt to simulate grassroots online conversations [, , , ].
Such artificial campaigns produce peculiar patterns of information diffusion: the topology
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of retweet or mention networks is often a stronger signal than content or language. The
present findings are consistent with this body of work, as network features are helpful in
detecting promoted content after trending.

5 Conclusions
As we increasingly rely on social media to satisfy our information needs, it is important
to recognize the dynamics behind online campaigns. In this paper, we posed the prob-
lem of early-detection of promoted trends on social media, discussed the challenges that
this problem presents, and proposed a supervised computational framework to attack it.
The proposed system leverages time series representing the evolution of different features
characterizing trending campaigns. The list includes features relative to network structure
and diffusion patterns, sentiment, language and content features, timing, and user meta-
data. We demonstrated the crucial advantages of encoding temporal sequences.

We achieved good accuracy in campaign detection. Our early detection performance is
remarkable when one considers the challenging nature of the problem and the low volume
of data available in the early stage of a campaign. We also studied the robustness of the
proposed algorithms by introducing random temporal shifts around the trending point,
simulating realistic scenarios in which the trending point can only be estimated with lim-
ited accuracy.

One of the advantages of our framework is that of providing interpretable feature classes.
We explored how content, network, and user features affect detection performance. Ex-
tensive feature analysis revealed that signatures of campaigns can be detected early, es-
pecially by leveraging content and user features. After the trending point, network and
temporal features become more useful.

The availability of data about organic and promoted trends is subject to Twitter’s recipe
for selecting trending hashtags. There is no certain way to know if and when social media
platforms make any changes to such recipes. However, nothing in our approach assumes
any knowledge of a particular platform’s trending recipe. If the recipe changes, our system
could be retrained accordingly.

This work represents an important step toward the automatic detection of campaigns.
The problem is of paramount importance, since social media shape the opinions of mil-
lions of users in everyday life. Further work is needed to study whether different classes
of campaigns (say, legitimate advertising vs. terrorist propaganda) may exhibit character-
istics captured by distinct features. Many of the features leveraged in our model, such as
those related to network structure and temporal attributes, capture activity patterns that
could provide useful signals to detect astroturf []. Therefore, our framework could in
principle be applied to astroturf detection, if longitudinal training data about astroturf
campaigns were available.
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