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Abstract
Propelled by a fast evolving landscape of techniques and datasets, data science is
growing rapidly. Against this background, topological data analysis (TDA) has carved
itself a niche for the analysis of datasets that present complex interactions and rich
structures. Its distinctive feature, topology, allows TDA to detect, quantify and
compare the mesoscopic structures of data, while also providing a language able to
encode interactions beyond networks. Here we briefly present the TDA paradigm and
some applications, in order to highlight its relevance to the data science community.
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1 Introduction
The science of data is constantly changing. Classic [] and emerging [] machine learning
tools and network-theoretic descriptions [, ] are opening windows on the intimate de-
tails of systems as diverse as individual behavioural and mobility patterns [], the human
consciousness and language [], the control and robustness of biological systems [, ],
and even quantum dynamics [].

While network approaches can describe the fabric of relations between agents in a sys-
tem, or molecules in an organism, they are constrained in their descriptive power to
pairwise interactions (i.e. edges), which might not always be justified when focusing on
phenomena that involve group dynamics (e.g. scientific collaboration, genetic pathways)
or higher-order descriptions (e.g. viral evolution, molecule folding). Similarly, machine
learning tools are extremely efficient in classifying and segmenting datasets into consis-
tent patterns or clusters. However, at times they find themselves challenged when asked
to produce an organic description of the interactions among a system’s components, and
they often suffer from the curse of dimensionality due to their underlying geometric for-
malization. Over the last decade, a set of new techniques for data analysis, based on a
set-theoretic formalism, has been gaining traction. The set-theoretic foundation makes
them topological in nature (and hence geometry-independent), and so they have come to
be collectively referred to as Topological Data Analysis (TDA). The reason for the grow-
ing interest in TDA is its capacity to capture the large- and mesoscale shape of datasets
via their algebraic-topological structure []: on the one hand, TDA allows one to enrich
network descriptions with higher order ones (i.e. many-body interactions); on the other, it
adds also a notion of organization, or shape, to the descriptions obtained from traditional
classification techniques. In this note, we aim to introduce TDA, some of its successful ap-
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plications to real data analysis and why we believe it to be important for the data science
community as a set of goggles complementary to the existing ones.

2 Why topological data analysis?
The novelty of TDA is that it studies the shape of topological spaces at the mesoscopic
scale by going beyond standard measures defined on data points’ pairs. This is done by
moving from networks to simplicial complexes. The latter are obtained from elementary
objects, called simplices, built from such simple polyhedra as points, line segments, trian-
gles, tetrahedra, and their higher dimensional analogues, glued together along their faces.

Simplicial complexes were first introduced in  by Poincaré in his seminal work
“Analysis Situs” [] as a simplicial decomposition (triangulation) of a manifold. They have
been since used to store in discrete form key information on a topological space and to
transform complicated topological problems into more familiar algebraic ones with the
introduction of simplicial homology (we refer to Aleksandrov [] for a beautiful account
of the birth of combinatorial topology). Being the fundamental method in combinatorial
topology [], the use of simplicial complexes is not new in science, as for example, they
are the secret behind every D rendering and image recognition software []. They have
however taken a new life with the emergence of TDA techniques [, ].

In this arena, simplicial complexes constitute the choice representation of many-body
interactions of complex systems. In fact, by glueing together simplices of different sizes
and composition, one is able to describe varied, heterogeneous and changing interac-
tions. The resulting simplicial complexes efficiently summarise the shape of the underlying
datasets and yield mesoscopic information about how simplices coordinate with one an-
other across intermediate and large scales within the complexes. TDA summaries can be
read out from the simplicial complexes directly, or by studying the patterns of holes in all
dimensions that define their shapes (via the corresponding homology groups) []. These
summaries are both informative and guaranteed to be robust to perturbations []: in par-
ticular, they do not vary under changes in coordinates or under deformations of the indi-
vidual samples, which makes them parsimonious descriptions of arbitrary datasets. The
possibility to represent complex interactions of any order, together with the robustness
to missing and corrupted data quality issues common many real datasets, is the rationale
behind the growing number of applications in biology [], neuroscience [, ], social
sciences [, ], physics [, ], quantum computation [], and nanotechnologies [].

3 TDA in practice
In everyday applications, the TDA tool-kit consists essentially of two main techniques:
topological simplification (via the Mapper algorithm [, ]), and persistent homology
[, ].

3.1 Topological simplification
The aim of topological approaches to data is to produce sparser readable summaries of
complex datasets. Mapper, introduced by Singh et al. [], is the main tool for this type
of direct data exploration. It produces a topological skeleton of a dataset (akin to a balls-
and-sticks representation) by slicing the data-space in overlapping slabs according to case-
specific quantities and performing local clustering within each. The resulting clusters are
then linked together to recover a simplified yet (provably) complete picture of the overall
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topology, which however provides more structured information than standard techniques,
such as PCA, MDS, or clustering techniques alone could.

The fact that the clustering is performed locally in each slice makes this approach com-
putationally convenient as it can be easily be computed in parallel. It is therefore a good
tool for the analysis of large-scale datasets which can be used in a framework of big data
analysis such as the Google’s MapReduce paradigm []. Indeed, Mapper is most well-
known for the discovery of a new subtype of breast cancer [] from genetic data, but it
has also found successful applications in other biomedical studies [], e.g. the identifi-
cation of diabetes subtypes [] and of different pulmonary conditions [], as well as in
industrial [] and commercial applications (e.g. Ayasdi).

3.2 Persistent homology
Despite Mapper’s facility of interpretation and computational advantages, it does not
explicitly yield quantitative insights that allow for direct comparison within and across
datasets. Persistent homology is able to do that. Unlike Mapper, it does not compress the
data. Rather, it encodes data in a simplicial filtration, a series of progressively finer sim-
plicial complexes. This filtration is then analysed to build a multi-scale low-dimensional
summary that tracks the lifespan and evolution of connected components, holes and high
dimensional voids along the sequence of simplicial complexes. That is, it identifies and
quantifies the different kinds of ‘empty space’ embedded in the data, which implicitly make
up the dataset’s shape. This grants the possibility to obtain insights into unique mesoscale
structures otherwise invisible to standard analytical tools, which in turn motivates an ever
growing application of persistent homology across fields, such as biology [, ], social
science [, ] and neuroscience []. For example, in biology, Chan et al. [] showed
that viral genetic recombination is captured better by homological invariant than stan-
dard phylogenetic trees across a number of diseases. In the social sciences, Bajardi et al.
[] used homological features to characterise the correlations between socio-economic
indicators and spatial structure of migrant communities in Milan. Persistent homology
has found its widest application so far in the study of structural and functional brain con-
nectivity where the range of scales and the complexity of the systems seem to benefit the
most from a persistent homology description (e.g. [–]).

Unfortunately, these features are somewhat less intuitive than those Mapper provides.
However, statistical mechanical methods can give an important contribution to their in-
terpretation. For example, Lord et al. [] and Verovsek et al. [] projected the results of
persistent homology to simpler representation, i.e. lower dimensional scaffolds or skele-
tons providing localized information and making topological features amenable to net-
work techniques. Also, Kahle [] and Courtney et al. [] have taken the first steps in
constructing minimal topological random null models in order to provide a notion of
which topological features should be considered significant and which ones noise.

4 Conclusion
TDA is still very much developing as a branch of data science. It provides a new paradigm,
based on algebraic topology, for how we think about data, and has obtained its first suc-
cesses. However, there still are many challenges to be met to fully exploit its potential.
The most pressing one is the computational scalability of persistent homology, which cur-
rently prevents large-scale applications. Although the classic algorithms for topological
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features extraction have a memory and time complexity which is polynomial on the num-
ber of simplices, and the latter is exponential on the number of vertices. While the last
five years have witnessed significant advances in parallel algorithms [–] and simpli-
cial reduction schemes [–], new implementations and algorithmic improvements are
paramount. A second issue is that of the localization of homological features within a
given dataset. This is crucial if we want to pinpoint the effect of specific topological fea-
tures (e.g. a certain disconnectivity pattern in brain regions, or a structural hole among
scientific or professional collaborators), and to leverage it beyond classification purposes.
Steps in this direction have been taken [, ], but more work is required to make this
information easily accessible and interpretable. Tightly related to the previous point is
the need to strengthen the link between machine learning and TDA. A few initial works
have proposed ways to make persistent homology’s outputs directly amenable to standard
machine learning techniques (typically via kernel approaches [–]). However, there is
still a wide gap to be bridged to obtain a productive integration of TDA’s novel perspec-
tive within the full machine-learning framework. Finally, at the community level, it is also
necessary to help practitioners coming from outside the TDA community to discover and
adopt these techniques. Efforts in this direction (see for example the introduction by [],
the development of shared TDA R libraries [, ]) are undergoing, but there is still ample
space for contributions from the machine learning, mathematical, and complex networks
communities.
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