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Abstract
Humans interact through numerous communication channels to build and maintain
social connections: they meet face-to-face, make phone calls or send text messages,
and interact via social media. Although it is known that the network of physical
contacts, for example, is distinct from the network arising from communication
events via phone calls and instant messages, the extent to which these networks
differ is not clear. We show here that the network structure of these channels show
large structural variations. The various channels account for diverse relationships
between pairs of individuals and the corresponding interaction patterns across
channels differ to an extent that social ties cannot easily be reduced to a single layer.
Each network of interactions, however, contains both central and peripheral
individuals: central members are characterized by higher connectivity and can reach
a large fraction of the network within a low number of steps, in contrast to the nodes
on the periphery. The origin and purpose of each communication network also
determine the role of their respective central members: highly connected individuals
in the person-to-person networks interact with their environment in a regular
manner, while members central in the social communication networks display
irregular behavior with respect to their physical contacts and are more active through
irregular social events. Our results suggest that due to the inherently different
functions of communication channels, each one favors different social behaviors and
different strategies for interacting with the environment. These findings can facilitate
the understanding of the varying roles and impact individuals have on the
population, which can further shed light on the prediction and prevention of
epidemic outbreaks, or information propagation.
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1 Introduction
In modern society, an increasing number of communication channels are available, often
relating to different aspects of our lives: we meet others face-to-face to build and main-
tain social ties [–]; we make phone calls for various reasons [, ] (as a replacement for
physical contacts or simply arranging future appointments); we interact with others on
social media [–]. Each channel requires different levels of time commitment as well as
effort to participate, and may correspond to social ties of different strength [–]. Un-
derstanding the function of and interplay between these channels has been the subject of
increased research interest over the past few years [–], along with a growing number
of studies focusing on quantitative analysis of multilayer networks [–]. On one hand,
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the central research questions focus on how the networks corresponding to each channel
interact and how the concurrent application of them affects our communication and the
dynamics of our social environment. On the other hand, as an increasing fraction of com-
munication takes place via the digital channels, digital traces can provide unprecedented
levels of information regarding human behavior and social interactions [, –].

A central challenge in the analysis of social networks is to identify the central individuals
within a certain context solely based on their position in the global structure of the inter-
actions [, ]. While it has been shown that there are differences regarding how people
position themselves with respect to digital networks [, ], it remains unclear whether
these differences materialize in aspect of their physical contacts. Specifically, do central
members of a social network show specific behavioral patterns in their physical proximity
networks as well?

Here we analyze the interplay between digital networks and real-world physical con-
tacts by analyzing multi-channel data from more than  university students. First, we
show that the frequency of interaction on social networks and by phone calls is not triv-
ially correlated with physical contacts, indicating a fundamental difference between these
networks. Secondly, we discuss how, depending on the physical distance of the proximity
contacts (which is related to the strength of the social tie between the actors []), commu-
nication networks show varying levels of structural similarity with proximity networks. As
a result, we find that the physical distance in proximity interactions provides information
about the nature of the contacts, that is, short-range interactions resemble the communi-
cation networks more closely []. Finally, we quantify the behavioral differences of central
individuals with respect to the communication and proximity networks. By measuring the
intensity and regularity of physical engagement with the entire population, we reveal that
students central in the digital communication networks exhibit high relative activity dur-
ing evenings and in the weekend, and are less predictable compared to the population
average.

2 Results
2.1 Strength of ties
Different interaction channels can represent fundamentally different aspects of a relation-
ship and correspond to different strengths of a social tie. Phone calls and text messages
are known to occur primarily between family members and acquaintances, with high call
duration and frequency indicating a strong relationship []. On the contrary, social net-
work sites, such as Facebook or Google+, serve as a platform to maintain a wide range
of social interactions from instant messaging to posts, or quick responses to events in
an individual’s the ego-network. Due to the absence of substantial effort and time com-
mitment needed to engage, social network channels constitute a weaker form of direct
communication and may suggest a weaker social link. We distinguish between a link and
a contact: a link represents a relationship between two individuals, such as a social tie
(friends, acquaintances), whereas a contact is a single physical or online realization of in-
teraction on the link. In other words, links form the backbones on which contacts take
place. Here we consider the functional network of Facebook, that is, each time a student
interacts with any other (via posting on wall, tagging, commenting, etc.), an activity con-
tact is formed, irrespective of the interaction type. This is in contrast to the network of
Facebook friendships, which does not involve active participation once the relationship is
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established. Physical proximity plays an essential part in maintaining relationships. The
presence of face-to-face contacts is frequently reported as having the strongest impact
on emotional connection as well as representing the strongest ties [–]. Nevertheless,
the mere presence of proximity between individuals does not imply a social interaction
(as proximity can occur without active communication between participants), and thus
physical proximity cannot trivially be used for inferring social connections. To emphasize
the importance of physical distance, here we make the distinction between two types of
proximity interactions []: ambient, corresponding to a physical distance of up to - m
between the participants; and intimate that requires a distance of  m or less. The ambient
and intimate networks do not perfectly correspond to their names. That is, every intimate
interaction does not correspond to a social interaction (e.g. it is possible to be physically
proximate without engaging in a conversation), and the intimate network is a strict sub-
set of the ambient network, so this network includes all social interactions. Additionally,
due to environmental noise, the mapping from bluetooth strength to distance is not per-
fect and a small fraction of links from the ambient network will erroneously appear in the
intimate network (see Methods for the details on the construction of these interactions).

Although it has been shown that social ties can be inferred from online activity (or vice
versa) [–], the interplay between online and offline communication channels is inher-
ently complex and therefore estimating the strength of social ties by reducing them to a
single channel (or aggregating the respective networks) may have non-trivial implications.
Additionally, we compare the basic structural properties of the proximity and communi-
cation networks in the Appendix, where we report degree distributions along with the
distribution of link weights. In agreement with the findings of Mastrandrea et al. [], we
found that weights are distributed over multiple orders of magnitude.

Here, we focus on understanding what differences in the level of engagement across
channels can reveal about certain behavioral patterns. After an overview of the structural
differences and underlying correlations found in these networks, we focus on the physical
activity of the central individuals, selected based on their aggregated intensity of physical
contacts (strength) throughout a week.

Figure  summarizes the usage activity across channels by investigating how ties are ex-
pressed across the networks. As we can see in Figure a, there are remarkable variations
in how the various channels exhibit links (and thus contacts) between pairs of individuals.
The Venn diagrams show the number of links in the different networks as well as those
present in two (enclosed in the overlap of two circles) or three networks (enclosed within
three circles). In other words, the numbers represent the edge set overlap between the var-
ious channels. The proximity networks contain a vast majority of all links (only  and
 of all recorded links are not present in the ambient and intimate networks, respec-
tively) and a dominant fraction of all links are exclusively represented as physical links
(, and ,, accounting for % and % of all potential links). Compared to the
links observed in the proximity networks, a moderate number of interactions (.% and
.% of all interactions considering ambient or intimate network, respectively) are cov-
ered by Facebook activity and a negligible fraction of links (.% and .%) are present
in the phone call network as well. The presence of phone call-only relationships is, in part,
due to the fact that we use a single month time window; by increasing the period of ob-
servation, those interactions diminish. Also note that the number of links present in all
three channels remains around , irrespective the proximity channel considered. The
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Figure 1 Comparison of link sets in the three networks. (a) Venn diagrams showing the number of links
in the different channels: ambient (left), intimate (right). Color code is given on the right. (b) Correlation of link
weight between the channels in log-log scale. Weight is defined by the number of contacts taking place on
the links, normalized by the maximum observed value. (c) Fraction of social links recovered by the strongest
ambient (dashed) and intimate (solid) physical proximity links: calls (green) and Facebook (blue). Inset shows
the coverage of call links by Facebook interactions.

fact that these sets of links consist of the same pairs of users, suggests that even though
the structure of the ambient network is blurred by spurious encounters, after removing
those links that are not present in other channels, it is still possible to recover the strong
links represented in the intimate network.

While it has been argued that intensity of digital communication does not necessarily
correlate strongly with the strength of the corresponding social links [], we expect ties
expressed in the phone network or Facebook interaction network to correspond to real so-
cial ties and therefore we expect these ties to be stronger (i.e., active with high frequency)
in the physical proximity network [, ]. Surprisingly, this is only partly true, as shown
in Figure b, where weight of the links (number of interactions on the link) is plotted. On
one hand, the absence of structure in the plot of Facebook and call weights indicates that
these two communication channels are used interchangeably (with a Pearson correlation
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of rFacebook,call = .). On the other hand, the communication networks show moderate
positive correlation with the physical links: rFacebook,ambient = ., rFacebook,intimate = .
and rcall,ambient = ., rcall,intimate = .. In general, the call network shows higher cor-
relation with respect to link weight with the proximity networks compared to Facebook
activity, and the intimate network seems to be better predictor of strong social ties having
a consistently higher correlation with communication channels than that of the ambient
network. The highest correlation is found between calls and intimate interactions.

Assuming that calls and Facebook activity (i.e., online communication) correspond to
strong social ties, the capability of proximity links to predict those ties can be assessed
by calculating the fraction of links in the former two networks that are covered by the
strongest physical links. This is shown in Figure c. The most striking observation is that
once around , of the strongest proximity links are considered (≈% and % of links
in the ambient and intimate networks, respectively), the contribution of additional links is
comparably small (even negligible in case of call links). That is, almost none of the remain-
ing links correspond to links found in the Facebook or call networks. Again, we see that
call links can be captured more efficiently by proximity links than Facebook interactions.
However, even in the case of the intimate network, the strongest , links (around %
of the intimate proximity links) cover only % of all call links, meaning that although a
large fraction of digital communication links are also included in the proximity networks
(see Figure a), these links are not the necessarily the strongest physical links, and the
ordered set of social ties are separated by many strong proximity links that are not repre-
sented by phone calls. In other words, many high-frequency physical links correspond to
passive and socially less significant interactions. As the inset of Figure c illustrates, the
strongest call links are distinct from the strongest Facebook interactions, indicating that
the links characterized by the most intense communication on Facebook constitute sepa-
rate group from that of the most frequent mobile calls. In other words, individuals tend to
avoid mixing the two channels and limit the maintenance of relationships to one of them.
In the Appendix, we include further evaluation of how well proximity links can predict
those of communication links.

It is important to realize that a majority of the proximity links (both ambient and inti-
mate) are due to the co-location of students attending the same classes, which explains the
low correlations seen in the data. It should be noted, however, that due to the nature of
ambient and intimate networks, the latter exhibits nevertheless higher agreement with the
call and Facebook networks. In the next section, we further elaborate on this observation
and show that the intimate network also shows higher level of structural similarity with
the communication networks.

2.2 Structural similarity
Besides single links, we can compare the local structure of the networks, that is, the ego-
networks. To this end, we calculate the similarity between the contacts of an individual in
the different networks, as shown in Figure . For a given participant u, we first consider
their generalized neighbor-set, which consists of all other participants, and construct the
weighted degree vector wu

c that corresponds to the distribution of interactions with u’s
alters in channel c. In other words, the weighted degree describes how the user distributes
their time over their links (that is, the number of contacts over the links) in a given channel
(Figure a). Similarity between the weighted degree of a specific individual in two different
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Figure 2 Structural similarity of the physical proximity and communication networks. (a) Illustration of
neighbor cosine similarity between networks. (b) Distribution of cosine similarity between the intimate
network and communication networks. Proximity networks are compared to calls (left) and Facebook
interactions (right). On the bottom, the pointwise ratio of the intimate and ambient distributions are reported.
Data is binned and a kernel-density smoothing is applied.

channels c and c′ is calculated using the cosine similarity:
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where x · y denotes the scalar-product of vectors x and y, while ‖x‖ is the � norm of a
vector x. When compared to the communication networks, the distributions Pint.(θ ) and
Pamb.(θ ) characterize how similar the intimate and ambient networks are to the call and
Facebook activity networks. To quantify how different each of the proximity networks are
from the communication networks, we consider the distribution of cosine similarity val-
ues, shown in Figure b. In the top two plots we report the distribution of the similarity
between the proximity networks and the digital communication networks. The plots show
that both ambient and intimate networks exhibit low similarity with the communication
networks at the level of ego networks (distributions peak around zero, see top of Figure b).
However, in case of both call and Facebook networks, we observe that the distribution of
similarity between intimate and the communication network is consistently lower for val-
ues θ < . and higher for values of θ > ., indicating a higher correspondence between
ego networks. The fact that this difference is persistent for both digital communication
networks supports the notion that intimate network is more similar to the call or Face-
book networks (see Figure  of the Appendix for detailed analysis of the overlap between
proximity and digital communication networks). In the following, we limit our analyses to
the intimate network. We note, however, that the qualitative results are the same for both
ambient and intimate contacts, although the phenomena introduced in this paper is more
pronounced for the intimate network.

2.3 Contact patterns
In each network, a small set of individuals can be considered as central members of their
respective communities. Proximity networks are characterized by high link density and
therefore measures based on geodesic distance fail to distinguish among individuals. In
other words, due to the high number of links, the distribution of any shortest-path based
centrality is narrow, and the value of the centrality measure is not descriptive of the in-
dividual’s status in the network. Therefore, in the physical proximity network we rank
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students according to their total time spent in the proximity with others and choose the
ones with the highest time as central, that is, by their strength. We argue that the strength
of a node is a meaningful measure of centrality. In the context of epidemic monitoring,
Smieszek and Salathé have shown, that strength is able to locate potential candidates for
the monitoring problem with efficiency close to the optimal solution []

In case of phone call and Facebook networks, however, the networks are sparser and
higher order centrality measures can be meaningfully applied. Nevertheless, in order to
compare groups of the same selection process, here we first identify central members of
the communication networks based on their degree. Due to the high level of heterogeneity
in the degree distribution in these networks, degree already differentiates among individ-
uals of low and high activity (and centrality). In addition, as we show in the Appendix, re-
sults obtained by considering higher level structural features such as closeness centrality
in the communication networks lead to the same qualitative conclusions. Central individ-
uals in the communication networks - we call these the social core - within each different
network show distinct activity patterns with respect to their physical contacts.

To show the different physical behavior of the central individuals selected by the phys-
ical or online networks, for each student we calculate the intensity of physical contacts
defined by the number of proximity interactions in each hour of the week for a fixed pe-
riod of time (between February and May, ). After each individual weekly proximity
interaction intensity is calculated (which is expected to characterize the time of the week
these individuals are more active in their physical contacts), for each group of most central
individuals, we average their intensity patterns. For reference, we also calculate the same
average intensity for randomly selected individuals. Results are shown in Figure a, de-
picting an important difference when compared to the population average. Central mem-
bers of the proximity network (i.e., the proximity driven group) relative to the social core
engage actively with the population as a whole according to the circadian rhythm and
weekly schedules: most contacts take place during the day while students attend classes,
with decreased intensity in the night. Furthermore, the activity pattern of these individ-
uals is not only consistent with the population average, but they also display a periodic
intensity limited to weekdays. However, the social core shows high contact activity during
the afternoon, night and during the weekend, irrespective of the communication channel
by which they are selected.

Figure b depicts a more detailed comparison of the activity of the social core and the
proximity driven group, illustrated by the difference in the relative frequency that a social
core or proximity driven group member interacts with any other individual. In the plots,
each tile shows the relative frequency of physical interactions by the top ten members of
the social core during a specific hour of the week, minus the relative frequency of interac-
tions including the proximity driven group in the same hour. Small white circles indicate a
difference that is outside the error bars defined by the standard error of the mean. We refer
to the outlined hours in the working days as working hours, to distinguish that period from
the rest of the week, that is, from hours where most of the voluntary and social activities
are expected to take place (social hours). More precisely, the interval of working hours is
defined by the period between am and pm (inclusive) on weekdays (from Monday to
Friday). The periods of social hours are defined by the rest of the  hours of the week.
The social core shows decreased activity during working hours compared to the proxim-
ity driven group, and they are more active in the evening and nights as well as during the
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Figure 3 Contact activity of central individuals in the proximity network. (a) Relative probability of
physical contacts, compared to the distribution of the population average (grey area). Dark regions indicate
weekends. (b) Heat maps showing the difference in the contact activity between the social core and the
proximity driven for each hour in a week. The periods for working hours are surrounded by the grey frame. In
all cases, the 10 most central individuals are considered, and results are aggregated over a four month period
between February and May 2014 (inclusive). Hours of significant difference are marked by the white circles.

weekend (especially Monday night and Thursday evening). Also note that for most of the
days (from Monday to Saturday), hours in the early morning display significant differences
from the proximity driven group, suggesting that the behavior of the social core deviates
from the rest of the population predominantly during working hours and nights.

2.4 Regularity
The interaction frequency patterns in Figure  indicate distinct behaviors in terms of ac-
tivity as well as regularity in the case of the social core and the proximity driven group,
respectively. We quantify active periods and regularity in Figure  for groups as a function
of increasing number of central individuals. In case of the population average, curves rep-
resent the average of median values over a sample of , randomly chosen groups. First,
we compare the fraction of contact events that take place during social hours to the popu-
lation average for all three channels. The social core is characterized by a large fraction of
contact events during social hours, and the difference does not vanish even for a group of
 individuals, that is, almost % of the population (Figure a). Proximity-central indi-
viduals are also more active during social hours, however, they show less deviation from
the population average. Note that although the period of social hours is longer than that
of the working hours, and therefore contacts have comparably higher probability to fall in
social hours than to working hours, we merely focus on the relative behavior of the social
core and the proximity driven group.
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Figure 4 Activity during social hours and regularity of the social core and the proximity driven.
(a) Median number of physical contact during social hours. (b) Approximate entropy of the contact activity.
Grey line denotes the population median with error bands representing lower and upper quartiles. All data is
calculated over a four month period between February and May 2014.

To measure regularity of the activity patterns, we calculate the approximate entropy of
the relative frequency of contact events through a four month period. Approximate en-
tropy (ApEn) quantifies the level of irregularity in time series, comparing it to a completely
periodic signal [, ]. We chose ApEn due to its robustness against noise and because it
can be efficiently computed from limited data. Results are shown in Figure b with sam-
pling length of m =  and filter level of r = ., however, results are robust with respect
to the choice of m or r. Here we observe a strong effect: proximity based central individ-
uals have an ApEn value that is even below the population average meaning that these
individuals are more regular than the average. On the other hand, the social core shows
sign of high irregularity for a large range of group sizes, starting with an ApEn that is %
higher than the population average. The difference in the regularity measure of the so-
cial core and the proximity driven group vanishes only above the size of  individuals
(approximately % of the population).

3 Discussion
With advances in technology, humans have begun using a variety of new communication
channels. It is known that the different networks of interactions (physical contacts, on-
line social media, phone calls, etc.) correspond to different types of communication and
can be the proxy for the strength of the social ties. Due to the varying function of these
communication modes, it is interesting to ask the question: Are the same individuals cen-
tral in all networks? Here we studied differences among individuals that are central in two
fundamentally diverse environments: the network of physical proximity contacts and in
digital communication networks (Facebook interactions and phone calls). By locating cen-
tral members within all three networks for a single coherent population, we find that the
central members are described by qualitatively different presence and activity patterns in
the physical contact networks. We note however, that our population of students is not



Mones et al. EPJ Data Science  (2017) 6:6 Page 10 of 16

representative of a general population. Therefore, further research is needed to validate
the generality of our findings.

The most central members of the population with respect to physical contacts, interact
with others in a regular manner: they are most active during official schedule of a week
(working hours) and follow a rather periodic activity pattern. Therefore, their interactions
can be easily predicted as they are limited by circadian rhythm and weekly schedules.
On the contrary, those central in the communication network (the social core), display
increased activity during periods of time outside working hours, that is, during events not
restricted by work-day schedules. The social core also shows more irregular interaction
activity and their interactions are therefore more difficult to predict.

Thus, if one were designing predictive or preventive strategies for counteracting infec-
tious disease based on data from digital communications alone, it could prove useful to in-
corporate knowledge of the different behaviors of the social core and the proximity driven
group, respectively. More generally, while digital communication networks are quite dif-
ferent from the networks formed by person-to-person interactions, the idiosyncratic be-
havioral patterns of the social core illustrate some of the ways in which digital communi-
cation channels can be used to understand aspects of our off-line social interactions.

4 Methods
4.1 Data
Data was collected during the Copenhagen Network Study (CNS) between  and 
[], and the results presented in this paper are obtained by analyzing the period from
February to May . During the experiment, various data was collected from ,
smartphones handed out to students of the Danish Technical University. Among others,
the channels included in the data collection are GPS, Bluetooth scans, Wifi scans, call de-
tail records and Facebook communication activity. All data types have different temporal
resolution, but in each case a minimal resolution of  minute is ensured. Details of the
data collection and basic characteristics are presented in Stopczynski et al. [].

Due to the nature of the data and methodological choices, these results are subject to
various limitations that we discuss in the following. First, there is a fraction of students
with missing data resulting in low data quality. To avoid working with structurally biased
networks due to data loss, we selected a subset of students based on their coverage of
proximity data: during the period of February-May , we considered participants with
signals in at least % of the total time. After the above filtering of the data, the size of
the population considered in this paper is . We note that there is a possibility that data
quality is correlated with sociodemographic traits, an issue which might result in the final
study population differing from the student population as a whole.

4.2 Networks
From the CNS data, we built three types of networks: physical proximity networks are
based on the Bluetooth scans of the devices. These networks can be thresholded by the
received signal strength index (RSSI) to obtain proximity networks with a distance of  m
(by setting RSSI > –  dBm). Note that after thresholding based on the RSSI, some of
the ambient (full range) contacts disappear due to their low signal strength. Also, due to
environmental noise, any fixed threshold on RSSI will result in a mix of short- (< m) and
long-range (> m) contacts. These two distances are not fully linearly separable based on
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Figure 5 Degree and link weight distributions in the four contact networks. (a) Complementary
cumulative distribution function (ccdf ) of the degrees in the proximity and communication networks.
(b) Ccdf of normalized link weights (number of contacts observed on the links).

Bluetooth RSSI even in a lab setting (as discussed in Ref. []). However, it has been shown
in Ref [] that using a fixed threshold results in significantly different network structures,
capturing notions of intimate and ambient networks. Finally, note that the ambient net-
work is a superset of the intimate network, as we allow for short range interactions as well
in the former. In other words, each network sets an upper limit on the contact distance.

Facebook feed and phone calls are used to create the communication networks: all in-
teractions inside the population of  individuals are aggregated and static weighted net-
works are constructed. Weights of the links are defined by the relative number of occur-
rence of the specific link across the time period we consider. In the proximity network,
weights represent the total time two individuals spent in the proximity of each other. How-
ever, in the activity analysis based on the call and Facebook networks, we did not consider
link weight in these networks because unusual communication patterns within romantic
couples (extremely high link weight) form a strong bias towards those links and their pres-
ence renders other contacts negligible. Therefore, each link in the digital communication
networks is set to unit weight, and we consider the embeddedness of the students in these
networks rather than their intensity of communication.

4.3 Central groups
In each network, we select central individuals, i.e., central groups of size n, by ranking the
participants by a centrality measure and considering the n ones with the lowest rank. In
case of proximity network, students are ranked by the total time spent in the proximity of
others, while target groups in the communication networks are selected by their degree. In
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Figure 6 Link overlap between proximity and communication networks. Precision-recall curves (top)
and ROC-curves (bottom) in the task of predicting communication links based on the link weights in the
proximity networks. In case of ROC, the black dashed line indicates the performance of random guess.

the Appendix, we show results using closeness centrality in the communication networks,
which is defined by

CC(i) =
N – 

∑
j �=i dij

,

where N is the number of participants and dij denotes the geodesic distance between par-
ticipant i and j, i.e., the lowest number of steps to reach j from i. In case of a disconnected
graph, dij is defined to be N .

Appendix
A.1 Comparison of networks
Figure  depicts the complementary cumulative distribution function (ccdf ) of the de-
grees and link weights (number of contacts on a specific link) for the four networks in
question. Weights are normalized by the largest value to obtain comparable distributions.
In the proximity networks, weights are proportional to the total time two individuals spent
in each other’s proximity, whereas in the communication networks weight is the number
of contacts between the individuals (irrespective of the length of the contact). The two
distributions show opposite behavior: communication networks display the well-known
heavy-tailed degree distributions, with a narrower link weight distribution. On the con-
trary, proximity networks have narrow degree distribution (with most of the individuals
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Figure 7 Physical activity of central individuals when closeness centrality is used in the
communication networks. (a) Relative probability of physical contacts, compared to the distribution of the
population average (grey area). Dark regions indicate weekends. (b) Heat maps showing the difference in the
contact activity between the social core and the proximity driven for each hour in a week. The periods for
working hours are surrounded by the grey frame. In all cases, the 10 most central individuals are considered,
and results are aggregated over a four month period between February and May 2014 (inclusive). Hours of
significant difference are marked by the white circles.

having more than  distinct links), but the link weights are more heterogeneously dis-
tributed, spanning from single occasional contacts to links displaying long interactions
(i.e., couples or people living in the same dormitory). Results are in agreement with the
findings of Mastrandrea et al. [].

As further assessment of how well the set of links in different networks can be mapped
to each other, we have calculated the precision-recall and ROC curves between the prox-
imity and communication networks, shown in Figure . In each case, we have sorted the
proximity links according to their weight in descending order and calculated the confu-
sion matrix after including more and more proximity links. In other words, we considered
the problem of predicting communication links using the proximity link weight as a pre-
dictor. Due to the nature of the problem, there is a large imbalance represented by the vast
amount of non-existent links with a true positive ratio of . and . in the phone
call and Facebook networks respectively). Therefore, the precision-recall curve is more
informative of the differences observed in the link overlaps.

As the top figures in Figure  show, the intimate network outperforms the ambient net-
work in predicting links in both digital communication networks (phone call and Face-
book), although the difference is more pronounced in the phone call network. The bot-
tom figures show the ROC curve (true positive ratio vs false positive ratio), compared to
a random guess (dashed line). However, as the ROC curve is sensitive to class imbalance,
the relative position of the ambient and intimate networks is more relevant than the actual



Mones et al. EPJ Data Science  (2017) 6:6 Page 14 of 16

Figure 8 Activity during social hours and regularity when closeness centrality is used to select central
individuals in the communication networks. (a) Median number of physical contact during social hours.
(b) Approximate entropy of the contact activity. Grey line denotes the population median with error bands
representing lower and upper quartiles. All data is calculated over a four month period between February and
May 2014.

shape of the curves. Nevertheless, we note that both networks outperform random guess,
suggesting some level of correspondence between proximity and communication links.
Note that even if all physical proximity links are considered, we are not able to account
for some of the links observed in the digital communication networks, which explains the
absence of some precision-recall and ROC values in the interval [, ].

A.2 Central individuals
In the main text we have shown the comparison of physical activity among central indi-
viduals selected based on their communication and proximity network degree. Here we
show that the difference is present and even more pronounced if higher level structural
properties are taken into account. Figure  shows the relative contact activity of the three
groups compared to the population average in case central individuals selected by their
closeness centrality in the communication networks. As Figure b indicates, differences
are even more significant. Similarly, Figure  shows the observed fraction of interactions
during social hours as well as the approximate entropy among the central individuals of
the proximity and communication networks. Deviations are larger than what we find for
degree, especially in case of small groups.
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