Duede and Zhorin EPJ Data Science (2016) 5:29 @ E P-J Da ta S Ci e n Ce

DOI 10.1140/epjds/s13688-016-0091-3 a SpringerOpen Journal

EP].org
o [
REGULAR ARTICLE Open Access

CrossMark
Convergence of economic growth and the
Great Recession as seen from a Celestial
Observatory
Eamon Duede @ and Victor Zhorin
“Correspondence:
eduede@uchicagoedu Abstract
Eﬁgfgu;a;?;;g;t:lttl;t?”ﬁnxliﬁﬁéw Macroeconomic theories of growth and wealth distribution have an outsized
Chicago, 60637, USA influence on national and international social and economic policies. Yet, due to a

relative lack of reliable, system wide data, many such theories remain, at best,
unvalidated and, at worst, misleading. In this paper, we introduce a novel economic
observatory and framework enabling high resolution comparisons and assessments
of the distributional impact of economic development through the remote sensing
of planet Earth’s surface. Striking visual and empirical validation is observed for a
broad, global macroeconomic o -convergence in the period immediately following
the end of the Cold War. What is more, we observe strong empirical evidence that the
mechanisms driving o -convergence failed immediately after the financial crisis and
the start of the Great Recession. Nevertheless, analysis of both cross-country and
cross-state samples indicates that, globally, disproportionately high growth levels and
excessively high decay levels have become rarer over time. We also see that urban
areas, especially concentrated within short distances of major capital cities were more
likely than rural or suburban areas to see relatively high growth in the aftermath of
the financial crisis. Observed changes in growth polarity can be attributed plausibly to
post-crisis government intervention and subsidy policies introduced around the
world. Overall, the data and techniques we present here make economic evidence for
the rise of China, the decline of US manufacturing, the euro crisis, the Arab Spring,
and various, recent, Middle East conflicts visually evident for the first time.

Keywords: remote sensing; measurement; macroeconomics; sigma convergence;
great recession; big data

1 Introduction
The rise of more creative and powerful simulation, modeling, and computation along with
a superlinear expansion in both the variety and size of data is transforming science [1, 2].
From high energy physics to cosmology, biology, and genetics, sophisticated instrumenta-
tion, massive, high throughput experiments and observatories are increasingly leveraged
by scientists and scholars to empirically validate deep, longstanding theories [3-5].
Nevertheless, in many fields, it is still too often the case that deep theory remains
untested due to the relative dearth of available, system wide data that would be necessary
and sufficient for validation. Data of the commensurate size and shape needed to validate
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a big theory is often either merely unattainable, too expensive to derive, too elusive to
observe, and, for some theories, it may simply be unclear what would so much as count
as appropriate data in the first place. Where the requisite data needed to validate a given
theory or even observe a theorized phenomenon is lacking, researchers often turn to var-
ious methods of indirect detection. An obvious example here is the search for empirical
validation of the existence of weakly interacting massive particles [6, 7].

Perhaps not as obviously, many macroeconomic theories, the validity of which carry
huge practical, political, and social ramifications, also rely on indirect detection for vali-
dation. Data for inferring the state or dynamics of many subnational, national, and global
economy-wide phenomena (e.g., employment, income, production, migration, etc.) are
gathered through national income and product accounts surveys. Moreover, given that
these data are collected almost exclusively through surveying, they are often very small
and of uncertain quality relative to the broad importance of the object of study. For in-
stance, in the United States, data on national unemployment is gathered monthly by the
Bureau of Labor and Statistics by surveying roughly 0.02% of US households. These data
are then modified with additional data weighting and statistical adjustments to enhance
their stability over time [8]. As a result, these data and the dynamics that are subsequently
inferred from them are often unreliable. To give an example, [9] demonstrated that much
of the observed decrease in US interstate migration was, in fact, a statistical artifact at-
tributable to the Census Bureau’s introduction of a seemingly minor change to its proce-
dures for imputing missing data.

Additionally, many nations either lack the necessary organizational or administrative in-
frastructure to construct accurate and reliable, if nevertheless basic, national accounts or
they seek to frustrate the transparency of accounts data for political reasons or economic
gain as noted in [10, 11]. As a result, many theories that are central to macroeconomics of-
ten have an outsized influence on policy even when empirical validation of those theories
is missing or, worse, misleading. Extensive discussion of related issues in [12—-14] stresses
the importance of rigorous model verification using a wide variety of methods.

While it is not at all clear what the direct observation of, for instance, gross domestic
product (GDP), would be, it has been demonstrated that reliable proxies other than vari-
ables in national accounts data can been derived through the passive remote sensing of
the Earth’s surface from space. In particular, nighttime luminosity data has been shown
convincingly to be a useful and reliable proxy for socioeconomic statistics [15-20]. For in-
stance, the strong correlation between aggregate real GDP growth and aggregate changes
in luminosity levels was found in [17] to be highly significant for the period 1992-2008.
What is more, [20] found that variations in GDP explain roughly 75 percent of observed
variation in the aggregate nighttime light emissions.

Crucially, recent work has shown robust correlations between the relative intensity of
spatially disaggregated nighttime luminosity and GDP at both national and subnational
resolutions. Moreover, this work has demonstrated that using nighttime luminosity does
particularly well at resolving national and subnational GDP in countries that otherwise
lack the administrative statistical infrastructure necessary to derive high-quality national
accounts data [21]. Nevertheless, by merely observing statistical correlations between ter-
restrial light spillage and GDP, the extant literature on leveraging nighttime luminosity
data for economic analysis has done little to inform or validate theory about global growth

and production dynamics.
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In this paper, we argue and demonstrate that passive remote sensing of the Earth’s sur-
face can be leveraged to do more than merely proxy static accounting. Remote sensing
can be used to add robustness to and support the empirical validation of economic theo-
ries. As stated above, the macroeconomic tradition for the observation and measurement
of phenomena that are predicted by theory has been the employment of surveying and
accounting to gather data to which a model can be fit. Apart from precise geographic
and temporal resolution, the obvious benefits of these means of data acquisition are the
uniform units of measure which are central to the internal structure of a given macroe-
conomic theory. However, to say nothing of the severe and highly problematic limitations
introduced by sample size, the obvious drawbacks surround precision and accuracy of the
measured units so that efforts to improve models and, therefore, theory require, at bot-
tom, efforts to improve the institutional infrastructure needed for such measurement. At
a deeper level, and for the purposes of validation, the constraint placed on the primary
models of these theories by their parameterization and the near axiomatic requirement of
specific units (e.g., currency values) of measure in those parameters will ceaselessly frus-
trate attempts to resolve inconsistencies between theoretical assumptions and observed
data. This may seem trivially obvious, but resolving such inconsistencies without substan-
tial modifications to either method or theory (or both) is anything but. These problems
are further compounded when the phenomena predicted by theory are, seemingly, only
observable by such indirect means.

In what follows, we introduce a novel method with its own, independent set of micro-
state assumptions and conditions to detect, sense, or ‘observe’ the theorized macroeco-
nomic phenomena known as ‘economic convergence’ and ‘divergence’ In particular, we use
the highly calibrated, high resolution (pixel-level) heterogeneous magnitude of changes in
detectable light spillage over time as a salient proxy for the dynamism of human economic
activity. Given that, theories of economic convergence and divergence are, at bottom, con-
cerned with relative changes in economic activity over time, our approach can serve to
supply robustness to these theories since the derivation, identification, and measurement
of these phenomena can be achieved with novel parameters that are completely indepen-
dent from those used in all adjacent models. Moreover, in [22] it was strongly argued that
the real test of economic convergence is a consistent diminution of variance, not among
the means of aggregate variables, but among individual enterprises and households, there
by, rather indirectly, arguing against the plausibility of observing convergence dynamics
in models of aggregate national accounts data.

The remainder of this paper is organized as follows: Section 2 describes our data and
method (our Celestial Observatory), Section 3 presents our results, and Section 4 serves

as a summary and discussion.

2 Setup: data and methods

There are several flavors of the macroeconomic theory of convergence. In this paper,
we are concerned mainly with so called ‘o -convergence’ predicting a decrease in the
dispersion of income/growth across countries as opposed to the somewhat weaker ‘8-
convergence’ which holds that the economies of poorer countries will grow more rapidly
than those of richer ones. In [23] it was shown that -convergence is a necessary but not
sufficient condition for o-convergence. There are a number of proposed and plausible
explanations for why this dynamic should occur. For instance, in a globalized economy,
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relatively rich nations will experience faster rates of diminishing returns on freely traded
means of production, technologies, and innovations, than poorer countries. As a result,
poorer countries will realize faster relative rates of growth than rich countries. In fact, the
literature is littered with interpretations of what even counts as growth characteristics for
nations [24—-29]. These dynamics are understood to act on very long timescales. For that
reason, it is important that growth studies that aim to investigate convergence dynamics
work with panel data at the longest timescales available.

Sampling issues notoriously frustrate attempts to observe convergence. For instance,
[29] observed that the estimated speeds of S-convergence are so surprisingly similar
across data sets, that economists can use a simple rule: economies will converge at a speed
of two percent per year. And in [23] it is was argued that o -convergence did not occur
across the United States, or within a majority of the individual US states, from 1970 to
1998. Up to a point, our work, below, seems to affirm the former. However, in the wake
of the economic crisis and in the data after 2008, we also observe strong divergence dy-
namics. So, in certain contexts, at certain statistical moments, and under certain decom-
positions of the theory itself, our work lends credibility to both. That is, depending on
where, when, and how (with what instrument) one looks, one can obverse strong conver-
gence or strong divergence dynamics. Ultimately, we believe that this supports the need
for a gentle reassessment of the criteria, data, and instruments employed and deployed.
While proposed explanations for why the existence of such theorized dynamics should
occur may be intellectually or politically satisfying, from the perspective of economic the-
ory, they ultimately do more to direct attention toward data and model selection rather
than to establish the validity of the theory itself. We argue that the following discussion
contributes a novel model of an additional, independent data set that provides evidence
for the existence of convergence and divergence dynamics.

To generate an independent model for observing convergence and divergence dynam-
ics, we turned to the version 4 DMSP-OLS Nighttime Lights Time Series collected by the
US Air Force Weather Agency [30, 31]. The cloud-free, stable lights composites were pro-
cessed using the entirety of the available archive data for the 1992-2013 period. This is a
21 year dataset that represents one of the longest panels available for growth studies. The
analyzed products are 30 arc second grids, spanning —180 to 180degrees longitude and
—65 to 75 degrees latitude whereby the resulting data arrays include ~730 mm observed
pixels with ~20 mm non-zero (or active) pixels per year. We note that, while the radiance-
calibrated NTL images provide better dynamic resolution, these images are only available
at random points in time while, for this study, we seek to concentrate on consistent metrics
of economic activity over the whole 1992-2013 time period.

Previous work [15] has established that the version 4 DMSP-OLS Nighttime Lights Time
Series dataset has some substantive benefits in estimating quantifiable economic activity.
Nevertheless, like most of the standard, national accounting approaches mentioned above,
the use of nighttime lights has limitations. The most practical limitation is introduced by
the impossibility of establishing a precise mapping from the rate and intensity of nighttime
light leakage to the World Bank’s standard metrics (e.g., USD) for GDP. Additionally, the
annual composites across years that are recorded by distinct satellites cannot be compared
directly with each other due to differences in on-board calibration. Finally, the annual
variability of cloud dynamics also affects the statistical reliability and estimate precision,
particularly in areas for which there are fewer observations as noted in [32, 33].
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We began our study by replicating much of the prior literature’s work. The extant lit-

erature is uniformly committed to analyzing aggregate light intensities. In replicating this

literature, we immediately observe that the correlation between changes in aggregate light

intensity and world economic growth is merely 0.31 for the period of 1993-2013, which is

in line with findings in [17]. Next, we used a similar technique to separately estimate both

country-specific and state-specific aggregate growth metrics for the periods 0f1993-2006

and 2007-2013 with year fixed effects controlling for differences in sensor settings across

satellites, as well as taking out the effects of changes in worldwide economic conditions

as in [17]. These results are reported in Tables 1 and 2 for cross-sections of countries and

Table 1 Cross-country comparison of average aggregate annual growth and Markov
transition probabilities, percent

Countryname Jos06 Jo7-13  0(yss-06) 0(yor-13) Gf3os 5713 5306 To7.13  993.06 90713
Afghanistan 6.07 6.31 20.1 124 104 1.1 7.6 6.9 82.0 820
Albania 1398 1288 293 252 89 12.1 74 10.8 83.7 77.1
Algeria 1.93 3.00 1.7 1.0 10.2 10.1 8.1 7.8 81.7 82.1
Armenia 543 558 185 12.8 1.3 10.6 9.8 7.1 789 823
Austria 2.60 3.37 48 33 1.9 9.8 10.3 8.8 77.8 814
Azerbaijan 143 337 10.3 6.1 11.8 7.7 9.7 53 785 87.0
Bangladesh 1.88 3.08 32 25 93 10.1 76 45 83.1 854
Belgium 1.80 291 18 1.2 14.3 14.6 14.2 12.7 715 72.7
Brazil 2.60 344 32 2.1 1.7 12.2 10.5 93 779 785
Bulgaria 3.55 3.89 9.3 6.5 11.9 9.5 10.2 6.5 779 84.1
Cambodia 6.87 11.97 133 31.2 9.7 9.5 59 24 84.4 88.1
China 207 3.11 1.0 0.8 104 83 93 6.2 80.4 85.5
Colombia 2.09 3.13 26 1.7 9.7 11.6 10.2 75 80.1 81.0
Costa Rica 417 4.79 6.1 5.1 77 9.2 10.2 6.7 82.1 84.1
Croatia 6.84 5.16 10.6 6.5 111 1.3 10.9 94 780 794
Cuba 4.60 4.86 89 6.6 9.0 109 87 72 823 82.0
Czech 248 3.51 9.9 7.1 13.0 103 124 10.7 74.5 79.0
Republic

Ecuador 2.38 3.60 26 23 10.6 9.2 94 8.0 80.1 82.8
Egypt 2.09 3.17 09 1.0 93 11.9 10.7 8.2 79.9 79.9
Eritrea 477 437 64 53 10.2 11.9 10.7 6.2 79.1 819
Estonia 9.82 6.56 176 10.2 124 9.2 9.5 6.5 78.1 84.3
Ethiopia 6.06 5.89 93 73 10.8 132 95 6.1 79.7 80.7
Finland 4.35 4.50 103 64 12.1 109 105 105 774 78.6
France 1.76 287 1.0 0.7 124 1.1 9.2 96 785 79.3
Georgia 3.72 492 154 11.6 125 13.1 10.1 7.6 774 794
Germany 1.62 292 16 16 115 1.1 111 103 774 786
Greece 2.50 3.24 39 23 8.8 114 95 85 81.7 80.1
Guatemala 2.86 3.71 25 22 8.6 86 93 52 822 86.2
Hong Kong 1.20 251 3.2 32 12.8 13.6 13.7 13.6 735 72.8
Hungary 524 4.24 126 7.3 12.3 9.2 11.9 64 75.8 843
India 1.77 293 0.5 0.6 94 8.2 8.1 5.0 825 86.8
Indonesia 3.98 4.70 8.1 6.1 85 9.3 8.1 6.2 834 84.5
Iran 191 293 0.8 0.7 10.8 104 10.0 7.7 79.2 81.9
Iraq 217 3.83 29 29 9.7 9.9 9.0 6.5 81.3 83.6
Ireland 3.00 343 5.1 3.0 1.3 11.8 10.7 8.2 779 80.1
Israel 1.84 297 1.0 0.8 13.6 133 135 11.0 729 75.7
Italy 1.86 293 1.1 0.8 13.1 129 1.2 109 758 76.1
Japan 1.68 283 0.5 05 12.7 1.5 122 10.0 752 785
Jordan 2.20 3.21 22 14 105 11.2 9.8 8.2 79.7 80.7
Kazakhstan 231 347 50 34 139 104 8.6 73 775 823
Korea 203 3.03 1.7 1.0 105 11.5 95 10.0 80.1 785
Kuwait 3.18 394 78 46 7.8 11.0 7.9 9.9 843 79.1
Kyrgyzstan 3.28 4.04 95 5.7 126 9.8 83 8.9 79.1 81.2
Latvia 836 533 142 9.2 12.2 10.2 1.3 83 76.5 815
Libya 1.86 292 26 15 10.1 9.8 10.0 8.8 79.9 81.5




Duede and Zhorin EPJ Data Science (2016) 5:29 Page 6 of 19
Table 1 (Continued)
Countryname jos06 Jo7-13 0(yss-06) 0(yor-13) f3os 5713 953.06 9713 993.06 90713
Lithuania 740 551 164 126 12.2 109 9.8 6.3 78.0 82.8
Luxembourg 1.80 3.12 6.4 35 12.5 133 135 12.7 74.1 741
Mexico 1.87 295 1.0 0.9 9.5 9.7 9.2 7.3 813 83.0
Mongolia 3.08 4.08 6.5 4.0 11.6 10.6 83 8.0 80.1 814
Morocco 207 3.06 1.2 0.8 104 1.2 10.6 8.8 79.1 80.0
Nepal 2.26 362 3.1 49 10.2 11.0 10.1 73 79.8 816
Netherlands 1.70 2.85 0.9 0.8 14.0 14.5 13.6 126 724 729
Nicaragua 324 4.39 4.8 4.6 10.2 99 10.0 6.4 79.7 837
Norway 4.85 4.71 11.6 6.8 11.5 124 9.0 10.0 795 776
Oman 3.10 354 32 1.8 10.7 86 9.7 6.7 796 84.6
Pakistan 1.48 274 22 24 89 8.1 8.1 7.8 830 84.1
Palestine 1.80 3.02 1.7 1.2 11.6 135 111 114 772 751
Poland 5.09 461 13.0 8.6 124 10.2 126 9.6 75.1 80.2
Portugal 2.21 314 1.5 13 10.3 10.7 8.8 94 80.9 79.8
Puerto Rico 153 273 1.8 14 14.6 143 155 1.5 70.0 74.2
Qatar 264 384 39 32 10.3 10.5 11.1 6.7 786 82.8
Romania 3.88 457 6.3 6.3 11.9 9.8 93 75 78.8 82.7
Russia 1.95 3.06 25 1.5 12.3 9.5 94 7.0 782 835
Saudi Arabia 191 297 0.6 05 10.1 104 9.7 6.9 80.3 82.8
Serbia 295 351 55 36 11.6 12.1 89 9.0 79.5 789
Singapore 1.66 2.81 0.7 0.5 NaN 1.2 NaN 11.6 NaN 773
Slovakia 228 338 83 44 12.8 104 1.3 78 759 81.7
Slovenia 462 411 8.7 53 104 10.1 93 94 80.3 80.5
Spain 1.81 291 0.7 038 11.5 1.9 10.8 106 777 77.5
Sudan 238 3.17 13 0.9 9.8 11.8 89 6.8 813 814
Sweden 2.80 344 6.8 38 127 109 10.6 10.0 76.7 79.1
Switzerland 243 333 78 43 134 121 1.7 1.5 74.8 764
Syrian Arab 1.86 2.65 3.1 4.1 75 9.2 84 6.6 84.0 84.2
Republic
Taiwan 224 3.16 32 2.0 12.8 139 14.6 9.7 726 764
Tajikistan 0.41 2.88 55 5.0 13.1 85 10.1 92 76.8 823
Thailand 247 3.85 23 39 9.7 103 84 6.5 82.0 83.2
Tunisia 263 332 34 2.0 7.8 8.7 10.7 6.7 815 84.6
Turkey 293 3.81 42 34 10.2 129 89 74 809 79.7
Turkmenistan 215 3.17 37 24 10.7 94 0.6 6.2 82.7 844
Ukraine 057 294 79 52 13.8 9.3 10.2 5.1 76.0 85.6
United Arab 213 3.11 1.1 0.8 9.0 109 9.1 84 819 80.7
Emirates
United 1.46 279 16 1.1 1.5 1.7 11.5 1.2 77.0 771
Kingdom
United States 1.73 2.86 06 06 9.8 11.6 9.8 94 804 79.0
Uzbekistan 1.19 272 2.7 16 1.7 79 89 7.6 794 84.5
Venezuela 1.97 329 1.7 20 103 104 103 8.0 794 81.7
Viet Nam 443 4.14 48 2.8 83 9.6 8.7 7.0 83.1 834
Western 3.00 350 22 16 11.1 10.6 10.8 83 782 81.1
Sahara
World 1.66 278 0.0 0.0 99 99 83 79 818 822
Yemen 2.88 348 2.5 22 7.6 10.5 7.2 6.7 85.2 82.8

individual US states with average annual growth rates Jo3.9¢ for 1993-2006 period and

Y0713 for the 2007-2013 period. Using a basic, generalized least-squares procedure, we

also estimated the standard deviations of growth across years in ¢ (¥93.06), 0 (¥07-13). From

these, it is obvious that, depending strongly on the particular subsample of countries or

years included in studies, the point estimates of growth using prior, extant methods based

on night lights can be plausible but misleading and results can be spurious. Nevertheless,

and quite surprisingly, aggregate growth metrics have been used exclusively in all previous

studies incorporating night lights.
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Table 2 Cross-state comparison of average aggegate annual growth and Markov transition

probabilities, percent

Statename  Jo306 o713 0(yo30s) 0(Yor-13) @53os 9543 Tg306 To7a3  993.06  Top3
Alabama 1.71 2.86 13 0.9 109 103 10.6 89 785 80.7
Arizona 1.75 287 0.7 0.6 10.6 14.0 10.9 10.7 785 753
Arkansas 1.96 297 2.0 13 104 11.0 10.2 74 793 815
California 1.55 2.76 0.9 0.7 12.1 12.3 1.7 9.5 76.2 781
Colorado 1.56 274 3.1 35 135 12.6 10.9 104 756 77.0
Connecticut 1.75 311 2.2 35 15.0 138 13.6 135 714 726
Delaware 1.52 291 47 25 11.2 12.5 10.5 14.3 783 732
Florida 1.68 2.81 03 03 118 115 104 104 77.8 781
Georgia. 1.86 291 14 09 10.5 9.7 109 86 786 81.7
ldaho 232 317 84 7.0 11.7 10.2 104 7.6 779 82.2
lllinois 2.08 3.12 25 23 11.0 10.8 10.7 93 783 799
Indiana 229 3.26 4.7 32 10.6 10.8 10.1 10.5 793 786
lowa 2.84 392 4.2 49 12.5 10.1 92 94 782 80.5
Kansas 1.69 2.96 34 2.8 14.5 11.7 10.2 8.0 75.2 804
Kentucky 1.51 290 47 24 116 9.5 11.0 7.6 773 829
Louisiana 1.68 2.84 0.8 0.6 9.8 8.7 9.8 7.0 80.5 843
Maine 356 4.88 7.2 94 10.2 10.6 9.5 76 80.3 81.8
Maryland 132 2.79 39 22 10.7 116 1.3 12.3 780 76.2
Massachusetts  1.79 3.08 1.0 22 14.0 132 144 146 716 722
Michigan 231 3.77 24 45 11.2 10.8 10.8 85 780 80.7
Minnesota 232 373 25 44 11.7 9.1 9.7 74 786 835
Mississippi 1.85 292 13 1.0 11.0 8.0 10.1 7.6 789 84.3
Missouri 197 3.01 29 1.8 11.6 9.9 10.0 73 784 828
Montana 458 487 156 121 13.7 9.8 94 58 769 844
Nebraska 234 3.50 44 53 12.2 14.8 1.2 10.9 76.7 743
Nevada 1.73 2.86 22 1.7 12.7 11.7 109 9.2 76.5 79.1
New 1.98 3.50 1.7 46 121 11.9 1.7 114 76.2 76.8
Hampshire

New Jersey 1.62 287 25 1.8 134 12.0 13.1 124 735 75.6
New Mexico 1.61 2.84 1.2 1.0 12.7 1.1 10.7 8.7 76.6 80.2
New York 211 348 23 40 109 1.2 10.5 84 786 80.3
North 1.54 2.83 24 13 9.9 116 114 82 788 80.2
Carolina

North Dakota ~ 4.33 5.60 10.2 83 155 8.7 9.5 53 75.1 86.0
Ohio 2.02 313 4.0 29 113 103 10.5 9.1 78.1 80.7
Oklahoma 1.64 2.85 1.7 1.2 113 12.8 10.0 8.1 787 79.0
Oregon 1.70 276 34 3.0 12.3 11.8 10.1 1.3 776 76.9
Pennsylvania 213 327 34 33 118 9.8 1.3 93 769 80.8
Rhode Island 151 2.88 2.2 2.5 139 122 125 14.0 736 738
South 1.73 2.85 1.0 0.7 10.6 104 1.2 85 782 81.1
Carolina

South Dakota  3.18 4.00 58 52 134 12.3 12.3 9.0 74.2 78.7
Tennessee 147 2.81 29 1.7 11.0 10.1 10.8 74 78.1 82.5
Texas 1.67 287 0.9 0.7 124 10.6 10.2 7.5 774 819
Utah 157 2.84 5.1 40 11.0 10.3 10.5 9.1 785 80.6
Vermont 235 3.82 3.7 7.1 10.2 82 9.1 0.6 80.7 85.2
Virginia 1.56 2.87 3.8 2.0 10.6 82 11.0 74 784 84.5
Washington 1.85 2.76 6.8 54 136 104 10.9 82 755 814
West Virginia 1.75 293 4.1 23 11.2 10.1 10.6 7.3 78.2 82.7
Wisconsin 220 3.96 2.0 49 10.5 10.3 10.0 82 79.5 815
Wyoming 1.63 3.10 6.1 74 134 13.0 94 10.1 77.2 76.9

To address these issues while simultaneously keeping the data array of observations as

intact and free of adjustments as possible, we apply a differencing technique with zero

mean (demeaned) difference centering. In what follows, we describe this method in detail

and demonstrate the veracity of this approach. While we cannot completely rid our data

of spurious local and global variability due to various measurement factors, this method is
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appealing both for its simplicity and for its clear empirical findings. Subsequent improve-
ment is certainly possible by, for example, combining and aligning with independent data
sets on cloud formation and behavioral dynamics with the possibility of near real-time
monitoring of object conditions.

For our study, intensities for nighttime lights are represented by the time-indexed array
X:(i,)), where t =1992,...,2013 and each element contains the intensity of light detected
for a pixel with a given longitude lon(i) and latitude lat(j). We perform the following dif-
ferencing for all pixels to obtain:

AX:(i,)) = Xe(i, ) — Xe1 (i, f), YVt e (1993,2013).

At each time step, we then center the differences in pixel light intensity by subtracting
the globally (or country, or state-specific) averaged value of differences between years,

AX,(i,j) *1(AX,(i,)) #0)

lon (I3t A 3 (10 v) dudy

i : lon Jlai
= AXy(io) ¥ 1(AXiirj) 7 0) - == :
lon Jlat 1(AX(u,v) #0)dudv

where 1(AX,(i,j) # 0) is an indicator function that is zero for all pixels with no change in
intensity and one for all pixels that display a change in intensity.

Thus, we filter away both pixels that do not have any signal and pixels that do not show
any difference when demeaned between annual time steps. What is more, this also helps us
to avoid a known issue with saturation of light intensity due to detector sensitivity. Static,
saturated areas (e.g., urban centers) are automatically filtered with a resultant time series
providing a dynamic characterization of detected changes. Obviously, it is plausible that
meaningful changes in economic activity in these saturated areas are not detected due
to filtering and, therefore, remain hidden. Nevertheless, and perhaps surprisingly, we still
observe detectable changes in highly urban and well-developed areas with highly variable
light spillage contributing to the detection of economic activity patterns that could be
further correlated with other known and observed data on social and economic events. For
instance, as small capillaries wend fluctuations toward and away form great estuaries in
our data, streams of traffic of higher of lower intensity can be, perhaps, detected spilling in
and out of urban central districts on their evening commutes, carrying out freight delivery,
or migrating.

Finally, we process our demeaned time series using a simple standard three-state
Markov-chain growth model. We use a finite set S = {—, 0, +} of three possible states: a neg-
ative change that is larger than the cross-sectional o; for year t, a positive change that is
larger than the cross-sectional o;, and a neutral (no change) state that is within o.

To understand the characteristics of changes in luminal intensity over time, we compute
the transition probabilities P;(il), i,j € S for a state j at time ¢ — 1 to become state i at time
¢ as stochastic the matrix:

Py(+l+);  Pu+[0);  Pul+|-) Y P+l =1;

P01+);  P0[0);  PiO]-); > POl =1;
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P—|+); P10} PA--) Y Pl =1

Next, for each stochastic matrix P; at time ¢ we find the asymptotic stationary matrix:

lim P =P,

n—00

and take the diagonal elements of this matrix as a;*, a’®, a;~, corresponding to ‘persistent

high growth; ‘persistent neutral growth; and ‘persistent high decay, used in subsequent
discussion. The benefit of using stationary probabilities conditioned on the state of world
at time ¢ is that it allows us to abstract away the transitory effects of stochastic shocks,
to reveal how permanent effects from shocks like, for instance, financial crises, shift the
world into different trajectories of development. This allows us to test whether variance in
the cross-sectional distribution of economically active pixels increase over time. We find
that the gap a]* — a;~ between the probabilities of persistent, high growth and persistent,
high decay provides a good metric for particularly negative (if the gap is negative) or pos-
itive shocks that perturb countries on their path to convergence. Obtaining those metrics
allows the direct tracking of both the ‘majority club’ (as in [23]) of locations that ‘converge’
under specific o bounds and the ‘minority club’ that grow or decay more rapidly and sit
about the long tails of the distribution.

3 Results and discussion
In what follows, we present a number of observations that demonstrate global, national,
and subnational convergence and divergence in intensities of terrestrial, nighttime lumi-
nosity. We argue that these deltas represent distributional impacts of economic activity
and, when these distributional impacts conform to phenomena predicted by broad o -
convergence/-divergence, we further claim that these observations add robustness to that
theory.

Figure 1(left panel) shows a histogram for the demeaned difference distribution repre-
senting cumulative change over the 1993-2013 period. Our observed change distribution
for nighttime light spillage is leptokurtic (excess kurtosis is 8.5) and skewed to the right

2013-2012 Change Quantiles
o

0.4 -03 0.2 -0.1 0 0.1 02 03
2010-2009 Change Quantiles

Figure 1 Probability distributions of observed cumulative zero-mean annual change variations in
1993-2013 period against normal distribution (left) and quantile-quantile-plots across different years
(right).
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Figure 2 Distribution change, effect of Great Recession shock. (left) 2003-2006 (Y-axis) vs 1992-2002
(X-axis), (right) 2008-2013 (Y-axis) vs 1992-2007 (X-axis). Total growth over 2013-1992 period is color coded.

(where skewness is 0.5 with a standard deviation of 3.68%). Reference [23] studied the US
per capita income distribution from 1970 to 1998 and found that excess kurtosis increased
from 0.4 to 7.3. This is, indeed, in line with and supported by our findings for night light
distribution.

Figure 1(right panel) confirms that samples from different years come from a similar
distribution (e.g., AF satellites are looking at the same planet and distribution is stable
over time). However, there are important differences across years. For example, pixels in
the Middle East that were previously growing in relative intensity suddenly shift into a
depressed slide as the region slips into a series of well documented wars and episodes of
tremendous civil unrest.

Figure 2(left panel) shows cumulative change in 1992-2002 (Y -axis) vs 2003-2006 (X-
axis) with color coded pixels based on total intensity growth in 1992-2006 subsample. Fig-
ure 2(right panel) shows cumulative change in 2008-2013 (Y -axis) vs 1992-2007 (X -axis)
with color coded pixels based on total intensity growth in 1992-2013 sample. A 45-degree
(positive sloped) line corresponds to autocorrelation of growth and, therefore, an increase
in divergence of growth over time as faster growing pixels persistently outperform slower
ones. We see that post-2007 growth shows a noticeable divergence along the systemically
high-growth area of the spectrum. However, overall, most points are clustered in either
anti-correlated or not correlated quadrants thereby providing support for the idea that
general convergence mechanisms are in effect.

Reference [34] found that energy consumption inequality decreased from 0.66 in 1980
to 0.55in 2010. This finding is in line with the satellite observed production and use of light
at night which also indicates similar decreases in inequality after the Cold War and in the
run up to the financial crisis of 2008. Unfortunately, comprehensive, post-crisis economic
indicators are still lagging and largely unavailable.

We also compute the cumulative cross-sectional standard deviation of our vectorized
data array:

or =0 (AX,(i,))), Ve (1993,2013).
This approach takes the statistically unreliable, absolute aggregate levels of growth com-

pletely out of the picture and centers the focus on the distributional impacts of growth. As
a result, o -convergence in our framework still captures unconditional estimates of local,
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Figure 3 Standard deviation of annual zero-centered change. (left) annual global, (o), percent, (right)
across countries, (A), percent.

high-resolution deviations as in [22] while avoiding statistical fallacies required for testing
across samples that are grouped by means in a specific year.

Figure 3 shows global cross-sectional change variability before and after the Great Re-
cession event. We see again, that there is support for a theory of global o -convergence
kicking in immediately after the end of the Cold War period and before the Great Reces-
sion. However, the global cross-sectional provides strong empirical evidence for economic
divergence in the years immediately following the economy-wide shocks delivered by the
financial crisis with long and persistent recovery dynamics.

To aid in understanding the sources of these dynamics, we report in Tables 1 and 2 the

90 in our 3-state Markov model.

calculated values for the transition probabilities a**,a™", a
Here we see that both persistent high growth and persistent high decay rates shrank over
time, with some prominent exceptions (e.g., Syria). In general, moreover, the gap between
high growth and high decay became larger indicating that the mechanisms driving o -
convergence failed immediately after the financial crisis. This observation highlights an-
other strength of our approach. Namely, it provides indicators for the direction of research
attention and aids in the development of hypotheses. For instance, perhaps the observed
breakdown in o -convergence dynamics can be attributed to intentional suppression of ex-
treme volatility through post-crisis monetary policies. Such policies may be directly impli-
cated in decreasing the probability of failure to a large degree while also decreasing slightly
the probability of higher success.

Figures 4 and 5 show the annual Markov transition probabilities for a selected subset
of countries and US states. Red and blue dots represent the observed transition probabil-
ities for high growth areas to high growth areas and high decay areas to high decay ar-
eas respectively. The solid red and blue lines represent the mean probabilities for a given
time period with a break at the end of the 1993-2006 subsample and the start of the sam-
ple for 2007-2013. The mean observations tell a fairly consistent story and confirm that
there is broad heterogeneity in the observed variation in growth and decay probability out-
comes across nations after the global financial crisis. The individual observations also tell
a series of interesting stories. For example, Switzerland appears to have been particularly
sensitive to the financial crises that occurred in the observed period, including the Asian
crisis (1997) and Euro zone crisis (2009-2011). Looking at the United States, we observe
that the high growth probabilities and high decay probabilities moved in, more or less,
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Figure 6 Annual average global mean-centered change, 1993-2013. Blue-coded areas correspond to
net negative dynamics (decay) and red-colored areas to net positive dynamics (growth). Neutral changes are
not distinguishable from the black background. Extreme outliers for negative and positive change are marked
with cyan and orange correspondingly.

lockstep through most of the 1993-2006 period but that, after the financial crisis, a gap
opened up whereby the high growth probabilities climbed slightly while the high decay
probabilities look rather unchanged. One could reasonably hypothesize that this uptick in
growth-growth probability is due to massive stimulus programs enacted in direct response
to the broad financial meltdown.

Apart from interrogating the calculated transition probabilities, much can be learned
simply by looking at individual pixel-level data. So, in order to facilitate merely looking, we
produced maps of the global distributional impacts with color-coded values of AX(i,f) =

L AX/(i,)). Figure 6 shows the total, globally mean-centered change over a period
of 22 years spanning 1992-2013. Blue-coded areas correspond to net negative dynamics
(decay) and red-colored areas to net positive dynamics (growth). Neutral changes are not
distinguishable from the black background. It is important stress that coded deviations
represent movements away from the global zero-mean centered panel time series. This
means that relative decline (blue-colored areas) or relative growth (red-colored areas) do
not necessarily translate to absolute decline of economic activity in a given area. This is,
of course, consistent with broad mechanics of o -convergence.

Looking closely, the major economic transformations following the end of Cold War are
clearly visible with, for example, the net positive rise of China and the decline of US indus-
try, capital transfers within the European Union with net beneficiaries in eastern Europe
and Scandinavia, growth in India and China alongside the relative decline in Pakistan and
Syria. The development of shale oil drilling along side conventional oil extraction tech-
niques represent important factors in economic production and development and their
impact can be clearly observed in the northern United States and Russia.

To demonstrate the resolution of our observatory, we also conduct distributional im-
pact studies with o -convergence tests within particular countries and states of the United
States across our full panel data time series. For these studies, we zero-mean centered our
time series data for each, particular, country or state as a whole for country/state-specific
fixed effects.
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Figure 7 Annual average mean-centered change, Germany. (left) 1993-2006 period, (right) 2007-2013
period.

Figure 7 represents a decomposition of the total mean-centered change into annual av-
erages for the period of 1993-2006 (left panel) as compared to 2007-2013 (right panel)
for Germany. There is a distinct, observable contrast between relatively larger growth in
central and eastern Germany before the global financial crisis and a shift in growth toward
historically more developed centers in the western regions following the crisis.

Figure 8(left panel, right panel) represents the same period decompositions for Thai-
land, one of the more successful developing nations with notably sustained high levels of
growth. Interestingly, there is an obvious and quite sharp contrast between an observably
equatable or diffuse growth distribution before the crisis and a post crisis concentration
of growth toward and around central Bangkok.

Figure 9(left, right) represents the same period decomposition for the state of Maryland
(USA) that surrounds the nation’s capital, Washington, DC. The magnitude of observable
urban renewal is striking. We also note a similar phenomenon for the city of Chicago,
as well as other major metropolitan areas in the US and around the world. There are,
nevertheless, equally striking exceptions.

Figure 10(left panel, right panel)-Figure 11(top panel, bottom panel) represents Syria and
Turkey. The change in growth polarity for the once prosperous province of Aleppo, since
captured by insurgents, as well as new areas of growth away from the central government
are clearly visible and highlight a possible use of this observatory and method for human-
itarian purposes. Namely, the early detection of on-the-ground social crises.

Our approach directly exposes a substantial amount of policy relevant heterogeneity
in economic development both inside and across countries. Moreover, this heterogene-
ity is demonstrably impossible to observe using only mean-aggregated data and serves
to further emphasize the contributions our observatory and approach can make to the-
ory. While the correlation between photons emitted as a byproduct of economic trans-
actions and economic development has been described in the literature, technology im-
provements should, in theory, lead to increases in terrestrial light spillage as a result of
falling costs. For instance, in [27], the amount of labor required to pay for a lumen-hour
of light consumption was estimated over time and shown to fall precipitously. However,
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Figure 8 Annual average mean-centered change, Thailand. (left) 1993-2006 period, (right) 2007-2013
period.

Figure 9 Annual average mean-centered change, Maryland. (top) 1993-2006 period, (bottom) 2007-2013
period.

Figure 10 Annual average mean-centered change, Syria. (left) 1993-2006 period, (right) 2007-2013
period.
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Figure 11 Annual average mean-centered change, Turkey. (top) 1993-2006 period, (bottom) 2007-2013
period.

technologies and energy conservation measures can introduce ambiguous observational
effects and further frustrate attempts to make sense of observations. On the one hand,
conservation necessarily leads to reductions in light spillage due to, for instance, improved
efficiencies in building lighting management (i.e. automatically turning off lights at night).
On the other hand, technologies can be implicated in increased luminal production due
to more efficient energy-to-light conversion mediums (as, for example, switching from in-
candescent lighting to LED) thereby driving down the cost (in both dollars and carbon) of
leaving the lights on. Of course, increasing urban population densities are a factor. Yet, as
we can see from Figure 8 and Figure 9, there is a visible effect from the growth of suburbia
and general urban sprawl, suggesting that urban commute light spillage does, at least par-
tially, capture the effects of urban growth. Nevertheless, applying proper spatial statistical
methods to characterize dynamic processes to support our general qualitative findings is
by no means trivial due to substantial spatial autocorrelations and on-board calibrations
that bias observations.

4 Conclusion

Our mean-centered differencing procedure represents a significant improvement over all
prior approaches to using the intensity of nighttime lights as a means to estimating the
characteristics of macroeconomic phenomena. Our method efficiently filters away the ef-
fects of well documented (and replicated in this study) mean value biases in remote sens-
ing that are caused by ground or on-board sensor conditions. As a result, our approach
can provide reliable and interesting metrics across time and space that qualitatively agree
with evidence from other data sources. While it is certainly possible to enhance the ob-
tained metrics with quantitative interpolation across socioeconomic datasets to micro-
and macro-levels using regressions or other statistical, geospatial methods, we stress the
value and importance of our meso-level observations of the regional and time specific flow
patterns presented in this paper which, moreover, have not been discussed or considered
in the prior literature.
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To date, no studies have looked at variance in global nighttime luminosity data across
time as a proxy for convergence and divergence phenomena or, for that matter, any theo-
rized dynamic economic processes. Previous work has merely noted correlations between
nighttime lights and aggregate static accounts data (e.g., GDP). As noted above, unlike
our approach, these prior studies focused on aggregate nighttime lights panels which are,
themselves, deeply flawed. One likely reason for the relative scarcity of studies like this one
is the lack of examples of big data analysis in economics that leverage interesting higher
statistical moments and patterns that are computed and analyzed rigorously, with rare
exceptions in [35-38]. We argue that more research is needed that makes use of big (com-
plex) data and takes seriously the theoretical underpinnings of the aggregate models cur-
rently in use. This will not only lead to improvements in current theory, but also shows
promise for validation, rejection, and, even, introduction of novel hypotheses and theory.

Passive remote sensing of the Earth’s surface using satellites can allow researchers to ob-
tain real-time proxies for economic activity that are spatially and temporally well-defined.
As opposed to the somewhat fictitious aggregate data generated by society’s tax optimized
accounting, where investments in production and sales of products can be artificially sep-
arated in offshore holding companies with country of origin labels attached that do not
reflect the actual economic transactions, seeing is believing. Moreover, while most survey-
based data can also be misleading due to sample biases and hidden information, here we
have a global dataset with complete coverage of nighttime photon spillage from human
activity with, arguably, leading real-time indicators of economic activity that can be use-
ful for a more precise characterization of on the ground economic development as well
as early crisis warnings when investments do not realize growth in economic output as,
otherwise, expected.

We observe both support for the broad o-convergence theory in the post-Cold War
period as well as strong divergence dynamics immediately following the financial crisis
and Great Recession with, moreover, observable patterns of growth that are correlated in
time with governmental policies introduced in the wake of economic shocks. While it can
be argued that the social insurance of government transfers provides benefits by limiting
the extent and magnitude of Schumpeterian damage during and immediately following
a crisis, we observe that there is both a direct cost of generally lower growth in more
successful areas, as well as an indirect cost of higher accumulation of benefits in more
urban areas leading to flows of labor and capital into already densely populated regions
while leaving the hinterland relatively more impoverished. These metrics could be im-
proved significantly with even more up-to-date data. Particularly, with real-time (daily),
high-resolution feeds of satellite data, the improvements in precision for global activity
anomaly detection would enable a vast portfolio of early crisis warning signaling systems.
Governments, foundations, philanthropy, and NGOs could intervene in real time as, for
instance, communities slip into decay.

We have stood for centuries, squinting skyward, learning from looking. One of the most
striking and exciting byproducts of our approach is the manner in which our visual repre-
sentations of human economic activity are immediately suggestive, drawing the inquisitive
researcher’s eye to conspicuous structures, asterisms of light.
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