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Abstract

Large scale social events that involve violence may have dramatic political, economic
and social consequences. These events may result in higher crime rates, spreading of
infectious diseases, economic crises, and even in migration phenomena (e.g.,
refugees across borders or internally displaced people). Hence, researchers have
started using mobile phone data for developing tools to identify such emergency
events in real time. In our paper, we apply a stochastic model, namely a Markov
modulated Poisson process, for spatio-temporal detection of hourly and daily
behavioral anomalies. We use the call volumes collected from an entire geographic
region. Our work is based on the assumption that people tend to make calls when
extraordinary events take place. We validate our methodology using a dataset of
mobile phone records and events (emergency and non-emergency) from the
Republic of Céte d'lvoire. Our results show that we can successfully capture
anomalous calling patterns associated with violent events, riots, as well as social
non-emergency events such as holidays, sports events. Moreover, call volume
changes also show significant temporal and spatial differences depending on the
type of an event. Our results provide insights for the long-term goal of developing a
real-time event detection system based on mobile phone data.

Keywords: behavioral anomaly detection; emergency events; mobile phone data;
Markov modulated Poisson process

1 Introduction

Large scale social events can happen anytime, anywhere, and without warning. Examples
are clashes between ethnic communities, violence among supporters of political groups
or sports clubs, demonstrations and celebrations. Some of these events cause migration
phenomena (e.g., refugees and internally displaced people) [1, 2], higher crime rates and
spreading of infectious diseases [3, 4], and result in economic crises [5]. Subsequently, re-
searchers have recently started to automatically identify emergency events by using new
sources of data, such as geo-referenced social media and mobile phone data [6-8]. In par-
ticular, the almost universal adoption of mobile phones is generating an enormous amount
of data about human behavior with a breadth and depth that were previously inconceiv-
able. In 2013, there were 6.8 billion mobile phone subscriber accounts worldwide, with
millions of new subscribers every day, corresponding to a penetration of 128% in the de-
veloped world and 90% in developing countries [9].
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In our paper, we investigate the usage of mobile phone data to detect and character-
ize emergency and non-emergency events. Specifically, we adopt the Markov modulated
Poisson process framework [10, 11] (MMPP) for the spatio-temporal detection of hourly
and daily behavioral anomalies in call volume, and we discuss the relationship between
these anomalies and the actual emergency and non-emergency events that might have
caused them. Compared to previous studies [8, 12—17], we do not start with the location
and the time of an already known event, but we use an unsupervised approach that spatio-
temporally identifies unusual calling behavior. Moreover, our approach detects not only
daily anomalies, but also hourly anomalies. Hence, we are able to capture behavioral re-
sponses occurring within hours of an event.

To validate our approach, we use mobile phone records from Ivory Coast (officially Re-
public of Cote d’'Ivoire) in Africa. The data, collected from December 1, 2011 to April 28,
2012 during the post-election crisis, were released for Orange’s ‘Data for Development
Challenge’ (D4D) [18, 19] and contain calls between 5 million customers.

Our results show that we can successfully capture anomalous calling patterns associated
with violent events, riots, as well as social non-emergency events such as holidays, sports
events on an hourly and daily basis. Moreover, we illustrate that call volume changes also
show significant temporal and spatial differences depending on the type of an event. Unlike
previous work on classification of social events [20], we find that the coverage of the spatial
impact is more significant than the duration.

In summary, the main contributions of this study are:

+ We construct a detailed database of emergency and non-emergency events in the
Ivory Coast using multiple sources of data and merge them with the geographical
locations of the cell towers. This database is used as ground truth in our analysis;

+ We adopt a Markov modulated Poisson process (MMPP) to spatio-temporally detect
hourly and daily behavioral anomalies in call volume;

+ We test our methodology using the Call Detail Records (CDRs), aggregated to the cell
tower level, of an entire country;

« We discuss the correspondence between the anomalies found and the actual
emergency and non-emergency events that might have caused them;

« We highlight and discuss the different spatial and temporal signatures of the
discovered events.

The rest of the paper is structured as follows. Section 2 discusses related work on us-
ing mobile phone data for measuring human behavior and previous approaches to simi-
lar event detection problems. In Section 3, we present the proposed Markov modulated
Poisson process for identifying anomalies. We describe the ‘Ivory Coast Dataset; the Call
Detail Records (CDRs) and the event records, used to validate our approach in Section 4.
In Section 5, we evaluate the correspondence between anomalies found and actual emer-
gency and non-emergency events, reporting comparative experimental results with two
other approaches from the literature. Before concluding the paper, we elaborate on what
we have learned from matched and unmatched events, and we discuss some limitations
of our study (Section 6).

2 Related work
In this section we review the literature on understanding human behaviors from Call De-
tail Records (CDRs), and event detection methodologies.
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2.1 Understanding human behaviors from call detail records data

Mobile phone operators can analyze the behavior of a large number of people from their
aggregated mobile phone usage [21]. The Call Detail Records (CDRs) stored by operators
(typically for billing purposes) can be exploited to extract mobility patterns [17, 22, 23],
to model social interactions [24, 25], to analyze the dynamics of a city [26, 27], to un-
derstand epidemics [28, 29], to estimate population densities [30], and to predict energy
consumption patterns [31], and socio-economic indicators and outcomes of territorial dis-
putes [32-34].

In the last few years, several studies have shown that natural and man-made emergency
events (e.g. earthquakes, floods, bombings, riots) can be reflected by dramatic increases
in calling and mobility behaviors [8, 12-17, 20, 35].

The assumption behind these works is that significant changes in behavior, captured by
mobile phone data, will indicate the occurrence of extreme events. Indeed, people tend to
share and inform each other about an emergency event typically right after it is realized
[36]. However, planned non-emergency events also occur and may provoke significant
changes in mobile phone behavior. Bagrow et al. found easily detected changes in call
frequency during festivals, concerts, sport events, and it is likely that also other events
such as holidays may produce similar changes [13].

The call data can be analyzed at the individual level, to detect the changes from the
expected call and mobility behavior [8, 37, 38]. This approach requires some restrictions
for data privacy, and incurs high computational cost. These problems can be overcome by
computing on the aggregated call volume of each cell tower [20].

Typically, the approaches that analyze CDR data start with the time and the location
of an already known event and then look for anomalous calling behavior at that time and
location. The most common way of anomaly detection in time series is to define a baseline.
With a supervised approach, very good results can be achieved. In this paper, we take an
unsupervised approach to build a model without having prior information.

Recently, Dobra et al. proposed an unsupervised behavioral anomaly detection system
that identifies days and locations with unusual calling or mobility behavior without know-
ing the event [39]. The authors used mobile phone records from Rwanda in order to con-
nect the identified anomalous days and locations with extensive records of violent and
political events (e.g., protests, violence against civilians) and natural disasters (e.g., earth-
quakes). Specifically, they computed the aggregated daily mobility and calling patterns of
each site, starting from the individual behavior of all assigned subscribers for the corre-
sponding site. This methodology suffers from high computational costs and works only
on a daily basis. Our approach instead takes as input the calling volume of a cell tower
without accessing individual data. Hence, we are also able to detect hourly variations and
the behavioral responses occurring within hours of an event.

There are two main approaches for classification of emergency and non-emergency
events from mobile phone data. The first approach is the analysis of mobility patterns to
model individuals and crowds, which has been used to identify concerts and sport events
[8, 40]. The second approach is the analysis of temporal patterns, which can be used to
differentiate between event types according to the duration of behaviors [20]. We propose
a third approach by observing spatio-temporal characteristics of anomalous behaviors.

A number of works used the D4D Ivory Coast dataset to validate event detection ap-
proaches [19]. Paraskevopoulos et al. [41] used numerical analysis to detect anomalies.
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Their model is based on call duration statistics, which is calculated by dividing the cumu-
lative call duration by the number of calls, for each day and for each cell tower. During an
emergency, people may indeed tend to make more calls, but these can be with shorter du-
rations. Hence, looking at the total duration may not be sufficiently discriminative. Dong
et al. used the D4D dataset for modeling the movements of flocks of people [38]. Their
assumption is that people move in groups when an extraordinary event happens. This
assumption can provide valuable insights to detect and characterize protests. However,
this mobility pattern is not observed during attacks against civilians that take place in ur-
ban areas. In Section 5.1 we will provide comparative results with the two recent methods
described briefly here.

2.2 Event detection methodologies

In the literature, anomalous event detection, which corresponds to the task of detecting
anomalies from time series, is strongly related to outlier detection [42], and change point
detection [43, 44].

In our application scenario, the normal behavior is observed by the temporal (hourly)
changes of the aggregated call volumes, collected from different cell towers. Similar dis-
crete, count-based analysis problems have been tackled in statistics, econometrics, psy-
chology, and ecology [45—-438].

In particular, the change point methodology is a well-studied topic in statistics [43].
Previously, Zhang et al. used this approach to detect anomalies in mobile phone data [49].
However, the problem of this method is that it does not preserve the periodicity of data.

Other researchers proposed the usage of Hidden Markov Models (HMM) [50, 51] for
the anomaly detection task. As highlighted by [52], the MMPP approach that we propose
to use in this paper is a special case of HMM and Markov Chain Monte Carlo (MCMC)
approaches. MMPP has also similarities with the change point methodology [53] but it
has the advantage of preserving periodicity.

3 Methodology

Our goal is to investigate the usage of mobile phone data to detect and characterize anoma-
lous events. Poisson processes are commonly used to model count data (data in which the
observations can take only the non-negative integer values) [11, 54] in many domains, such
as modeling rare incidents in psychiatric hospitals [45], and traffic analysis [52, 55].

3.1 Markov modulated Poisson process
In our setting, the count data are represented by the number of total calls in 1-hour time
intervals, denoted as N (), for each cell tower, denoted as k.

The model is represented as a two state Markov chain, with a normal call behavior state
z(t) = 0 and an abnormal call behavior state z(t) = 1 (see Equation (1)). The transitions
between the states are defined with a transition probability matrix M, in Equation (2)

1, if thereis an event in time ¢,
z(t) = (1)

0, otherwise,

1_
MZ:< oA ) )
20 l—Zl
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Our observations are denoted as N(¢), and hidden variables are the amount of calls in
a normal call pattern Ny(¢), and the amount of calls initiated because of an anomalous
event Ng(£). The definition of N*(¢£) for a cell tower & is given by the summation of hidden
variables Né‘ (¢) and Nfg‘ (¢), as shown in Equation (3)

NX(¢) = NE(t) + NE(). 3)

Hence, we assume that the number of calls are generated through a heterogeneous Pois-
son distribution Pois(N, A(£)), with the rate value that is a function of time A(¢), as shown

in Equation (4)
Pois(N; A(2)) = e (A()N/NY). (4)

The normal call pattern of a cell tower k is dependent on the day (i) of the week (Sf ) and
the hour (j) of the day n]/fi, and A’é represents the average rate of cell tower (k) in one week.
We can formulate the rate function of the Poisson distribution A*(¢) as the product of the
initial rate A%, the daily effect 8, and the hourly effects r)]/.fi. The detailed derivations can
be found in Appendix A.1.

To evaluate event detection models, it is necessary to annotate existing data by cross-
referencing it with news sources. We provide a list of important events in Table 3 and
Table 4 (details explained in Section 4.2). For each important event, we have grouped
the cell towers close to the location provided in the ground truth, and associated events to
cell towers probabilistically. Each cell tower’s probability distribution is normalized before
calculating the average probability of the region. If the event probability is higher than a
defined threshold 7 (e.g. 0.15), we classified this event as detected in the region.

3.2 Baseline model

To assess the MMPP performance, we have implemented a baseline model, which we de-
scribe in this section. For each cell tower, the hourly average call volume is calculated as
shown in Equation (5). In our notation, each cell tower is denoted with k, days are indexed
with i, hours with j, N(¢) is the observation for time ¢, and D is the total number of days
for the data collection period. Once the averages are calculated, we subtract the average
value, @, from the observed call volume for time ¢. If the obtained value is higher than a

defined threshold (7), the event is labeled as anomalous.

Yy i NG
D
|(NG,j)* - @) > 7.

) ’

ko _
ok =

4 The Ivory Coast dataset

In this section, we introduce the datasets that have been used to evaluate our proposed
methodology: (i) a mobile phone records dataset, obtained by Orange for the ‘D4D Chal-
lenge,® and (ii) an event records dataset obtained from a variety of public sources (e.g.,
Armed Conflict Location and Event Data Project, United Nations Council and Interna-

tional Crisis Group reports, local and international news).
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Table 1 Summary statistics of the Ivory Coast dataset and the country

Total area of the country (hectares) 32,246,300

Population of the country around 20 million
Number of subscribers 5 million

Type of the data Cell tower to cell tower
Total number of calls 190,638,909

Time period 7 weeks / 20 weeks

4.1 Call details records

The Orange dataset contains anonymized and aggregated calls between 5 million cus-
tomers from December 1, 2011 to April 28, 2012 (referred to as Set 1 in the D4D Chal-
lenge). Specifically, the dataset contains the total volume (number of calls and SMSs) and
duration of calls between each pair of cell towers over the entire period. The total number
of cell towers is 1,238; however, in the pre-processing phase, we have eliminated the cell
towers, which are not present during the whole period, ending up with 970 cell towers to
analyze. The exact locations of the towers are not provided by Orange Telecom, due to the
company’s operational confidentiality. Finally, it is worth noticing that the data consist of
the total traffic between cell towers, and hence no individual data are ever accessed.

Mobile phone penetration is high enough (95%) [56] in Ivory Coast to make such
a dataset sufficiently representative of the population. Moreover, the network operator
holds a dominant position in Ivory Coast (48% of the market share). Table 1 provides sum-
mary statistics for the country and the dataset.

Specifically, the call data consist of (i) date, (ii) hour, (iii) initiating cell tower, (iv) des-
tination cell tower, (v) aggregated number of calls, and (vi) aggregated duration of calls.
The CDR data with an unassigned cell tower are deleted. From December 14, 2011 to Jan-
uary 19, 2012, half of the country had a shortage of energy, confirmed by the Orange Tele-
com authorities. The data collected during this period are deleted. Additionally, we have
missing data from 22nd of January to 30th of January. To preserve the weekly periodicity
without being affected by data collection issues, we analyze the data from December 5 to
December 11, and from January 30 to March 11 (49 days in total).

To provide some geographical context, Figure 1 shows the rough locations of cell towers
in relation to the regional boundaries of Ivory Coast (255 subprefectures). It shows the
dense concentration of cell towers in and around the largest cities of each region. Abidjan,
the economic capital of Ivory Coast, has a significantly higher concentration of cell towers
compared to the rest of the country.

4.2 Eventrecords

Our data on violent and political events, major holidays and major events (e.g., elections,
the African Football Cup) come from a various structured and unstructured public data
sources such as Armed Conflict Location and Event Data Project (ACLED) [57], United
Nations Council and International Crisis Group reports, local and international news.
ACLED and UN Security reports include extensive data on conflict-related events includ-
ing riots, protests, killings, and battles. The information is obtained by local or interna-
tional newspapers (e.g. Notre Voie, Le Patriote, France24, BBC) and radio sources, and it
includes details such as the date and location of each event, the type of event, the groups
involved, and the fatalities. Ivory Coast has been suffering unstable political conditions
during the data collection period. According to the United Nations Human Rights De-
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Figure 1 Cell tower locations within subprefectures in lvory Coast.

partment, more than 600,000 Ivorians were displaced in the country and around 200,000
Ivorians migrated to neighboring countries in order to be in secure living conditions [58].

In total, we have gathered 19 emergency events (e.g., confrontations between groups,
protests) and 11 non-emergency events (e.g., national and regional holidays, African Foot-
ball Cup games). The complete list of events (emergency and social non-emergency
events) is shown in Table 3 and Table 4.

5 Experimental results

Our approach identifies many hours and days with unusual increase in calling volume.
As in [39], these anomalies are found sometimes in a specific site and sometimes across
multiple sites. Specifically, our approach provides the probability of having an anomalous
event in a specific location.

As we mention in Section 1, our goal is to identify emergency events. However, non-
emergency events might also produce behavioral changes in calling volume. Hence, it is
relevant to highlight and discuss the specific behavioral signatures of the different events
in order to detect the emergencies effectively. In this regard, from the 19 annotated emer-
gency events, our method automatically detected 15, while for the social non-emergency
events it was able to identify 8 out of 11 events. Similar to [39] and [11], we find some
hourly and daily anomalies that we were not able to match to any of the recorded events
(i.e. possible false positives).

We compare our MMPP approach with a baseline model, which has been explained
in Section 3.2, and show that our approach outperforms the baseline. Indeed, from the
19 annotated emergency events, the baseline approach is able to identify 8, while for the
social non-emergency events, it is able to identify 7 out of 11. While the nature of the
problem dictates a very large dataset with very sparse true positives, the results are quite
promising. Before describing our results in detail, we compare our method with the event
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Table 2 Comparative results for the MMPP model and for Dong et al.’s approach [38]

Precision Recall F-score

MMPP 0.31786 09219 04727
Dongetal 00676 0.92 0.125

Number of Social Events According to Duration
T T T T T

T T
[ 2 Hours
[ 3 Hours
4 Hours

Number of Cell Towers

\Iﬂjlh_\\-—‘——‘—\—\ | I | I 1 | L 1
1 2 3 4 5

6 7 8 9
Number of Social Events Detected

Figure 2 The distribution of detected social events with the approach of [20]. Selecting a longer
duration threshold for unexpected behavior reduces the number of detected events.

identification approach by Dong et al. [38], as well as with the event type classification
approach described by Young et al. [20] in the next subsection.

5.1 Comparison with recent approaches
Dong et al. proposed a methodology in 2015 for event identification based on modeling
individuals’ mobility as flocks through the city, and they tested this methodology on the
D4D dataset [38]. They reported a precision value of 0.0676 and a recall value of 0.9200.
In order to provide a fair comparison, we tested the MMPP approach on the same experi-
mental setting proposed in their paper, with 140 days of data and 25 ground truth events.
The results show that MMPP outperforms this approach in all the measures (see Table 2).
We also compare our approach with the one proposed by Young ez al. in 2014 to clas-
sify social non-emergency events [20]. This approach posits that social events have longer
temporal duration than emergency events. Since the duration of deviation is a major pa-
rameter, we compared the methods for observation periods of two, three, and four con-
secutive hours. Setting this to two hours means that an event is detected if the observed
behavior deviates from the expected for two hours. For each of the three settings, Figure 2
shows the number of social events detected by a given number of cell towers. The best
performance is obtained by using two consecutive hours, where the average number of
detected social events is equal to 1.34. Using MMPDP, on the other hand, we are able to

detect 8 social events. We now describe the findings of our method in detail.

6 Discussion and limitations
In this section, we match some of the anomalies identified along with key events that oc-
curred in Ivory Coast and we discuss what we have learned from matched and unmatched
events. Then, we discuss some limitations of our study.

In 2010 and 2011, Ivory Coast suffered from a post election crisis. The election results ini-
tiated a civil war, and effects of the war were still present during the data collection period.

Therefore, our emergency events are mainly due to these unstable political conditions.
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Figure 3 On the left side we show the cell tower locations on the Bouaké-Katiola road, while on the
right side, we show the corresponding probabilities of having an event on the 4th of February.
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Figure 4 MMPP results for cell tower 113 (Arrah). In the top plot, the red line denotes the hourly and daily
averages and the dark line denotes the observed calling volume. The plot in the middle shows the
predictions of having an event, with the annotated events marked below.

Violence against civilians - February 3, February 19, and March 8, 2012 On February
the 3rd, the proposed system did not detect any significant changes in call volume near
the location of the event, close to Bouaké. Instead, we see a clear anomaly in this area on
February the 4th (see Figure 3).

Similarly, no anomalies were detected on February the 19th, while on March the 8th we
detect an anomaly close to Bouaké (cell tower 964) around 11am. Interestingly, this finding
is not detected by the baseline model.

Violence against civilians - February 11 and February 13, 2012 In Arrah, it was reported
that the confrontation of two groups ended with three people killed and at least 19 injured.
The visualization of our model’s output is shown in Figure 4 for cell tower 113. In the top
plot, the red line denotes the hourly and daily averages and the dark line denotes the ob-
served calling volume. The plot in the middle shows the predictions of an event occurring,

with the annotated events marked below.

Protests against the government - February 18, 2012 MMPP detects calling volume in-
creases from a single cell tower at 3pm and 5pm on February 18, 2012. The cell tower is
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Figure 5 Cell tower locations of Abidjan with high call volume anomalies during the ‘Congres
National de la Resistance Pour la Democratie’ meeting on the 18th of February.
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Figure 6 Overall country anomaly probabilities on February 26, during renewal of elections in Bonon
and Facobly.

located in the city center of Abidjan, the economic capital of the Ivory Coast. A non-violent
protest against the government was reported by the United Nations on the same day in
Abidjan, in front of the ‘Congres National de la Resistance Pour la Democratie’ headquar-
ters located in the city center. We assume those protests took place in the western part
of the map, shown in Figure 5. Each orange dot represents cell towers with an anomalous
call volume. Unfortunately, the reports of United Nations do not specify the duration of
the protest.

Elections and violent clashes in Bonon and Facobly - February 26, 2012  After 5pm, we
observe anomalous calling patterns in two regions of the mid-west, Bonon and Facobly,
for the cell towers 239, 1154, 374, 181. On the same day, a couple of events were recorded
for these two regions, political elections and consequent violent clashes between political
opponents, as shown in Figure 6. The violent events ended with the death of five people.
Interestingly, we observe that these violent events seem to have effects not only in the

regions involved, but also in Abidjan. Indeed, we detect an anomaly in Abidjan after 5pm.
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Figure 7 The detected anomalies on the 4th of February. On the left before 8pm, on the right after 8pm.
Darker dots correspond to higher probabilities.

Although Abidjan is not the administrative capital of the Ivory Coast, the headquarters of
the two opposition parties are located in this city.

Violence against civilians - February 29, 2012  The event records report that FRCI (Forces
Republicaines de Cote d'Ivoire) shot civilians in Séguéla, and this violent repression re-
sulted in the death of two people. On the same day, we observe an unusual calling activity
in the northern part of Séguéla, close to the border with Guinea.

As previously mentioned, we also collected 11 non-emergency events (social events and
holidays). The main characteristic of those types of events is that they affect almost the

entire country. In the following, we discuss a couple of relevant non-emergency events.

African football cup, January 21 - February 12, 2012 In 2012, the African Football Cup
was held in Equatorial Guinea and Gabon. Ivory Coast played in the final match and dra-
matically lost the championship on penalties. It is worth noting that football is one of
the most important social activities in Ivory Coast and that the day after the finals was
proclaimed a national holiday. This enthusiasm is spread across the entire country. Inter-
estingly, African football cup matches have a highly specific call signature, causing a very
high call volume for one or two hours after the match on cell towers across the country.
Figure 7 contrasts the anomalies detected before and after the match. Specifically, the left
side of Figure 7 shows the anomalies detected before 8pm and the right side shows the

ones detected after 8pm.

Mavlid an Nabi (celebration of the birth of the prophet), February 4 - February 5, 2012
The Ivory Coast is composed of different ethnic groups and religions. The north is mainly
Muslim and the south is mainly Christian. During these two days we found calling anoma-

lies in the northern part of the country.

Ash Wednesday Christian festival, February 22, 2012 'We do not observe any significant
difference in the calling patterns of the Christian south and the Muslim north. Only in the
capital city, Yamoussoukro, during the whole day and night we register some unusual call-
ing activity. Interestingly, Yamoussoukro has the biggest church in the world, the Basilica
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of Our Lady of Peace. This monument usually sees large number of Christians gathering
during the festival.

Our results do not confirm the patterns observed by [59] and [60] that found a positive
correlation between the mobile phone coverage and the probability of having a conflict. In
our setting, the densest population and the highest coverage is in the Abidjan area, while
the violent events tend to happen in the mid-west of Ivory Coast, where many conflicts
between different ethnic groups exist.

Another finding is an irregularly high call volume on the first day of each month. One
possible reason is the high penetration of mobile payments in Ivory Coast. People typi-
cally pay their utilities, rents, etc. on this day. However, we do not have any formal way of
confirming this, and we assume this behavior is normal. Note that our work suffers from a
number of limitations. First of all, we focused our attention only on anomalous increases in
calling patterns. However, emergency and non-emergency events may also cause changes
in mobility patterns, as shown by [39]. Second, the annotated event records may be incom-
plete given the scarcity of information and the chaotic socio-political situation during the
data collection period. Moreover, the exact event locations are often not provided and the
dates can fluctuate a bit in the reports. For example, UN records report events in Arrah
from February 11 to February 13, while Le Figaro newspaper [61] reports the same events
from February 12 to February 13 (our results seem to confirm the dates provided by Le
Figaro). Third, we observed daily data losses in several cell towers, e.g. cell tower 49 on the
5th of December. This data loss tends to generate a high number of false positives when
the average call volume of a cell tower is high, e.g. greater than 1500. Finally, the MMPP
performance is sensitive to prior parameters, even though we have empirically shown that
cell tower call volumes can be easily and robustly estimated from a few days worth data
[11]. Yet, in our case, the model’s performance may be sensitive to the cell tower selected
for tuning the parameters.

7 Conclusions
In this paper, we have proposed an approach based on Markov modulated Poisson pro-
cesses for spatio-temporal detection of hourly and daily behavioral anomalies in call vol-
ume. Our work is based on the assumption that people tend to make calls when extraor-
dinary events take place. We validate our methodology using a dataset of mobile phone
records, together with emergency and non-emergency events from Ivory Coast. Our re-
sults show that we can capture anomalous calling patterns associated with violent events,
protests, holidays and major sport events (e.g. African Football Cup games). One of our
findings is that the impact area is a better feature than the temporal duration for identi-
fying social non-emergency events from mobile phone data, which runs counter to the
general opinion held in the literature. Another valuable finding is that for event detection,
analysing mobile phone activity as a time series gives better performance compared to
tracing movements of the masses. It is worth noticing that our methodology uses only ag-
gregated call volumes of cell towers and no data can be traced back to individuals. Hence,
there are minimal - if any - privacy concerns.

In sum, we believe that our work contributes to the process of creating an effective
emergency detection system that may be used by governments, policy makers, and in-
ternational organizations to significantly increase human well-being and the wealth and

security of countries.



Gundogdu et al. EPJ Data Science (2016) 5:25 Page 13 of 19

As future work, we are planning to target anomalies in mobility patterns and apply our
approach to other datasets, both from developing and developed countries.

Appendix

A.1 Derivation of Markov modulated Poisson process

In this section we present how we implement the Markov modulated Poisson process in
order to detect anomalous events.

The model is represented as a two state Markov chain, with a normal call behavior state
z(t) = 0 and an abnormal call behavior state z(¢) = 1, as shown in Figure 8. The transitions
between the states are defined with a transition probability matrix M, in Equation (6),
which is time independent but dependent on previous transition probabilities

1, if there is an event in time ¢,
z(t) = (6)

0, otherwise,

1 —
M= "% =), @)
20 1- Z1

Our observations are denoted as N (¢), and hidden variables are as follows: the amount of
calls in a normal call pattern Ny (£), the amount of calls initiated because of an anomalous
event Ng(¢f) and the transition probabilities of events z(¢) as in Equation (7). The definition
of N*(t) for a cell tower k is given by the summation of hidden variables Né‘ (t) and N é (1),
as shown in Equation (8)

NX(£) = NX() + NE@o). 8)

We assume that the number of calls are generated through a heterogeneous Poisson
distribution Pois(N, A(£)), with the rate value that is a function of time A(£), as shown in
Equation (9). Changes in the count data are modeled taking into account the periodicity
depending on the day and on the hour of the day. In Appendix A.1.1, this property is used
to calculate the posterior distributions

Pois(N; A(2)) = e (A()NINY). )

The normal call pattern of a cell tower k is dependent on the day (i) of the week (85( ) and
the hour (j) of the day n;fi, and A represents the average rate of cell towers in one week.

0.9 0.2

0.8

Figure 8 Event transition state diagram.
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Figure 9 The graphical model to understand hour of day and day of week effect, taken from [11].

We can formulate the rate function of the Poisson distribution A¥(¢) as the product of the
initial rate )»’5, the daily effect 8{‘ , and the hourly effects n}fi, Equation (10). Plate notation

is used to depict the repeating form of the data, as shown in Figure 9
W) = 2§85 0w (10)

Conjugate prior ensures that the posterior distribution is coming from the same family
of the prior distribution. Hence, our model becomes tractable and it can be written in
closed form. Random variables §, 1, denoting the day of the week and the hour of the day,
are coming from a multinomial distribution as shown in Equation (11) and the conjugate

prior is selected as Dirichlet distribution in Equation (12)

7
Z 8i=7,
i=1

(11)
D
> =D Vj,
i=1
Ao ~T (x;at,bb),
1
;[81,...,87] ~Dir(otfl . ~a§1), (12)
1 .
5 (s Mp] ~ Dzr(a{’ .. -ag).

In the right side of Figure 9, z(_1), z() and z(.,1) show the time series properties of the

event transitions. Ny (¢) and Ng(¢) are hidden variables, and N () is our observation
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zo~ B(z az, OZ), (13)

7~ B(zal,bf), (14)

Ne)={ A0=0 15)
P(N;A(1), z(t)=1,

A(t) ~ T (r;at,b"). (16)
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Table 3 List of emergency and social non emergency events. MMPP and baseline results
columns show the detected events with ‘X’ and the undetected ones with '-. Specifically, we
use ‘E’ for emergency events and ‘S’ for social non emergency events. For the emergency
events not gathered from UN reports [62] we cite the source

Date Results Results CellT. Emergency events Social events
MMPP  baseline
E S E S
Dec.11 7 X X Anniversary of death
of Felix Houphouet
Bougny
11 X X New Parliament Selection
15 Yopougon [63]
16 Yale, violent incident
17 Yale and Vavoua [63] violent incident
18 Vavoua [63]
25 Sikensi [63] Christmas holiday
26 Sikensi [63]
Jan. 12 1 New Years Day
4 Peite Guiglio
4 Boumi near Bouaké
5 Dobia
6 Toa Zeo near Dukou
6 Daloa
8 Baptisim of Lord Jesus fest
9 Ayami
14 Arbeen Iman Huseyin fest
15 Gagnoa
17 Annan and Clinton Visit
18 Annan and Clinton Visit
20 Touba
21 Abidjan Meeting
22 Konsou, Gnabra and Zedekan CUP CIV & Sudan 17-18
30 X - CUP CIV & Angola 19-20

Event probabilities can be sampled through the densities of a normal event P(N; y) times

the probability of having an anomalous event y (¢) as shown in Equation (17)

E
/ P(N;y)T(y;a*, b*) = Nbin (N; at, 1’:—b5>. 17)

The hyper parameters of Gamma Distribution I', a* and &f in Equation (16) set the
distribution’s sharpness or smoothness between the transition states Zy and Z;. In trau-
matic events, the transition generates a sharp peak. Estimation of these two parameters

are shown in Appendix A.1.1.

A.1.1 Inference and parameter estimation

In our model, we need to estimate the parameters for the Gamma distribution I'(y; ak, bf)
in order to model the probability of an anomalous event p(z(t)*|N(£)X). Let us assume
{No(t), Ng(¢),z(¢)} are given. Then, we may estimate the parameters of the distribution by
computing the maximum likelihood [43], given that all other variables are conditionally
independent. However, as in Figure 9, only N () is observed, without separation into Njy(t)
and Ng(t). The rest of the parameters, including z(t), are estimated from the observations.
Since we do not know when a social or emergency event takes place, we estimate the pa-
rameters of the model with the information we obtained. In that respect, we take one cell
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Table 4 List of emergency and social non emergency events. MMPP and baseline results
columns show the detected events with ‘X’ and the undetected ones with '-. Specifically, we
use ‘E’ for emergency events and ‘S’ for social non emergency events. For the emergency
events not gathered from UN reports [62] we cite the source

Date Results Results Cell Towers Emergency events  Social events
MMPP  baseline
E S E S
Feb.12 3 - X 616, 336, 834, 964, Bouaké-Katiola road
251
4 X X CUP CIV & Equar. Guina 20-21
4 X X Mavlid an Nabi (Sunni)
5 - X Day after prophet holiday
8 - - CUP CIV & Mali 20-21
9 X X - - 398, 533,426, 884, Zibabo Yablo near Mavlid an Nabi (Shia)
534 Duekoue
11 X - 113,16,92 Arrah in eastern Cote
d_lIvoire
12 X X X X 113,16,92 Arrah in eastern Cote  CUP CIV & Zambia 20:30-21:30
d_lIvoire
13 X X X X 113,16,92 Arrah in eastern Cote  African cup recovery holiday
d_lIvoire
16 X - 764,662, 698 Tueho village near
Man
18 X X 781,1026, 27,198, Abidjan meeting
436
19 - - 616, 336, 834, 964, Bouaké-Katiola road
251
19 X - 534,1071, 645,677 Westernpart of the
country
21 - - 872,386, 1055 Zriglo in the border
area with Liberia
22 - - Ash Wednesday festival
26 X X 239,1154,374 Bonon and Facobly
election was attacked
27 X - 546,776,916,209,27  Abidjan
29 X X 285,1128,9,819 Abobo
29 X X 288,963,711 Séguéla
Mar.12 1 X X 288,963, 711 Séguéla
2 288,963, 711 Séguéla
3 X - 152,980,414 Daloa
5 - - 42,39 Agboville near
Abidjan
8 X - 616, 336, 834, 964, Bouaké-Katiola road
251
1 X - 895, 1034, 901, 410, Assasination to
776,306, 995 Director General

Police Academy, in
Cocody 2 Plateaux

tower, which is known for having an associated event, and calculate the deviation from

the mean value of the hour of the day 77,{;'» and day of the week 8¢ from the observation,

as in Equation (3). After tuning these parameters for a single cell tower, we apply them to

all Ni(t) in the dataset. We exclude the cell tower that is used for calculating the hyper

parameters from the evaluation set. Since the model may be sensitive to the selection of

hyper parameters, this selection is important for the evaluation of the model. We recom-

mend the selection of a cell tower that represents the average rate function of the all cell

towers. Furthermore, the selected antenna should have a number of observed events, so

that the rate change can be quantified. The duration of the experiment is not important
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if the data can represent the normal behavior of the cell tower, which corresponds to the
mean value of the call volume in our case.

A.2 Eventlists

In Table 3 and 4 we list emergency and social non-emergency events, gathered from a
variety of public sources (e.g., Armed Conflict Location and Event Data Project, United
Nations Council and International Crisis Group reports, local and international news).
The cell towers IDs in the event region are given for the analyzed data period.
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