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Abstract

There is enormous interest in inferring features of human behavior in the real world
from potential digital footprints created online - particularly at the collective level,
where the sheer volume of online activity may indicate some changing mood within
the population regarding a particular topic. Civil unrest is a prime example, involving
the spontaneous appearance of large crowds of otherwise unrelated people on the
street on a certain day. While indicators of brewing protests might be gleaned from
individual online communications or account content (e.g. Twitter, Facebook) societal
concerns regarding privacy can make such probing a politically delicate issue. Here
we show that instead, a simple low-level indicator of civil unrest can be obtained from
online data at the aggregate level through Google Trends or similar tools. Our study
covers countries across Latin America during 2011-2014 in which diverse civil unrest
events took place. In each case, we find that the combination of the volume and
momentum of searches from Google Trends surrounding pairs of simple keywords,
tailored for the specific cultural setting, provide good indicators of periods of civil
unrest. This proof-of-concept study motivates the search for more geographically
specific indicators based on geo-located searches at the urban level.

Keywords: open source data; online searches; civil unrest; social media

1 Introduction

Improving understanding of the connection between online and real-world human behav-
ior has important scientific and practical motivations [1-30]. The use of online media has
gone from being a tool of communication [1, 2] to providing insights into a population’s
collective thoughts and behavior [4-21]. In recent years, strong correlations have been
found between variations in online activity and decision-making in complex systems such
as financial market [7, 8], political protests [9-14], infection spreading [15, 16], and ter-
rorist activity [17]. While advances in the understanding of the mechanisms and control
of contagion processes in complex networks [3, 18—22] may describe driven collective ac-
tion [23-30] (e.g. social unrest), the active monitoring of online activity provides real-time
images of the current state of a system and potentially where it is heading. The likelihood
that online activity may actually pre-empt on-street behavior is a tantalizing prospect [31].
However, even if online behavior merely reflects and hence reports on-street activity, this
in itself can be very important in the absence of reliable media sources or in relatively
remote locations. Among the human phenomena of interest, social instability is a partic-
ularly important one since it has long been a feature of state-society relations and also
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can lead to other problems such as widespread violence and insecurity [9, 29, 30]. Indeed
socio-technical advances have created favorable conditions for forecasting certain types of
mobilizations or protests while simultaneously generating large reservoirs of online data
[31-33]. Such data offers a new avenue of research where information flows may provide
fresh insight into human behavior. However while some information may in principle be
obtainable from personal communications in the form of Tweets or the underlying Twitter
accounts, or from inside informants, this level of specificity is not always readily available
and can be politically dangerous because of concerns of snooping among the wider pop-
ulation.

Here we show that a simple and arguably less controversial examination of open source
Google Trends searches can not only act to detect bursts of civil unrest, but may poten-
tially pre-empt them. Such detection is useful in the absence of reliable media sources
and avoids gathering any information about individuals, their Internet accounts, or their
behaviors. The fact that online and on-street collective behaviors would be coupled in
this way is consistent with the notion that civil unrest is a time-varying coordinated in-
teraction between individuals, groups or populations with significant feedback between
issues in the past and present. Our study considers protests across Latin America during
2011-2014 and grew out of a national project funded by IARPA (Intelligence Advanced
Research Projects Activity) [31-33]. Specifically, we find that a combination of volume
and momentum (i.e. rate-of-change) of particular keyword searches serves as a good de-
tection signal, in contrast to just the search volume. Executing an exhaustive automated
search over combinations of language and culture specific keywords, we find a preference
based on performance and simplicity for pairs of keywords tailored to a specific country.

Having studied various options including Twitter and Flickr, we found Google Trends
(GT) to be the most suitable data-source to use for reasons of reliability, documentation
and geographic accessibility. Hence Google Trends forms the focus of this paper and is
used to provide all the results presented. Since we are interested here in proof-of-concept,
we also aggregate the data to the weekly scale - though this could again be generalized
down to the daily scale using the same methodology as in this paper.

2 Methods

In order to probe the potential relationship between online searches surrounding the topic
of protests, and the actual occurrence of on-street protests, we proceeded using the fol-
lowing five step process. Our methodology for building the event dataset evolved from
our participation in the 2011-2014 IARPA (Intelligence Advanced Research Projects Ac-
tivity) national project on Open Source Indicators (OSI) [32, 33]. Latin America provides
an ideal laboratory for this analysis since there is significant variation in search activity
across countries, coupled with a substantial number of civil unrest events.

First, we obtained a list of protest events occurring in countries across Latin America
starting in 2011, from the database that we helped build under the IARPA OSI project [31].
This database was compiled in real-time as protest events unfolded using reports from
the top 100 newspapers in Latin America (see http://www.4imn.com/). Each reported
event was scrutinized by an IARPA-funded team of academics from multiple institutions
whose expertise included geopolitical issues and current affairs across Latin America, con-
tentious politics, labor disputes, election campaigns, linguistics as well as native Spanish
and Portuguese speakers with knowledge of idiosyncrasies in language use within each
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country. Several co-authors of the present paper were members of this academic team, as
well as previous group members Nicolas Velasquez and Dr. Ana Morgenstern. The final
decision to include events in the database was audited by an independent agency (MITRE
Corporation) who themselves carried out independent checks. This dataset was officially
termed the Gold Standard Record (GSR) by IARPA, in the expectation that it was as close
to ground truth as possible given current technological capabilities, hence we continue to
use the term GSR here. We have subsequently taken this GSR list and re-checked it in light
of media and academic discussions that subsequently emerged concerning some of these
events. We found no errors that change the results presented here.

Second, we investigated a variety of potential sources for extracting search volumes on-
line for different keywords. We required a reliable yet popular source that would provide
us with search volumes over time for specific words, and which was also from accounts
operating in specific countries. These specifications reduced the potential sources to Twit-
ter and Google Trends. We then carried out prediction tests as specified in this section
using volume and momentum. Google Trends emerged as the superior choice, showing a
15% improvement in performance as compared to Twitter - hence we use Google Trends
in all that follows in this paper.

Third, our team of native Spanish (and Portuguese) speakers assembled a dictionary of
words associated with on-street protests in each of the different countries, around a variety
of motives from employment through to education. These provide the list of keywords for
each country, from which pairs of words are then taken to test the prediction method. One
of the main challenges that we needed to overcome, was the variation in language - not
just between Spanish and Portuguese, but also within the same language due to the subtle
differences in terminology used across different media sources and countries. For example,
the key word ‘paro’ in Spain is related to unemployment while in Latin America it relates
more to a protest strike. Our overriding rule was to choose key words that are relevant to
protests in the context of the different countries of Latin America. At the same time, there
is of course no guarantee that simply by combining words that could be associated with a
protest, the subsequent emergence of a positive signal in terms of volume and momentum
is necessarily tied to a looming street protest.

Fourth, we explored exhaustively the combination of (1) keywords from searches in
step 3, and (2) combinations of search volume and its derivatives, to see if we could maxi-
mize the association between online and on-street activity - in particular using the online
activity as a predictor of the subsequent appearance of on-street protests. This was the
most time consuming part of our study since (1) and (2) needed to be performed in tan-
dem. The overall driving principle was to identify collections of keywords whose searches
volumes and their derivatives gave the closest association with actual on-street protests.
We did this in two complementary ways, both of which interestingly gave similar results in
terms of performance. The performance measure is discussed later in this section. In the
first, which we call here the ‘semi-automated’ method, we manually took pairs of words
from the keyword catalog assembled by our team, and checked if their search volume at
a given time-step gave a close association with on-street protests in the next time-step.
Then we generalized this to include a combination of search volume at a given time-step,
and the derivatives of search volume such as its rate-of-change over the past few time-
steps. This revealed to us that the momentum (i.e. rate-of-change) was the most reliable
derivative to use, since it was less noisy than higher derivatives. Since there is essentially
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never a time-step when there is zero search volume for any of the words, we introduced
a threshold to help distinguish signal from noise. In particular, in order to make a predic-
tion for an on-street protest event in the next time-step, we demanded that the volume of a
particular search and rate-of-change exceeded one standard deviation of the background
amount. This can be refined to improve the results beyond those given in the paper, by cal-
culating thresholds that optimize the performance during a training period corresponding
to a subset of the data, before then calculating the performance out-of-sample. While a
brief report of preliminary results was presented at an earlier conference [33], the specific
outcomes obtained are presented in the first part of the next section of this paper. The
second approach that we took to choose subsets of words and suitable volume measures,
employed an entirely automated scheme in which a Support Vector Machine (SVM) was
used to select the features. Further details are given in the Appendix.

Fifth, in order to deduce the best keywords and the best search quantities (e.g. Google
Trends volume and rate-of-change) to detect on-street protests, we needed to have a mea-
sure of success when comparing these quantities with the actual GSR record of protests
within each country. The measure SO that we used to define ‘best’ was given by the com-
bination of three complementary quantities: accuracy Bl which is given by the sum of the
number of true positives (TP) and true negatives (TN) divided by the sum of true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN); the sensitivity P1
which is given by the number of true positives (TP) divided by the sum of true positives
(TP) and false negatives (FN); the specificity PO, given by the number of true negatives
(TN) divided by the sum of true negatives (TN) and false positives (FP). Hence

TP + TN

1= ¢ Accuracy,
TP + TN + FP + EN
TP L
Pl=———: Sensitivity,
TP + EN
N s
0=——: Specificity,
TN + FP

which gives the overall performance measure
S0=B1+P1+P0: Overall performance.

We then ran automatically all possible combinations of the pre-selected keywords and
in each case we calculated values for the accuracy, sensitivity and specificity - and hence
the overall measure SO. The maximum possible value of SO can be seen to be 3 and the
minimum is 0.

To obtain the predictions and hence black dots in Figures 1, 3 and 4, and hence the SO
values shown in Figures 2-4, we proceeded as follows within a given country. Suppose we
are at given timestep t. Using the pair of words identified as having the highest SO during
the training period, we calculated the Google Trends volume at that timestep for this pair
of keywords, and the momentum of this pair of keywords given by the change in search
volume between timestep (£ — 1) and ¢£. We look to see if these two measures rise above the
threshold values corresponding to background noise. If they do, we interpret this as a pre-
diction of a likely on-street protest event in the next timestep (¢ + 1). Then we use the GSR
database for actual protests to determine whether an on-street protest event actually took
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place (green dots). If it did, this is then counted as a true positive prediction (TP). If it did
not, it is counted as a false positive (FP). At a timestep t where the volume and momentum
did not both rise above the background noise value, this is a prediction of no protest event
at timestep (¢ + 1). If according to the GSR an on-street protest actually did take place, this
represents a false negative (FN). If it did not, it is a true negative (TN). In other words,
an accurate prediction is shown by a coincident black and green dot, representing a true
positive (TP). A green dot with no coincident black dot represents a false negative (FN)
since no event was predicted but one did occur. A black dot with no coincident green dot
represents a false positive (FP) since an event was predicted but did not occur. No black or
green dot at a given timestep represents a true negative (TN) since no event was predicted
and none occurred. When a black dot appears at the same position where a green dot is
located, the TP score is increased by one, and similarly for FN, FP and TN. This proce-
dure was then continued throughout the period of study, moving forward one timestep at
a time. The same approach was implemented for real-time predictions during the IARPA
project [31] using one timestep as one week. While it is not our purpose here to compare
this present method to all other methods being presented in recent years for extracting
predictions of future unrest from online chatter and content, we regard it as complemen-
tary to other such techniques. It remains an interesting future project to compare all such
prediction schemes to see which works best under what conditions, and with what specific
data.

Although the above methodology will be shown in the next section to produce some
encouraging results, it has of course various limitations. First, in order to identify a signal
and hence predict a protest, our method requires the search volume and rate-of-change
(i.e. momentum) to be larger than the background noise level as described above. Hence
we expect that our method will predict larger protests more reliably than smaller ones.
Most of the events in the GSR are indeed larger protests, by reason of the fact that in
order to be reported in the media and hence end up in the GSR, they must be noticeable
in some way (e.g. >0.05% of the population). However we also note that the media do
occasionally report an event that involves relatively few people but in which one member
did something extreme such as inflicting visible damage on a particular landmark building,
or throwing objects at a well-known politician. Since inclusion in the GSR involves no
particular constraint about the size of protests, such smaller events will get included if they
appeared in the media. The appearance of such additional events makes the prediction
challenge facing our method even harder, and mean that the prediction results reported
in this paper may underestimate the actual number of GSR events. It will be interesting
to revisit the performance ratings shown in the next section when data becomes available
concerning more precise numbers of protestors, e.g. if protestors start uploading reliable
images of the crowd to a freely available online source. Second, our method is actually
attempting to detect an expression of intent to protest - however many things can then
prevent that protest from actually happening, e.g. strong police presence or threats of
retaliation, or simply a resolution of the underlying issue. This would make our method
likely overestimate the actual number of GSR events. Third, in regions where accessibility
to the Internet is limited such as very poor and/or remote areas of a country, there may
not be enough users to generate a measurable signal, which means we would not predict
a GSR event and hence would miss any potential protest and underestimate the actual
number of GSR events. Fourth, a positive signal predicting a protest may originate from
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users in neighboring areas - hence although the detection of the intent is real, they are not
all located in the same place and hence do not generate a GSR event. Hence our method
would overestimate the actual number of GSR events. Fifth, the keywords can change with
time, region and space. Future work will try to unravel these limitations, though we note
that several of them are expected to work in opposite directions in terms of the number
of GSR events predicted, and so there may be some degree of cancellation.

3 Results and discussion

Even though the GSR database of protests is as close to ground truth as could be obtained,
a lack of specificity in the information available often made it hard for the IARPA team
experts to tell whether events were actually spread over continuous days including week-
ends, or whether they were only on workdays. It was also sometimes hard to determine
the exact location, since protests may only be reported as being outside the capital. Fur-
thermore, it was often hard to tell the precise motive for the protest. For these reasons, we
limit ourselves here to the following proof-of-concept: We show results of the application
of our method in which we aggregate events to the level of the country, we aggregate over
motives for the protest, and we aggregate events to the weekly scale, i.e. the timestep in our
method is one week. We note that this means that our predictions are also at the weekly
scale, i.e. our method is predicting events in the upcoming week as opposed to the next day.

Irrespective of whether we chose the initial pairings using the semi-automated or Sup-
port Vector Machine (SVM) approaches, it became clear that the most prominent words
contributing to high Google Trends volume count and also high performance measure SO,
were the five words protesta (i.e. protest), huelga (i.e. strike), manifestacion (i.e. demon-
stration), marcha (i.e. march) and paro (i.e. stoppage). It also became clear that pairs of
these words could, if chosen correctly, yield high SO values that could only marginally be
improved upon using the SVM. We explain this by the fact that while one of these words
alone in a story might correspond to a protest event, there may be many cases of false
alarms due to another meaning of that word that is unrelated to on-street protests - but
having two of these words from the list drastically reduces such false alarms. At the same
time, having three keywords does not reduce this false alarm rate significantly more, but
instead generates a far more complex space in which the search for maximum SO has to
occur. In short, we found that pairs of keywords from this subspace of five words provided
a sufficiently rich space in which SO could achieve a respectfully high value. At the same
time, the richness of cultural nuances and motives for protest was captured by different
pairs of words optimizing SO for each country in turn. For example, searches related to
protests in Venezuela were full of associations with mobilization related to electoral peri-
ods, while in Chile the most salient issue resulted from education reform.

Figure 1 illustrates the variation in Google Trends search volume and momentum for an
example pair of keywords, in the representative case of Chile. As can be seen, there is the
visual suggestion that a large change in the search volume and momentum are associated
with the appearance of an on-street protest. This was our motivation for developing pre-
dictions of when on-street protests will occur. Figure 2 illustrates the performance of our
semi-automated prediction method discussed above, for different pairs of keyword search
volumes and momentum, as compared to real on-street protests for four major countries,
together with the highest SO obtained. The optimal pair of keywords in each case may not
be the one that generates the highest possible values for B1, P1 and PO individually, but it
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Figure 1 Online Google Trend search volume and momentum vs. on-street protests for Chile. Example
shown is typical of results emerging from our analysis for countries across Latin America. Vertical axis shows
normalized Google Trend search volume relative to average background values, for the words protesta
(protest) in blue and huelga (strike) in red. Also shown as dashed lines is the momentum for each of these
keywords, i.e. rate-of-change of these keyword search volumes. Green solid circles show the actual number of
on-street protests in Chile. These take the values 1, 2, etc. but for clarity, no green solid circle is shown on days
for which there are zero protests. Black dots, which are offset vertically for clarity, show days on which Google
Trends volume and momentum for these keywords all rise above the background steady-state value (i.e.
signal exceeds noise) and hence our analysis predicts an on-street protest in Chile. There appear to be rises in
the volumes and momenta around the same time as bursts of actual on-street protests.

Figure 2 Example of results across countries. Best Words “““

Chile happens to show the best performance of the
semi-automated prediction scheme discussed in the NS Huelga 0.9830 0.25 2.0922

text, i.e. highest SO. The value of B1 is not shown Rliesbiy
smce SO=B1+P1+ PO, hence B1 can be deduced Vemmh Huelga RS 075 Lasa0
using B1=S0-P1 - P0. Paro
Argentina Manifestacion o ¢ ppe 03846 1.99
Marcha
Chile Protesta o ggg7 07222 24541
Marcha

is the one that gives the highest performance in terms of SO score. Since SO = Bl + P1 + PO,
it follows that B1 = SO — P1 — PO and hence Bl is not shown. Figures 3 and 4 show explicitly
the examples for Mexico and Venezuela which are actually among our worst performing
cases. The predictions for our semi-automated prediction method are shown as black dots
in the figure, while the green dots in the figure stand for actual on-street protests from the
GSR database, with the TP, TN, FP and FN values being counted as described in the pre-
vious section.

The cases of Mexico and Venezuela, which are shown in Figures 3 and 4, have the fol-
lowing measures of success. For Mexico: the number of false negatives FN = 9; number of
true positives TP = 3; number of false positives FP = 1; number of true negatives TN = 58.
Hence B1 = 0.859, PO = 0.983, P1 = 0.25 and so SO = Bl + P1 + PO = 2.09. The right panel
of Figure 3 shows the success measure values for different keyword pairs chosen from
(1) protesta, (2) huelga, (3) manifestacion, (4) marcha, (5) paro. We find significant differ-
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Figure 3 Google Trends volume and momentum vs. on-street protests for Mexico. Left panel: Green
dots represent actual on-street civil unrest events. The black dots show predictions using our semi-automated
procedure as discussed in the text. Solid red line shows volume for keyword manifestacion (i.e. manifestation)
while dashed red line shows its momentum (i.e. rate of change of volume). Solid blue line shows volume for
keyword huelga (i.e. strike) while dashed blue line shows its momentum (i.e. rate of change of volume). An
accurate prediction corresponds to a coincident black and green dot, and corresponds to a true positive (TP).
See text. Solid circles take the value of 1 or 0, but for clarity, no solid circle appears on days for which there are
zero events. Right panel: Results for different pairs of keywords: (1) protesta, (2) huelga, (3) manifestacion,

(4) marcha, (5) paro. Corresponding P1 (grey), B1 (cyan) and PO (yellow) are shown for each combination.
Adding these gives the SO value given in the text. The maximum value is shown in green and corresponds to
the optimal value of the combination SO, rather than the optimal value of B1 or P1 or PO individually.

ences in performance as we change the pair of key words, as shown in Figures 3 and 4.
To highlight this keyword dependence, we assign a color to the bar chart associated with
the score contributions as follows: P1 (gray), Bl (cyan) and PO (yellow). Combining these
gives the SO value shown. The pair yielding the highest S0, i.e. overall success, is (2, 3) cor-
responding to the pair of words huelga and manifestacion which are used to obtain the
results in the left panel and hence 2.09, other combination yield to smaller score values.
For Venezuela in Figure 4, the on-street events have a very different pattern from the case
of Mexico, which suggests that a prediction model developed for one country based on
transferring directly the pattern of activity in another, is likely to be highly inaccurate. The
measures of success in Figure 4 for Venezuela, which is our worst performing case, are:
number of false negatives FN = 9; number of true positives TP = 27; number of false pos-
itives FP = 18; number of true negatives TN = 17. Hence B1 = 0.620, PO = 0.486, P1 = 0.75
and so SO = Bl + P1 + PO = 1.86. We believe that Venezuela is our poorest performer be-
cause protests tended to occur on a regular basis every Sunday due to upcoming elections -
however we stress that its SO value is still closer to the maximum of 3.0 than the minimum
of 0. The right panel of Figure 4 shows the success measure values for different keyword
pairs chosen from (1) protesta, (2) huelga, (3) manifestacion, (4) marcha, (5) paro. The pair
of keywords yielding the highest SO, i.e. overall success, is (2,5) corresponding to the pair
of words huelga and paro which are used to obtain the results in the left panel and hence
SO0 =1.86.
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Figure 4 Google Trends volume and momentum vs. on-street protests for Venezuela. Left panel: Green
dots represent actual on-street civil unrest events. The black dots show predictions using our semi-automated
procedure as discussed in the text. Solid red line shows volume for keyword paro (i.e. stoppage) while dashed
red line shows its momentum (i.e. rate of change of volume). Solid blue line shows volume for keyword
huelga (i.e. strike) while dashed blue line shows its momentum (i.e. rate of change of volume). An accurate
prediction corresponds to a coincident black and green dot, and corresponds to a true positive (TP). See text.
Solid circles take the value of 1 or 0, but for clarity, no solid circle appears on days for which there are zero
events. Right panel: Results for different pairs of keywords: (1) protesta, (2) huelga, (3) manifestacion,

(4) marcha, (5) paro. Corresponding P1 (grey), B1 (cyan) and PO (yellow) are shown for each combination.
Adding these gives the SO value given in the text. The maximum value is shown in green and corresponds to
the optimal value of the combination SO, rather than the optimal value of B1 or P1 or PO individually.

We performed a comparison between our method and a null model in which the GSR
events are shuffled over the same time period (17 months). This maintains the number of
GSR events but randomizes their date of occurrence. Our method outperforms the null
model result by more than fifteen standard deviations in countries like Chile where the
main topics of protests are related to education, and hence social media is a trustworthy
indicator of activities within the student population. For the case of Chile, a z-score of
15.64 results from a comparison with the null model. Results for other countries can vary,
but our model is consistently better than the null model result.

In these figures, there are some peaks that occur in the search volume behavior for
which no real event subsequently occurred, and likewise there are occasions where no
peak occurs just before a real event. There are several potential reasons for this as we
discussed earlier concerning the limitations, e.g. searches originating elsewhere in the
same country for the first case and a lack of Internet access in the second case. Like-
wise there are small peaks that do not produce a prediction of a protest because the
signal was below the threshold, and yet a real event occurred. Performing forensics on
the case in Chile in January 2011, for example, we see that there was insufficient search
activity for one of the key words and that new key words had come into play. Perform-
ing this type of forensic analysis at the individual event level over extended periods of
many years, should allow an improvement of the methodology. For example, it may turn
out that different words are needed at different times of the year or at different points
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in a business cycle or election cycle. Our method’s performance decreases as we in-
crease the number of timesteps over which the future prediction is made. For exam-
ple, we find a drop in the overall score of nearly 35% when predictions are generated
two timesteps (i.e. two weeks) in advance when compared to one. Overall, the difference
in the final score for the different countries that we have presented here, suggests that
the implementation of our methodology in this paper needs to be carefully tailored to
each specific country even when accurate data is available and it is geographically accu-
rate.

Interestingly, the results from the Support Vector Machine approach were quite sim-
ilar to the semi-automated approach discussed above. The Support Vector Machine ap-
proach also showed a similar preference for picking pairs of keywords, as opposed to much
larger subsets for which the search process became more complex and hence involved
significant amounts of computational effort, with the corresponding insight gained being
far less. We therefore find the semi-automated method to be more desirable in practical

terms.

4 Conclusions

On-street protests result from complex, time-varying interactions between individuals,
groups or populations within a given cultural and socioeconomic setting - and are there-
fore likely affected by feedback between online and on-street activity. This is reflected
in our findings. In particular, we show that examination of online Google Trends search
volumes and momenta around pairs of certain keywords can give signals that may pre-
empt the appearance of on-street protests. Although it is known that Google Trends has
changed its volume search quantifications, our methodology may be modified to meet new
forms of volume measure so that our proof-of-principle remains valid. We also found that
a more complex and less transparent approach using a Support Vector Machine to dis-
cover suitable combinations of keywords etc. did not significantly out-perform the simple,
semi-automated approach.

Our work opens up the possibility of such predictions down to the urban level, using
newer technology that connects online searches to local IP addresses and hence the likely
location of the highest searches. A further feature of our approach is that it does not re-
quire answering the thorny social science question of why on-street protests occur, or why
individuals are motivated to participate in particular protests.

Appendix

Support Vector Machine (SVM): An SVM is a machine-learning mechanism for solving
pattern recognition problems. In the method, the machine maps the features of data into
a high dimensional input space where the number of dimensions equal the number of fea-
tures, and constructs an optimal hyperplane separating those input points in this space.
Different optimizing parameters generate various types of core function of the SVM. Fig-
ure 5 shows a flow diagram of the SVM used in the present paper. There are multiple op-
tions which increase the complexity of the Support Vector Machine and hence decrease its
transparency. However, its results and prediction performance are not significantly bet-
ter than the semi-automated scheme that forms the main body of results in this paper, as
presented in Figures 1-4.
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Figure 5 Support Vector Machine flow diagram. The input is the time-series of Google Trend search
volumes {x;}. There are multiple options which increase the complexity of the Support Vector Machine and
hence decrease its transparency. However, its results and prediction performance are not significantly better
than the semi-automated scheme that forms the main portion of this paper and whose results are presented
in Figures 1-4.
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