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Abstract
We investigate the structure of global inter-firm linkages using a dataset that contains
information on business partners for about 400,000 firms worldwide, including all the
firms listed on the major stock exchanges. Among the firms, we examine three
networks, which are based on customer-supplier, licensee-licensor, and strategic
alliance relationships. First, we show that these networks all have scale-free topology
and that the degree distribution for each follows a power law with an exponent of 1.5.
The shortest path length is around six for all three networks. Second, we show
through community structure analysis that the firms comprise a community with
those firms that belong to the same industry but different home countries, indicating
the globalization of firms’ production activities. Finally, we discuss what such
production globalization implies for the proliferation of conflict minerals (i.e., minerals
extracted from conflict zones and sold to firms in other countries to perpetuate
fighting) through global buyer-supplier linkages. We show that a limited number of
firms belonging to some specific industries and countries plays an important role in
the global proliferation of conflict minerals. Our numerical simulation shows that
regulations on the purchases of conflict minerals by those firms would substantially
reduce their worldwide use.

Keywords: global supply chain; inter-firm network; conflict minerals; scale-free;
community detection

1 Introduction
Many complex physical systems can be modeled and better understood as complex net-
works [–]. Recent studies show that economic systems can also be regarded as complex
networks in which economic agents, like consumers, firms, and governments, are closely
connected [, ]. To understand the interaction among economic agents, we must uncover
the structure of economic networks.

Our focus in this paper is on inter-firm networks. Over the last several years, a pair of
critical incidences revealed the global interconnection of firms: the financial turmoil trig-
gered by the subprime mortgage crisis in the United States and the disruption of world-
wide supply chains caused by the  Fukushima earthquake and tsunami in Japan. These
incidences sparked interest in inter-firm networks by network scientists, economists, and
sociologists. Several aspects of inter-firm relationships were previously studied, includ-
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ing the firm and bank relationship [], the customer-supplier relationship [–], and the
ownership relationship (i.e., which firm owns which firm) [, ]. The degree distribution
follows a power law, and the shortest path-lengths for any pair of firms are around five [,
, ]. Newman’s community analysis [, ] also shows that firms tend to transact with
each other when they belong to the same industry and/or are located in the same state
or prefecture []. The structure of the inter-firm networks investigated was found to be
stable [].

One limitation of previous studies is that they mainly addressed inter-firm relationships
within a country, so they have little to say about the linkages of firms in different countries.
Important exceptions include studies on global ownership structure [], and global R&D
partnerships []. However, no work has yet investigated the structure of global customer-
supplier linkages, which is the key to understanding the nature of the above incidences
(i.e., the global financial crisis and the disruption of global supply chains by natural disas-
ters). Given this background, we investigate the global aspect of inter-firm linkages using a
unique dataset that contains information on business relationships (both domestic and in-
ternational) for about , firms worldwide. This is the first contribution of this paper.
Note that if one aggregates transactions (purchases and sales) at the firm level, one obtains
transactions at the country level, called international trade by economists. The network
structure of international trade has recently been studied by economists and physicists
[–]. Our investigation of international transactions at the firm level is closely related
to those studies, but our firm level data reveal that firms are more likely to transact with
other firms in the same industry rather than other firms in the same home country, which
is quite different from what is assumed in studies on international trade. We will expand
this point below.

After examining the structure of global inter-firm networks, we discuss the implications
of global linkages at the firm level for the proliferation of ‘conflict minerals’ through global
buyer-supplier linkages. This is the second contribution of this paper. Conflict minerals
are natural minerals (gold, tin, tungsten, etc.) that are extracted from conflict zones and
sold to perpetuate fighting. The most prominent example is the natural minerals extracted
in the Democratic Republic of the Congo (DRC) by armed groups and funneled through
a variety of intermediaries before being purchased by multinational electronics firms in
industrial countries. There is wide discussion on how to mitigate the worldwide spread
of conflict minerals [–]. For example, the U.S. government passed a law in July 
that requires listed firms to audit their supply chains and report the use in their products
of conflict minerals from the DRC or adjoining countries []. In this paper, we conduct
simulation analysis using our firm level data on global buyer-supplier linkages to evaluate
the effectiveness of various measures to mitigate the worldwide propagation of conflict
minerals through global supply chains.

The rest of the paper is organized as follows. Section  provides a detailed description of
our dataset, and Section  looks at the basic features of inter-firm networks, including de-
gree distributions. Section  examines how closely firms are interconnected by measuring
the shortest path lengths between them. Section  conducts community analysis employ-
ing a network’s modularity defined by Newman. Section  conducts simulation analysis to
investigate the proliferation of conflict minerals through global supply chains. Section 
concludes the paper.
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2 Dataset
For this research, we used a unique dataset compiled by S&P Capital IQ, which is part
of McGraw Hill Financial Inc. []. The dataset covers , major incorporated firms
with information of business relationships in  countries in  industry sectors that
were defined by the S&P, including all the listed firms in the world. Attribute information
is available for those firms, including the location of a firm, the industry a firm belongs to,
and other information reported in the financial statement of a firm. The dataset has lists
of core partners (i.e., customers, suppliers, licensors, licensees, and strategic alliances) in
recent period (i.e.,  and/or ) and in some years over the entire sample period
(almost all relationships date from ) for a firm with IDs. For example, the numbers of
core customers and suppliers for IBM are  and  firms in the recent period and ,
and  firms in some years over the entire sample period. The following relationship
exists between customers and suppliers. When firm j is a supplier to firm i, firm i is a
customer of firm j. Licensees and licensors have such an opposite relationship.

Before moving to detailed analysis using this dataset, let us make some remarks about
statistical characteristics of the dataset. Needless to say, it is important to have a dataset
with high quality and completeness about networks, but, in reality, it is very hard to have
such an ideal dataset. It is especially so if the main interest of researchers is on global inter-
firm networks rather than local ones. Given this, we do not claim that the dataset we em-
ploy in this paper is a perfect one. However, we are still able to evaluate how (in)complete
the dataset is by comparing this dataset with other datasets on interfirm linkages. For
linkages among Japanese firms, we have access to the dataset compiled by Tokyo Shoko
Research, Ltd. [], which was used by many researchers. This dataset is said to contain
almost complete information on linkages among Japanese firms. According to this dataset,
the average number of customer links for a firm in  is ., while the corresponding
number for supplier linkage is .. On the other hand, according to the Capital IQ dataset,
the average number of customer and supplier links for a firm is . and ., respectively.
This comparison indicates that the Capital IQ dataset covers about  percent, suggesting
that the Capital IQ dataset is far from a complete one. However, if we restrict our attention
to listed firms in Japan, the average number of customer and supplier links for a firm are
. and . in the Tokyo Shoko Research dataset, while they are . and . in the Capital
IQ dataset, indicating that the coverage is higher at about  percent. This implies that the
Capital IQ dataset contains more information on links among major firms than on other
links.

3 Scale-free global inter-firm networks
We first show the common scale-free properties of three global inter-firm networks, which
are based on customer-supplier, licensee-licensor, and strategic alliance relationships. We
investigate the cumulative distribution functions (CDFs) of links across firms for the fol-
lowing linkages: customer, supplier, licensee, licensor, and strategic alliance. In Figure ,
the horizontal axis is the number of links, and the vertical axis represents the cumulative
densities. The CDFs of each kind of linkage have tails that follow a power law function.

To test whether each link distribution has a power law tail, we conduct a likelihood ratio
test, in which a power law distribution is a null hypothesis and log normal distribution
is an alternative hypothesis. This test is known to be a uniformly most powerful unbi-
ased test [–]. Table  shows the estimated power law ranges for link distributions.
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Figure 1 CDFs of links across firms for customer linkages (left, black), supplier linkages (left red),
licensee linkages (center, black), licensor linkages (center, red), and strategic alliance linkages (right).
Dashed lines show distribution in recent period (i.e., 2013 and/or 2014). Solid lines show distribution in some
years over entire sample period. Guidelines express power law with an exponent of 1.5.

Table 1 Likelihood-ratio tests of link distributions. The null hypothesis is that, beyond some
threshold, the upper tail of a link distribution is characterized by a power law distribution.
The alternative hypothesis is that the upper tail follows a lognormal beyond the same
threshold. The significance level is set at 5 percent. The power law exponent associated with
each link distribution is estimated using observations belonging to the corresponding power
law range

Power law exponent Standard error Power law range

Recent period (2013, 2014)
Supplier linkage –1.37 0.018 2≤ Ns ≤ 89
Customer linkage –1.20 0.028 2 ≤ Nc ≤ 79
Licensee linkage –1.58 0.027 2 ≤ Nle ≤ 30
Licensor linkage –1.60 0.030 2≤ Nlo ≤ 24
Strategic alliance linkage –1.29 0.032 2 ≤ Nsa ≤ 23

Entire sample period
Supplier linkage –1.43 0.017 2≤ Ns ≤ 420
Customer linkage –1.52 0.042 2 ≤ Nc ≤ 516
Licensee linkage –1.31 0.021 2 ≤ Nle ≤ 30
Licensor linkage –1.55 0.032 2≤ Nlo ≤ 40
Strategic alliance linkage –1.30 0.030 2 ≤ Nsa ≤ 47

For example, for supplier linkage, the null hypothesis cannot be rejected for  ≤ Ns ≤ .
Overall, the results in Table  indicates that the null hypothesis cannot be rejected for all
types of linkage and that the power law exponent associated with each link distribution,
which is estimated using observations belonging to the corresponding power law range,
is somewhere around .. Networks with such power laws are called scale-free networks.

It should be noted that, in Ref. [], we define the number of links for a firm as the total
number of links the firm had over multiple years. This definition might have contributed
to making the tail part of the observed distribution appear heavier than it really is. To
explain why, suppose that there are some firms with a large number of links and that these
firms change their partners much more frequently than other firms. In this case, the total
number of their partners over multiple years for these firms is very large, so that we may
observe a power law tail even if the true link distribution at a particular point in time does
not have such a heavy tail. Put differently, a power law tail emerges reflecting heterogeneity
across firms in terms of link turnover. To cope with this, we repeat the same power law test
but now using observations only for a shorter period (i.e., -). Table  shows that
the results are not so sensitive to changes in the length of the sample period examined.
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4 Six degrees of separation between major incorporated firms
We measure the shortest path lengths (SPLs) for each pair of firms i and j in a non-directed
customer-supplier network over the entire sample period. The number of firms on it is
,, so there are about  billion pairs. Although the density for the linkages in this
network is very low, only . × –, the number of firms in its maximum connected com-
ponent is ,, which is about .% of all the firms. Figure  shows the SPL distri-
bution for the connected pairs. The mode of distribution is five path lengths, and about
% of the pairs are connected by six path lengths or fewer. We also investigate the mode
for the directed customer-supplier network to consider intermediate products or money
flow. This mode is also short, only seven path lengths. We also measure the SPLs in non-
directed licensee-licensor, directed licensee-licensor, and non-directed strategic alliance
networks. The number of firms, the network density for the linkages, the size of the max-
imum connected component, and the mode of the SPLs are shown in Table . The mode
in these networks is also short: around six path lengths.

The SPL distribution of a domestic non-directed customer-supplier network was previ-
ously reported [, , ]. In the Japanese case, the mode of SPL distribution is five path
lengths. International linkages for firms were not taken in these previous studies; the ac-
tual SPL for the Japanese firm’s pairs is shorter than five path lengths. We compare SPLs

Figure 2 Distributions of shortest path lengths (SPLs) for firm pairs. Left and right figures show
distributions in recent period (i.e., 2013 and/or 2014) and in some years over entire sample period. Circles,
squares, open triangles, open circles, and open squares express distributions in non-directed
customer-supplier, non-directed licensee-licensor, non-directed strategic alliance, directed customer-supplier,
and directed licensee-licensor networks, respectively.

Table 2 Number of firms, network density for linkages, maximum connected component
(MCC) size, and mode of shortest path lengths in customer-supplier (CS), licensee-licensor
(LL), and strategic alliance (SA) networks in recent period (i.e., 2013 and/or 2014) and over
entire sample period

# of firms Density % of MCC Mode

Non-directed Directed Non-directed Directed

CS net.a 345, 909 1.1× 10–5 5.7× 10–6 92.0% 5 7
CS net.b 123, 052 2.5× 10–5 1.3× 10–5 85.4% 6 8

LL net.a 36, 264 6.5× 10–5 3.6× 10–5 60.4% 6 8
LL net.b 12, 646 1.6× 10–4 8.5× 10–5 54.3% 8 8

SA net.a 124, 444 2.3× 10–5 - 77.8% 6 -
SA net.b 47, 877 4.9× 10–5 - 64.8% 6 -

aEntire sample period. bRecent period.
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Figure 3 Probability that shortest path lengths
(SPLs) are extended by being limited to domestic
linkages in global customer-supplier network
over entire sample period. Circles and squares are
estimation results in United States and Japan. SPL for
unconnected pairs is ∞.

for firm’s pairs in the same country in a global customer-supplier network and a domestic
customer-supplier network that has only domestic linkages. Figure  shows the probability
that SPLs are extended by being limited to domestic linkages in the United States or Japan.
In the Japanese case of SPL ≥  and the U.S. case of SPL ≥  in a global customer-supplier
network, the probability is over .. This result suggests that the effect from foreign coun-
tries cannot be ignored, because international relationships are indispensable for handling
incidents in supply chains.

5 Firms’ community structure
Global inter-firm networks are built by multiple communities. Detecting the communi-
ties in networks means the appearance of dense connected groups of vertices and sparse
connections among groups. Ref. [] conduct community analysis for a global ownership
network, but we do a similar exercise for global customer-supplier network. We adopt
modularity as a quality function of communities introduced by Newman and detect them
by a fast greedy algorithm of modularity maximization that is one effective approach to
identify communities []. If network V is divided into L subsets {V, V, . . . , VL} which do
not overlap and are not empty, modularity Q is defined as

Q =
L∑

i=

(
eii – a

i
)

=
L∑

i=

[


M
∑

l∈Vi

∑

m∈Vi

Alm –
(


M

∑

l∈Vi

∑

m∈V

Alm

)]
, ()

where Alm is an element of adjacent matrix which is set to be  or  according to whether
nodes l and m are connected or not. eii and ai are the fraction of links within subset Vi

and the fraction of links that connect to nodes in subset Vi, respectively. When the subsets
{V, V, . . . , VL} are selected randomly, eii is canceled out by a

i , which gives the expecta-
tion value of the network density for the linkages in subset Vi. Using the modularity we
can compare the actual network density for linkages in a subset with its expectation value.
When the maximized modularity Qmax takes a value close to zero, the network has no
statistically significant communities, unlike randomly connected networks. On the other
hand, Qmax �  corresponds to a network which is almost perfectly partitioned into mod-
ules.

The maximum modularities of non-directed customer-supplier, non-directed licensor-
licensee, and strategic alliance networks over the entire sample period are ., .,
and ., respectively. Such sufficiently large modularity means that significant commu-
nities exist in the networks. We characterize each community by checking the majority
attributes (e.g., country and industry sector) of the firms in the community. Because firm
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Table 3 Top 5 fractions of firms’ attributes with p-value < 0.01 in major communities in
non-directed licensee-licensor network. R, which expresses ratio between actual fraction and
the fraction obtained by random selection, is defined by Equation (2). Bold font indicates
remarkable attributes with R ≥ 3

Rank Country (fraction (>0.01), R) Industry sector (fraction (>0.01), R)

1 United Kingdom (0.067, 1.18) Movies and entertainment (0.105, 3.68)
Japan (0.043, 1.50) Semiconductors (0.083, 4.16)
Taiwan (0.033, 3.34) Broadcasting (0.076, 4.07)
France (0.026, 1.31) Internet software and services (0.061, 1.55)
South Korea (0.020, 1.72) Application software (0.056, 1.19)

2 United States (0.551, 1.13) Internet software and services (0.346, 6.03)
Japan (0.047, 1.65) Application software (0.296, 5.59)
Germany (0.040, 1.44) Asset Management and custody banks (0.073, 2.74)
Switzerland (0.029, 2.50) Health care technology (0.052, 4.36)
France (0.028, 1.37) Healthcare equipment (0.029, 2.34)

3 United States (0.622, 1.27) Apparel, accessories, luxury goods (0.287, 13.59)
Italy (0.046, 3.72) Distributors (0.056, 4.98)
France (0.032, 1.60) Apparel retail (0.051, 7.91)
Thailand (0.010, 1.94) Footwear (0.046, 11.50)

Packaged foods and meats (0.032, 1.55)

4 India (0.046, 1.51) Commodity chemicals (0.128, 9.50)
Japan (0.046, 1.60) Oil and gas refining and marketing (0.072, 11.90)
Netherlands (0.027, 2.43) Fertilizers, agricultural chemicals (0.050, 13.17)
South Korea (0.025, 2.21) Industrial machinery (0.046, 2.55)
Israel (0.023, 2.23) Construction and engineering (0.044, 5.87)

attribution bias can be found in each network, we compare the fraction of the firms’ at-
tribution in each community with the fraction in all communities by Ri,l , which is defined
as

Ri,l =
fraction of attribution i in community l in network

fraction of attribution i in all communities in network
. ()

The p-values for the fraction of the firms’ attribution in each community are calculated
using the null hypothesis that the firms’ attribution is independent of community.

First, we investigate the communities in the licensee-licensor network with the highest
modularity over the entire sample period. The network has , communities. However,
the top four account for over % of all firms: .%, .%, .%, and .%. Table  shows
the fraction of firms’ attributions with a p-value < . among the top four communities.
We focus on the remarkable attributions with Ri,l ≥  in each attribution to identify the
community characteristics. The largest community is mainly comprised of movies, en-
tertainment, semiconductors, and broadcasting firms. Many Taiwan firms appertain to
this community. The major industry in Taiwan is semiconductors. Therefore, the largest
community expresses sectors for broadcasting technology. As shown in Table , the nd,
rd, and th largest communities show the ICT sectors in health care, the apparel sec-
tors, and the chemical industry sectors, respectively. The licensee-licensor relationships
between major incorporated firms tend to be confined to similar industrial sectors over
the boundaries between countries.

We next focus on over the entire sample period a non-directed strategic alliance network
which has , communities. The top four account for .%, .%, .%, and .% of
all the firms. In each community, the firms belong to the similar industrial sectors but
different home countries. The largest community mainly includes firms in ICT sectors
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Table 4 Top 5 fractions of firms’ attributes with p-value < 0.01 in major communities in
non-directed strategic alliance network. Bold font expresses remarkable attributes with R ≥ 3

Rank Country (fraction, R) Industry sector (fraction, R)

1 United States (0.445, 1.22) Application software (0.150, 2.83)
United Kingdom (0.068, 1.15) Internet software and services (0.127, 2.21)
France (0.036, 1.48) IT consulting and other services (0.088, 3.32)
Taiwan (0.018, 2.25) Communications equipment (0.062, 3.66)
South Korea (0.014, 12.0) Systems software (0.059, 3.79)

2 India (0.072, 2.06) Oil and gas exploration/production (0.097, 3.53)
China (0.071, 1.30) Construction and engineering (0.075, 2.18)
United Kingdom (0.067, 1.13) Aerospace and defense (0.042, 3.56)
Japan (0.066, 1.94) Industrial machinery (0.033, 2.01)
Australia (0.052, 1.56) Electric utilities (0.031, 2.74)

3 China (0.061, 1.12) Diversified banks (0.105, 7.65)
Japan (0.060, 1.75) Regional banks (0.067, 6.24)
France (0.036, 1.46) Asset management and custody banks (0.064, 2.41)
Indonesia (0.028, 2.79) Airlines (0.056, 8.90)
Hong Kong (0.026, 1.96) Hotel, resorts and cruise lines (0.048, 5.27)

4 United States (0.510, 1.40) Pharmaceuticals (0.205, 9.35)
Germany (0.040, 1.20) Biotechnology (0.192, 10.23)
France (0.029, 1.19) Life sciences tools and services (0.075, 9.11)
Switzerland (0.020, 1.86) Healthcare equipment (0.073, 5.84)
Sweden (0.017, 1.50) Healthcare facilities (0.067, 6.29)

(i.e., IT consulting and other services, communications equipment, system software) as
shown in Table . The nd, rd, and th largest communities express heavy industry, bank
and resort development, and medicine sectors, respectively.

We also investigate firms’ attribution in each community in a non-directed customer-
supplier network over the entire sample period. The network has , communities. The
top four account for .%, .%, .%, and .% of all the firms. The nd and rd largest
communities show industry sectors, such as aerospace/defense and health care (Table ).
On the other hand, the th largest community shows transactions in the ASEAN free
trade area because Southeast Asian firms tend to densely connect to firms in the same
area. Since various industries are included in the largest community (Table ), we fur-
ther divide the largest one into discrete sub-communities. The major sub-communities
express some industry sectors. The st, nd, and rd largest sub-communities show the
broadcasting technology sectors, department stores (i.e., apparel and restaurant sector),
and the electronic equipment sectors, respectively (Table ).

As cited above, major incorporated firms tend to have worldwide connections. We in-
vestigate the relationship between firm size and geographical distance to business partner.
Here, firm size is measured by the total  revenue. As shown in Figure , the mean of
the geographical distance in a customer-supplier network is about , km, which is
shorter than in other inter-firm networks (i.e., , km for strategic alliance relation-
ships and , km for licensee-licensor relationships). Because firms choose suppliers
and customers by taking into consideration transport costs and product price, the mean
of the geographical distance of the customer-supplier network is short. As represented by
the th largest community in the customer-supplier network, a large community that ex-
presses a region is only observed in this network. In inter-firm networks, the geographical
distance of a large firm whose annual total revenue exceeds  million dollars tends to be
long; large firms are affected by the economic conditions in distant unexpected countries.
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Table 5 Top 5 fractions of firms’ attributes with p-value < 0.01 in major communities in
non-directed customer-supplier networks. Bold font expresses remarkable attributes with
R ≥ 3

Rank Country (fraction, R) Industry sector (fraction, R)

1 United States (0.442, 1.34) Internet software and services (0.081, 2.26)
United Kingdom (0.079, 1.19) Application software (0.058, 1.79)
Japan (0.032, 1.26) Communications equipment (0.032, 2.33)
France (0.026, 1.32) IT consulting and other services (0.030, 1.55)
Taiwan (0.023, 2.27) Regional banks (0.030, 2.18)

2 India (0.103, 2.58) Construction and engineering (0.064, 1.63)
Australia (0.035, 1.24) Aerospace and defense (0.048, 3.82)
Japan (0.033, 1.32) Oil and gas exploration and production (0.041, 2.82)
Germany (0.031, 1.06) Industrial machinery (0.039, 1.73)
France (0.024, 1.19) Electric utilities (0.038, 2.66)

3 United States (0.379, 1.15) Pharmaceuticals (0.086, 5.34)
United Kingdom (0.155, 2.32) Healthcare facilities (0.070, 4.96)
Poland (0.069, 5.52) Healthcare equipment (0.056, 4.71)
Sweden (0.033, 2.96) Biotechnology (0.048, 5.89)
Norway (0.018, 2.49) Healthcare services (0.042, 4.46)

4 Indonesia (0.340, 14.91) Property and casualty insurance (0.114, 14.91)
Thailand (0.090, 7.87) Asset management and custody banks (0.073, 2.46)
Philippines (0.085, 12.26) Life and health insurance (0.058, 9.13)
Singapore (0.028, 2.07) Packaged foods and meats (0.045, 2.21)
Malaysia (0.020, 1.14) Reinsurance (0.044, 22.12)

Table 6 Top 5 fractions of firm attributes with p-value < 0.01 in major sub-communities in
largest community in customer-supplier network. Bold font expresses remarkable attributes
with R ≥ 3

Rank Country (fraction (>0.01), R) Industry sector (fraction (>0.01), R)

1 United Kingdom (0.078, 1.38) Movies and entertainment (0.135, 4.73)
Israel (0.017, 1.66) Broadcasting (0.128, 6.83)

Internet software and services (0.093, 2.33)
Application software (0.074, 1.59)
Wireless telecommunication services (0.072, 8.88)

2 United States (0.663, 1.36) Apparel, accessories, luxury goods (0.0138, 6.55)
United Kingdom (0.097, 1.70) Packaged foods and meats (0.077, 3.67)

Apparel retail (0.053, 8.28)
Leisure products (0.039, 3.93)
Restaurants (0.038, 4.53)

3 United States (0.551, 1.13) Semiconductors (0.229, 11.44)
Taiwan (0.084, 8.49) Technology, hardware, storage, peripheral (0.108, 7.94)
Japan (0.077, 2.71) Application software (0.084, 1.80)
South Korea (0.023, 1.99) Communications equipment (0.066, 3.36)
Israel (0.017, 1.70) Systems software (0.066, 4.78)

6 Simulation for conflict minerals proliferation
In this section, we conduct a simulation exercise to learn about the implications of the
structure of the global buyer-supplier network, which we studied in the previous sections,
for the proliferation of conflict minerals. Our analysis in the previous sections suggest the
following. First, the finding in Section  (i.e., the link distribution has a power law tail)
suggests that a small number of firms with an extremely large number of links play an
important role in the proliferation of conflict minerals. Second, the finding in Section 
(i.e., most firms are connected within six links) suggests that the proliferation of conflict
minerals may be surprisingly quick. Third, the finding in Section  (i.e., firms within an
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Figure 4 Relationship between firm size
measured by total 2013 revenue and mean of
geographical distance to business partner.
Circles, squares, and open triangles show
customer-supplier, licensee-licensor, and strategic
alliance relationships in some years over entire
sample period, respectively.

industry – rather than within a country – tends to form a community) suggests that na-
tional borders do not matter for the proliferation of conflict minerals. Combined together,
our analysis suggests that it is critically important to identify key firms located at the very
upstream of the conflict mineral supply chain and to regulate transactions associated with
these firms.

In our simulation exercise, we use a simple diffusion model of the form:

⎛

⎜⎜⎜⎜⎝

g(t + )
g(t + )

...
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⎛

⎜⎜⎜⎜⎝

g(t)
g(t)

...
gN (t)

⎞

⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎝

ε(t)
ε(t)

...
εN (t)

⎞

⎟⎟⎟⎟⎠
. ()

Note that similar diffusion models were employed by previous studies on interfirm
customer-supplier networks, including Ref. [] and Ref. []. This type of diffusion model
is simple and tractable but may be oversimplified. One of the most important assumptions
adopted in this model is that PageRank of a firm coincides with the ‘costs of goods sold’
(i.e., the direct costs attributable to the production of the goods sold by a firm) of that firm.
To check whether this assumption is supported by the data, we compare PageRank of a
firm with the costs of goods sold, which is taken from the financial statement of the firm.
The result of this exercise is shown in Figure , in which the horizontal axis represents
PageRank of a firm and the vertical axis is the costs of goods sold of the firm. It is clearly
seen that there is a positive and stable relationship between the two variables, indicating
that the assumption adopted in the model is supported by the data.

We explain this general model using an example for conflict minerals. gi(t) is the amount
of conflict minerals possessed by firm i at time t, εi(t) is the amount of conflict minerals
that are extracted by firm i at time t that doesn’t stem from customer-supplier chains, qi

expresses the rate at which they are consumed as a port of the final consumption products
in firm i, and aij is an element in an input-output matrix. Typical element aij equals /N̂C

j

if firm i is a customer of firm j and zero otherwise. Here, N̂C
j is number of customers of

firm j. In the standard notation adopted in input-output analysis, aij represents the share
of output j (i.e., commodity produced by firm j) in the total intermediate output use of
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Figure 5 Relationship between the ‘costs of
goods sold’ of a firm in 2013 and the PageRank
of the firm, which is calculated using the
customer-supplier network for the entire sample
period. The probability of a random jump in
calculating PageRank is set at q = 0.05. The plots and
dashed lines represent the mean and the confidence
interval. The reference line shows a power law
relationship with an exponent of 1.05.

firm i. We have information on whether firm i purchases something from firm j, but no
information on the amount of output j purchased by firm i; this is the thickness of each
customer link. Since we assume that the customer links of firm j have identical thickness,
aij = /N̂C

j if firm i is a customer of firm j and zero otherwise. From PageRank theory, it
is trivial that gi(t) converges on gi(t – ) at time t = ∞ when all qi satisfy the inequality,
 < qi ≤ . Note that the solution of this model is given by g = (I – QA)–ε. However, the
size of the matrix A is very large, making it difficult to obtain its inverse matrix. We solve
numerically using an iterative method, in which gt is calculated period by period.

We simulate the diffusion of the conflict minerals that are mined in the Democratic Re-
public of the Congo (DRC) and all of its nine neighbors: Angola, Burundi, Central African
Republic, Republic of the Congo, Rwanda, South Sudan, Tanzania, Uganda, and Zambia.
We simply assume that εi(t) is time independent and set the total  revenue of each
firm in the ‘metals and mining’ upper-sector (which includes aluminum, diversified metals
and mining, gold, precious metals and minerals, silver, and steel sectors) in these countries
to εi(t). Here, for εi(t) for some firms whose total revenue is not recorded in this dataset,
we substitute the mean of the total revenue of the firm whose total revenue is recorded
in this upper-sector and these countries. Except for these firms, εi(t) = . All initial values
are gi() = .

We ran the model until gi(t) practically converges on gi(t – ) on the customer-supplier
network without banking sectors over the entire sample period. Figure  shows a simulated
amount of the conflict minerals per firm in each country when all qi = .. The conflict
minerals drift down to the firms even in most developed countries. In the G countries
the top ten industry sectors in which many conflict minerals hide products are shown in
Table . Conflict minerals are found in the ‘electrical components and equipment’ sector
in G. The ‘metals and mining’ upper-sector and the ‘trading companies and distributors’
sector have only .% of all the firms in the G and account for .% of the total conflict
minerals in G.

We numerically demonstrate the simplified regulation that all firms in the ‘metals and
mining’ upper-sector and the ‘trading companies and distributors’ sector in G must not
distribute conflict minerals to their customers; the qis of these firms are one and qi = .
otherwise. As shown in Table , the amount of conflict minerals is reduced in each sector.
The conflict minerals in the ‘electrical components and equipment’ and ‘alternative car-
riers’ sectors fell by over %, where they substantially improved their conflict minerals
issues.
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Figure 6 Simulated amount of conflict minerals per firm outside of DRC and its neighbors. Model’s
parameter is all qi = 0.3 (see Eq. (3)). Maximum amount was normalized to one. Shades of red express
logarithm amount of conflict minerals. Firms in Mali and Guinea have many conflict minerals. Black expresses
DRC. Gray shows its neighbors.

Table 7 Simulated shares of conflict minerals in top 10 industry sectors in G8 and reduction
rate of conflict minerals by application of the regulation that all firms in the ‘metals and
mining’ upper-sector and the ‘trading companies and distributors’ sector in G8 must not
distribute conflict minerals to their customers; the qis of these firms are one and qi = 0.3
otherwise in Eq. (3)

Industry sector in G8 Share Reduction rate

Diversified metals and mining 0.3907 -
Trading companies and distributors 0.2327 -
Gold 0.2251 -
Aluminum 0.0907 -
Commodity chemicals 0.0074 64.9%
Electrical components and equipment 0.0067 97.9%
Alternative carriers 0.0047 99.1%
Silver 0.0039 -
Oil and gas exploration/production 0.0036 5.6%
Diversified chemicals 0.0027 3.7%

Other sectors 0.0318 43.4%

We numerically show that the amount of conflict minerals would decrease effectively
outside the G by a regulation on the purchases of conflict minerals directed at % of all
the firms in G. We selected the % firms in each of the following conditions and dammed
the conflict mineral flow; their qis are one and qi = . otherwise.

Condition  Firms are selected in descending order of the number of supplier links in G.
Condition  Only listed firms are selected in descending order of the number of supplier

links in G.
Condition  Firms are selected in descending order of the number of supplier links in the

‘metals and mining’ upper-sector and ‘trading companies and distributors’ sectors in G.

Table  shows the numerical simulation results of the regulation with each condition.
In Condition , the selected % firms decreased distribution of all conflict minerals by
.% in G. However, the amount of conflict minerals hardly changed in the other firms.
A U.S. federal law for conflict minerals among the listed firms was passed on July , 
[]. Condition  expresses the situation where this law is applied to all the listed firms
in G. Although the trend improved slightly from .% to .% in G, the amount of
conflict minerals also hardly decreased outside of the selected firms. On the other hand,
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Table 8 Reduction rate from amount of conflict minerals before applying regulation to 3%
firms in G8 to amount after. Reduction rates in G8 firms, non-applied G8 firms, firms outside
G8, DRC, and DRC’s neighbors are numerically estimated in each condition (see Section 6)

G8 firms Non-applied
G8 firms

Firms outside G8, DRC,
and DRC’s neighbors

Condition 1 35.0% 1.3% 3.4%
Condition 2 43.2% 5.8% 4.0%
Condition 3 97.3% 50.5% 12.0%

we confirmed a dramatic reduction in Condition . The selected % of firms decreased
distribution of all conflict minerals by .% in G and created a block that intercepted
about .% of all the conflict minerals outside of G, DRC, and DRC’s neighbors.

7 Conclusion
We investigated the structure of global inter-firm relationships using a unique dataset that
contains the information of business relationships for , major incorporated firms
and focused on three different networks: a customer-supplier network through which
products and services flow; a licensee-licensor network through which technical infor-
mation and know-how flow; and a strategic alliance network through which both flow
mutually.

These networks have common scale-free properties. The degree distributions follow
a power law with an exponent of .. The shortest path length for each pair of firms is
around six for all three networks. We showed through community structure analysis that
the firms comprise a community with those firms that belong to the same industry but
different home countries, indicating the globalization of firms’ production activities.

We measured the mean of the geographical distance between the firms and their busi-
ness partners. It was , km between business partners for customer-supplier relation-
ships, which is shorter than for the two other relationships. This result suggests that tech-
nical information and know-how without high transport costs have the potential to be
diffused rapidly worldwide. We also confirmed that the geographical distance between
business partners for large firms tends to be long.

Finally, by utilizing a simple diffusion model and empirical results where firms com-
prise a community with those firms that belong to the same industry but different home
countries, we showed numerically that regulations on the purchases conflict minerals by
limited number of G firms belonging to some specific industries would substantially re-
duce their worldwide use. When these firms refuse to buy conflict minerals from their
suppliers, the supply chains of many intermediaries which are positioned upstream suffer.

There remain a couple of issues for our future study. First, we need to collect more
complete data on global interfirm linkage and to check the robustness of our results. Sec-
ond, it is important to accurately estimate each intermediary’s amount of damage and the
model’s parameters by comprehensively collecting the data of global inter-firm relation-
ships. Part of the money which was spent in firms flows into conflict minerals through mul-
tiple inter-firm networks. Third, we need to expand our model by connecting a customer-
supplier network with licensee-licensor and strategic alliance networks. This expanded
model might help make more effective policies for conflict minerals. Recently, the global
diffusion of weaponry, technical know-how, conflict oil, and natural gas through lawful
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trades is also attracting attention. Our results might resolve such issues and contribute to
global peace.
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