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spective is limited to the journey-to-work mobility and thus excludes a large fraction of

the individuals• mobility demand associated to amenities.

The existence of a Travel-Time Budget is assumed on the basis of the behavioural hy-

pothesis that people spend a “xed amount of time available on traveling [�� ]. The extreme

interpretation of Travel-Time Budget as a universal constant stable in space and time is

still sustained and very in”uential in urban planning. Indeed, if Travel-Time Budget is

constant, any investments in better infrastructure would not reduce daily travel times

(and possibly, through that, polluting emissions) since it would only create new induced

travel demand [�	 ]. Most of the empirical results on Travel-Time Budget are determined

as average values from large travel surveys. At a disaggregate level, however, Travel-Time

Expenditures appear strongly related to the heterogeneity of the individuals, to the charac-

teristics of the activities at destinations and to the residential areas [�� ]. Aggregated results

suggest that the average amount of time spent traveling is constant both across populations

and over time: approximatively �.�-�.� h per day [�
 ]. Despite the gains in average travel

speed due to infrastructural and technological advances in the past decades, Travel-Time

Expenditures appear more or less stable or even growing [�� …�� ]. This growth can be as-

sociated to the super-linear relationship between a city•s population and the delays due to

congestion [�� ].

In Italy, Global Positioning System (GPS) devices are installed in a signi“cative sample of

private vehicles for insurance reasons. The initial and the “nal points of each trajectory are

recorded, together with the path length and some intermediate points at a spatial distance

of � km or at a time distance of �� seconds. These data allow a detailed reconstruction

of individual mobility in di�erent urban contexts [ �� ] and measure the elapsed of time

during mobility [ �� ].

In this paper, we explore the statistical features of Travel-Time Expenditures related to

private mobility, both from an aggregate and individual point of view. Our goal is to point

out some of the factors in”uencing travel demand by means of new speci“c measures,

which describe di�erences among cities. The statistical analysis of empirical data points

to the existence of a universal law underlying the distributions of Travel-Time Expendi-

tures, which highlights the nature of time constraints in vehicular mobility. This result

allows us to observe in detail the di�erences in daily travel demand for di�erent cities,

challenging the idea of a constant Travel-Time Budget and pointing out the important

role of accessibility [�� ].

2 Assumptions
Previous empirical observations on di�erent data-sources [�� , �� …�� ] have shown out

that the TTE probability distribution p(T) (see Table� for a list of notations), associated

to a single mean of transportation, is characterised by an exponential tail

p(T) = β…�exp(…T /β), for T > � hour, (�)

whereβ is a “t parameter. Our analysis con“rms the universal character of the exponential

behaviour for the TTE empirical distribution and points out relevant di�erences among

the considered cities (see Figure� ).

As it is well known from Statistical Mechanics, the exponential distribution (� ) can be

derived from the Maximal Entropy Principle under some minimal assumptions [�� ]. More
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Table 1 List of notations

Quantity Notation Abbreviation

Daily travel-time expenditure T TTE
Daily travel-time budget β TTB
Accessibility time α -
Single trip travel-time t -

Function Notation Abbreviation

Probability density of x p(x) PDF
Cumulative density of x (

∫ x p(x�)dx�) P(x) CDF
Survival function (1 – P(x)) S(x) -
Hazard function (dS(x)/dx) λ(x) -
Conditional probability of x given y π (x|y) -

Figure 1 Travel-Time Expenditure distributions. (Left) Travel-Time Expenditure (TTE) distribution for the
city of Naples (� 1 million inhabitants). The empirical probability density p(T ) (dots) is correctly interpolated by
the curve (6) (solid line) with α = 0.61 h, β = 1.11 h and R2 = 0.99. The dashed line, shown as a guide to the
eye, represents an exponential decay with a characteristic time β . (Right) TTE distribution for the city of
Grosseto (� 80,000 inhabitants). The interpolation with the curve (6) is successful also for smaller cities like
Grosseto: in this case the parameter values are α = 0.38 h, β = 0.83 h and R2 = 0.99.

precisely, one assumes (i) existence of an average “nite TTE for the considered popula-
tion and (ii) the statistical independence of the behaviour of each individual. Under the
constraint that the average TTE is “nite, we have the same probability of observing any
microscopic con“guration which associates a TTE to each individual. The parameterβ

de“nes the average time scale that limits the individual TTE and we will show that this
is a characteristic of each city. Therefore, we propose to associate the concept of TTB to
the valueβ which characterises the exponential decay of the daily travel-time distribution.
However, the Eq. (� ) does not give information on the dynamical processes underlying the
human mobility which produces the distribution. We take advantage from the dynami-
cal structure of the GPS data to propose a duration model (see Section
.� ) that seems
to be endowed with universal features with respect to the considered cities. The essential
hypotheses at the bases of the duration model are: (i) it exists a TTB; (ii) the individual
decision to continue the mobility for a time�T , after a TTET , is the realisation of an
independent random event whose probability decrease proportionally to�T .

3 Results
3.1 The variability of Travel-Time Expenditures
The average value of TTE does not give a su
cient insight on the statistical features of
the distribution p(T). For each city, the statistical features of the distributionp(T) turn
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Figure 2 Values of α and β for the 24 cities
studied. The boxes represent 95% confidence
intervals obtained with a bootstrap, for empirical
best-fits for the model parameters. The differences
we observe in the accessibility time α and in TTB β

are thus significant and uncorrelated (r = 0.09). Both
timescales are weakly correlated with the city’s
population (r = 0.20 for α and r = 0.40 for β ).

out to be characterised by the two time scalesα and β. In the duration model, after a
characteristic timeα, the choice of going back home or proceeding with further extra
traveling is limited by the available TTB, whose average value is quanti“ed by the time
scaleβ.α therefore represents the average time under which the use of a private car seems
to be not convenient.

We focus our study on �	 Italian cities where we have a large statistic of users. The
values ofα andβ are estimated from a best “t forS(T) with Eq. (S�) (which is equivalent
to “tting the CDF). The results are displayed in Figure� and reported in the Table S�.
Two examples are also proposed in Figure� . The two parameters are independent, with a
Pearson correlation coe
cientr = �.��. β falls in the interval �.�-�.� h, which is reasonably
consistent with the values reported in the literature [�
 ]. Nevertheless, the di�erences we
observe among cities are statistically signi“cant, as the �
% con“dence intervals for the
“ts, estimated with a bootstrap, are� �.�� h. Therefore, our results clearly clash with the
concept a constant TTB.

Since the values ofβ are moderately correlated with the number of inhabitants of the
municipality (r = �.	�) or population density ( r = �.	�), some of this variability is depen-
dent on the city population [�� , �� ]. The accessibility timeα is only weakly correlated with
city population (r = �.��) and not correlated ( r = �.��) with population density, and falls
in the interval �.�-�.� h. The con“dence intervals for the “ts are � �.�	 h, granting that
we have signi“cant di�erences in accessibility time among cities. The general picture, dis-
played in Figure� , shows that, if one has appropriate data sources to characterise the daily
mobility of a single city, one needs the knowledge of both parameters. Under this lens, the
variability of TTE is manifest and can be observed in both the ramping part (characterised
by α) and the tail (characterised byβ) of the distribution.

3.2 Disaggregate analysis: the case of Milan
Macroscopic statistical laws might depend on the details of the microscopic dynamics.
Their extension down to the interpretation of the individual behaviour is therefore under
debate [�� ]. Nevertheless, we believe that the universal character inherent to the concept
of TTB could be an individual property. To support this statement, we consider here a dis-
aggregate analysis of the GPS mobility data suggesting that our results might be extended
to the individual level. A limitation of this analysis comes from the short time considered
in our dataset. Indeed, it refers only to a single month of mobility, a period probably too
short to infer a de“nitive conclusion on our hypothesis.

We study the case of the city of Milan, the largest city in North Italy with� �.� millions
inhabitants (dash line in Figure
 (left) and labeled � in Figure� ). We start by verifying that
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Figure 3 Disaggregated analysis. (a) Distribution of the normalised individual TTE for the city of Milan: the
distribution of normalised individual TTE can be represented by the analytical distribution (6). The solid line is
obtained by using the parameters α = 0.19 and β = 1.00. (b) Normalised TTE distributions disaggregated
according to home location: the position of the main mobility hub (home) influences the average value of T
but not the distribution scaled by that value. For the ’Zona C’ we have �T � = 1.520 ± 0.009 h, for the city
center we have �T � = 1.482 ± 0.004 h while for the periphery we have �T � = 1.416 ± 0.003 h (errors
correspond to the s.e.m.). (c) Normalised TTE distributions disaggregated according to classification of the
mobility network: the role of home influences only the average value of T : selecting people whose mobility is
characterised by more than one hub in their mobility network (we look for people with a percentage greater
than 25% of round trips not starting and ending at home). Such people have �T � = 1.72 h, whereas people
with a single mobility hub have only �T � = 1.24 h. (d) TTE distributions disaggregated according to the
number of mobility days: these disaggregated distributions have a similar decaying in the tails, i.e. they have
similar value of β (as a guide for the eye, the dashed line represents an exponential decay with the
characteristic timescale β for Milan). Differences emerge instead in the behaviour of short TTE: people that
use the car more regularly, have longer TTEs, since they perform more trips.

the shape of TTE distributionp(T) is a property of each single individual. Using the GPS

data, the heterogeneity of the population can be quanti“ed by considering the distribution

of the average individual TTE�T � empirically computed from the individual daily mobility.

To compare di�erent individuals, we normalise each TTE value by the corresponding in-

dividual average. In Figure� (a), we show that the distribution of the normalised individual

TTE p(T / �T � ) is still very well “tted by the analytical curve (� ). Therefore we conjecture

that �T � contains the relevant information to explain the individual heterogeneity and the

distribution (� ) has an universal character that extends up to the individual level.

An individual disaggregation, according to the home location or characteristics of the

mobility network, con“rms the previous hypothesis (see Figures� (b) and (c), and Ad-

ditional “le � for further details). Thus, the heterogeneity is mainly determined by the

average value�T � evaluated within each class. However, we “nd that�T � is longer for:

(i) people living in the city center (� � % longer than for people living in the periphery),
a result consistent with what was found in Ref. [] for the city of Sydney;
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conversely, people in the periphery tend to make � �.
 trips more per day and � �.�
days more of mobility in average;

(ii) people performing many round trips (A-B-A patterns) not involving home.
The last criterium points to the existence of a second center of daily activity and allows

to separate individual mobility networks into mono-centric and polycentric ones [�� ].
Our empirical data suggest that people with a polycentric mobility (who have more than

one mobility hub) have greater�T � than people whose round trips start and end at home.
However, if we classify the individuals according to the number of days in which they used
the car, the TTE distributions di�er when we consider smallT values (see Figure� (d)).
Even if the exponential tail of the distributions does not change signi“cantly, there is a
tendency to under-express the short values ofT for users who regularly carry out their
daily mobility by car. Our duration model associates this to a larger value ofα and there-
fore the need in average of longer times to accomplish the necessary tasks of the day. In
summary, people who take the car more often also need to drive more, yet maintaining a
similar TTB. This is con“rmed by considering the number of tripsn that are accomplished
in a day. The average number of daily trips grows from 	.�, for people who drove �-�� days
up to � for the class of users who drove all the �� days (see Additional “le� ). This result
clearly links the value of the accessibility timeα to the need of accessing to the desired
destinations by car. Drivers who experience better accessibility do not need to use the car
every day, and when they do they can also drive less. In the following, we show that these
di�erences can be linked to a di�erent value of time for users performing more trips.

3.3 Evidence of a log-perception of travel-time costs
Finally, we propose a time consumption model linking the duration model with the in-
dividual behaviour. This model permit to shed light on how individuals organise their
mobility and allows for an interpretation of the empirical observations compatible with
a logarithmic perception of the time cost of a trip (see Section
.� ). The individual deci-
sions at the base of TTE are modelled as a stochastic process, which is consistent with
the assumptions of the duration model and with a possible logarithmic perception of the
cost �T of a trip, analogous to the Weber-Fechner psychophysical law [�� ]. The same
model does not reproduce the empirical observations, assuming a linear time perception.
This result has been con“rmed with a Monte Carlo stochastic decision model, based on
the same premises (see Figure	 (left) and Additional “le � ). This model assumes a logit
curve [�� ] in the decision model of the binary choice of interrupting the daily mobility
after a certain trip and we could “t the TTE distributions in all cities with great precision
(R� > �.���).

The existence of simple universal dynamical models for empirical TTE distribution al-
lows to introduce a few observables that point out relevant di�erences among cities. One
of those parameters can be associated to the (logarithmic) value of time (see Additional
“le � ). This suggests relations between the presence of mobility infrastructures and/or the
socio-economic characteristics of a city, and the features of the empirical TTE distribu-
tion. These relations could be useful for urban planners to build governance policies for
mobility.

4 Discussion
In our analysis, based on a large GPS database containing information on single vehicle
trajectories in the entire Italian territory, we show that the empirical distributions for the
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Figure 4 Travel-time distribution and stochastic decision model. (Left) The travel-time distribution p(t)
in Milan (dots) compared with an exponential interpolation (solid line). The under-expression for short
travel-times, with t < 4 min could be a consequence of the characteristic GPS measurement time and does
not affect the time scale � t� . The results are consistent with the exponential fit of the tail. (Right) Comparison
between the empirical TTE p(T ) distribution in Turin (dots) and the best fit distribution provided by our
stochastic decision model, using a logistic threshold function (solid line, see Additional file 1, R2 = 0.99).

daily Travel-Time Expenditures in di�erent cities can be modelled by a single distribution.
This distribution is function of two time scales:α andβ. The time scaleα measures a min-
imal mobility time associated to the use of private cars in a given city, whereas the limit
value �/β of the hazard functionλ(T) asT � � is associated to the concept of Travel-Time
Budget. In our opinion,α is a good measure of the average accessibility [�� ] of a city. Lower
values ofα (i.e. higher accessibility) mean a better proximity to useful locations and less
time and trips needed for carrying out the daily mobility. We remark that if one considers
Italian cities of di�erent size and socio-economical conditions, the shape of the distribu-
tion appears to be endowed by a universal character where the only changes observed are
the values ofα andβ.

Also the distribution p(T / �T � ) has a universal character. This suggests the existence of
a behavioural model for the urban mobility that mimics the individual decision mech-
anisms. As a consequence, the statistical properties pointed out by the distribution (� )
are traits of the individual behaviour and the aggregated probability distribution for a city
is averaging over the individual heterogeneity in the values ofα and β across the pop-
ulation. However, in the disaggregated analysis of GPS data at individual level, we “nd
signi“cant di�erences in the average Travel-Time Expenditure for di�erent categories of
drivers. In particular, drivers who use their car more often have higher values ofα even if
their β is approximatively the same (see Figure� (d)). This is another con“rmation of our
interpretation of the parameterα as a measure of accessibility, because who has the worst
accessibility to public transport facilities or to the desired destinations is forced to use the
private vehicle over wider range of travel-times.

To interpret these results, we propose a simple decisional model, which assumes the ex-
istence of amobility energy (the daily travel-time) and a log-time perception of the travel-
time cost for a single trip. These results are also consistent with the Benford•s empirical
distribution of elapsed time during human activities [�� ] and Weber-Fechner psychophys-
ical law [�� ]. Using a Statistical Mechanics point of view, the Travel-Time ExpenditureT
plays the role of energy in a model of the individual urban mobility based on a generalised
utility function. However, one cannot simply de“ne the trip duration�T as a mobility
cost, because the data suggest that this perceived cost seems to decreases as the daily
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travel time T grows. A time consumption model that assumes a scaling cost� �T /T (i.e.

a law of relative effect [�� ]), corresponding to a logarithmic preference scale [�� ], is able to

reproduce the statistical properties of the empirical observations. As a direct application

of this result, we are able to suggest the use of a nonlinear relationship for the value of time

in the activity-based modeling of human mobility.

At city-aggregate level, we observe that for every city the average Travel-Time Expen-

diture �T � is greater than the Travel-Time Budgetβ, because short values ofT are statis-

tically under-expressed [�� ]. This could re”ect both the fact that the individual mobility

demand is hardly satis“ed after short travel-times, and the disadvantage using a private car

for short times. Bothα andβ are needed to fully understand the Travel-Time Expenditures

in a city. A direct application of the approach proposed permits to highlight the di�erences

in the travel-time expenditures among cities and classes of individuals. In particular, we

clearly observe a variability in the Travel-Time Budgetβ among cities. The dependency

upon population density and the di�erences observed in the disaggregate analysis explic-

itly clash with the idea of the existence of a “xed Travel-Time Budget.

Our results intend to nourish the discussion against this old paradigm of a constant

Travel-Time Budget, which dangerously suggests that is not possible to reduce travel

times, and therefore CO� emissions, with improvements to the transportation infrastruc-

tures. The idea that travel time savings are not bene“cial, because improving road infras-

tructures in cities will attract even more tra
c, is not corroborated by the empirical data.

Understanding the decision mechanisms underlying the individual mobility demand and

the use of private vehicles in a city is a fundamental task to forecast the impact of new

transportation infrastructures or of tra
c restriction policies. In our opinion, we clearly

need to replace the assumptions of a constant travel time budget and an induced travel de-

mand, with new models, which should necessarily encompass both individual behaviour

and city development.

5 Methods
5.1 GPS database
This work is based on the analysis of a large database of GPS measures sampling the tra-

jectories of private vehicles in the whole Italy during May ����. This database refers, on

average, to �% of the vehicles registered in Italy, containing traces of ���,���,��� trips per-

formed by ���,��� vehicles. Records are always registered at engine starts and stops and

every� � km during the trips (or alternatively every �� seconds in the highways). Each da-

tum contains time, latitude-longitude coordinates, current velocity and covered distance

from the previous datum directly measured by the GPS system using data recorded (but

not registered) each second. We de“ne a trip as the transfer between two locations where

the engine has been turned o�. If the engine•s downtime following a stop is shorter than ��

seconds, the subsequent trajectory is considered as a continuation of the same trip if it is

not going back towards the origin of the “rst trajectory. We have performed “ltering pro-

cedures to exclude from our analysis the data a�ected by systematic errors (� ��% of data

were discarded). The problems due to signal loss is critical when the engine is switched

on or when the vehicle is parked inside a building. In those cases we have used the in-

formation redundancy to correct ��% of the data by identifying the starting position of

one trip with the ending position of the previous one. When the signal quality is good the

average space precision is of the order of �� m, but in some cases it can reach values up to
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�� meters or more [ �	 ]. Due to the Italian law on privacy, we have no direct information

on the owners or any speci“c knowledge about the social characters of the drivers sample.

The GPS data base is collected for insurance reasons using black boxes installed on ve-

hicles, whose owners agreed with a special insurance contract. As a matter of fact, these

contracts are more attractive for young people or are used on ”eet of vehicles. This is a bias

in our sample to study human mobility, since young people may use the private vehicle in

a di�erent way with respect to elder people. However our point of view is that the univer-

sal statistical properties of human mobility discussed in the paper are not a�ected, due to

the large number trajectories and the di�erent urban contexts. Some vehicles present in

the database belong to private companies• ”eets. In this case, employers who use the car

for professional reasons might show a di�erent behaviour, but they contribute to a small

percentage of all vehicles and therefore their statistical weight is small.

As the drivers•s city of residence is unknown, it has been necessary to associate each

car to an urban area using the available information. We have established that one driver

lives in a certain city if the most part of its parking time is spent in the corresponding

municipality area. For each driver, we have considered all the mobility performed in a day

(inside and outside the urban area) to measure daily TTET . In this way, it is possible

to measure the average value ofT for over �,��� di�erent municipalities, where we have

at least ��� vehicles. Moreover, for a smaller number of cities we have su
cient data to

analyse the shape of the probability densityp(T) or of the cumulative distribution P(T) =
∫ T

� p(T �) dT � , as done in [�� ] on a similar dataset.

5.2 A duration model for Travel-Time Expenditures
An application of duration model to travel-time analysis has recently been proposed [�
 ].

This type of model allows a mesoscopic description of the empirical data for a large range

of human and animal temporal behaviours [�� ].

Using the GPS data base on single vehicle trajectories, it is possible to study the empirical

TTE distribution for all cities that had at least a sample of ��� monitored vehicles (see

Table S�). As example, in Figure� we show the TTE empirical distributions for Naples,

the largest cities in the South of Italy (� � million inhabitants) and Grosseto, a small city

in the center of Italy (� ��,��� inhabitants). This behaviour of the TTE distribution is

observed in all the considered cities. The parameterβ, computed by interpolating the

empirical curves (see Eq. (� )), de“nes the average time scale of individual daily mobility

and it is a characteristic of each city. The distribution of the average TTE�T � for those

cities is reported in Figure
 together with a normally distribution with mean �.	� h, and

standard deviation �.�
 h. Those values are thus signi“cantly larger than the expected TTB

of �.� h [ �
 ].

From the comparison of de“nitions of TTB for di�erent modes of transportation, bodily

energy consumption rates have to be taken into account to de“ne a universal travel-energy

budget [�� ]. The TTB β can be therefore interpreted as a physiological limit to daily mo-

bility: it is the stress and fatigue accumulated during traveling that restricts the time an

individual is willing to spend on mobility in a day. LetT the TTE of an individual, then we

can introduce thesurvival function S(T) as the probability that the TTE is greater thanT .

Assuming the Markov properties for the evolution ofT , we have the relation

S(T + �T) =
[
� …λ(T)�T

]
S(T) + o(�T), (�)
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Figure 5 Variability of the Travel-Time Expenditures among cities. (Left) Different behaviours of the
empirical hazard functions to model the mobility in a city. Hazard functions λ(T ) for the cities of Milan in
Northern Italy with 1.3 millions inhabitants (dash line), Rome, the capital, in Central Italy with 2.7 millions
inhabitants (solid line), Naples in Southern Italy 1 million inhabitants (dot line) and Palermo in Sicily 700
thousand inhabitants (dot-dash line). We have significant differences, particularly in the height of the plateau
(1/β ) that is related to the TTB. (Right) Average TTE in Italian cities. The distribution of the average TTE for
1,233 Italian municipalities where we have at least 100 GPS equipped vehicles (dots and lines) can be
interpolated with a Gaussian with mean 1.43 h and standard deviation 0.15 h (solid line).

where λ(T) is the hazard function, which is related to the conditional probability

π(T + �T |T) to realise a TTET + �T if one has spent a TTET . The hazard function

can be theoretically de“ned as

λ(T) = lim
�T 	 �

� …π(T + �T |T)
�T

. (�)

If we consider an ensemble of individuals, the hazard function has to be empirically

de“ned as an average value

λ(T) =
〈
� … �π(T + �T |T)

�T

〉

�T
, (	)

where �π (T + �T |T) refers to the conditional probability to observe a TTET + �T of

the individual dynamics and the average value is computed over the distribution of the

possible increments�T in the considered population.S(T) is related to the probability

distribution p(T) with p(T) = …dS(T)/dT . When the hazard function is constant, the un-

derlying stochastic process is a stationary Poisson distribution. But the empirical hazard

function, evaluated from GPS data (see Figure
 (left)), shows an exponential decay from

the asymptotic uniform behaviour (see Figure S� and Additional “le� ), which can be an-

alytically interpolated by

λ(T) = β…�[� …exp(…T /α)
]
. (
)

We identify the parameterβ with the TTB, whereasα may represent the typical aver-

age time associated the private car mobility, since the hazard functionλ(T) is small when

T � α. As a matter of fact, both quantities are characteristic of a city. The timescaleα

is associated to the accessibility of desired destinations in the city [�� ]. Indeed, it is in-

terpreted as the average time necessary to satisfy the mobility demand using private cars.



Gallotti et al. EPJ Data Science  (2015) 4:18 Page 11 of 14

Larger values ofα mean lower accessibility. Givenλ(T), we can compute the analytic form

of the TTE probability distribution by explicitly solving Eq. (� ) (see Additional “le � )

p(T) = β…�exp
(
αβ…�)(� …exp(…T /α)

)
exp

(
…αβ…�exp(…T /α) …T /β

)
. (�)

According to Eq. (
 ), for T � α the dominant term isexp(…T /β) and we recover the expo-

nential tail of the empirical TTE distributions. In Figure� , we show two interpolations of

the empirical distributions by using of the function (� ). The associated “ts for the hazard

functions are displayed in Figure S�. We have found a very good agreement considering

cities of di�erent size, importance, position and infrastructure development (see Table S�).

5.3 A time consumption model
To interpret the empirical results on an individual level, we formulate a time consumption

model where each individual progressively accumulates travel-time according to a well

de“ned strategy. This interpretation is based on three key aspects:

(i) the TTE is effectively a measure of the consumed Energy [] during mobility;
(ii) there is a log-time perception of the trip durations as the TTE increases [];

(iii) the trip durations are exponentially distributed [].
The “rst item refers to a Statistical Mechanics interpretation of the TTE distribution

function according to a Maxwell-Boltzmann distribution. The second item means that af-

ter a TTE of T , the perceived additional cost of a new trip by a driver is proportional to

�T /T , where�T is the new additional trip duration. The logarithmic scaling is a re”ec-

tion of Weber-Fechner psychophysical law [�� ]. It is possible that the individual percep-

tion of weariness is at the origin of this logarithmic weighting of time, which has been also

proposed to explain the statistical properties of the duration of individual activities [�� ].

The third item is supported by empirical evidence: our data suggest that the travel-times

cost t for a single trip has also predominantly an exponential probability density within

the range 	 � t � �� minutes (see Figure 	 (left))

p(t) � � t�…�exp
(
…t/ � t�

)
. (�)

This result has been shown to be universal across di�erent cities, with the characteristic

decaying time� t� growing with city population [�� ]. In Additional “le � , we show that� t�
also varies among the considered cities and might depend upon house prices, city surface

and average travel speeds (see Figure S�). In our model, each individual progressively ac-

cumulates travel-time to determine his TTE. According to our “rst assumption, a driver

will accept a TTE ofT with a probability

P(T) = exp

(

…
T
β̄

)

, (�)

where β̄ is the characteristic TTB of the population. Then the individual conditioned

probability to accept a new trip of duration�T after a TTE ofT is written

�π (T + �T |T) =
P(T + �T)

P(T)
. (�)
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However the�T distribution for the new trip is not independent from the elapsed TTE

T since users are reluctant to accept long trips when the TTE exceedsβ̄. Then we de-

“ne a conditional �T distribution, which takes into account the elapsed TTE, by using a

threshold function θa(x)

θa(x) =

⎧
⎨

⎩

� if x < a,

� otherwise.

According to our assumptions, the distribution (� ) is substituted by the conditional dis-

tribution

p(�T |T) � � t�…�exp
(
…�T / � t�

)
θa(�T /γ ), (��)

where the thresholda and the time scaleγ depend onT or on other individual features.

The parametera is the acceptability threshold for a new trips, whereasγ de“nes the per-

ceived measure unit of the cost of the new trip. The empirical observations suggest that

the thresholda depends on the average number of activities�n� of an individual. This is

illustrated by the correlation between the mobility timescaleα (see Eq. (
 )) divided by�n�

and � t� (see Figure� (left)). To de“ne γ , we assume a logarithmic perception of the trip

time cost so thatγ � T . Then we set the thresholda = xmax/ �n� and γ = T , so that the

threshold function is written in the form

θxmax/ �n�

(
�T
T

)

=

⎧
⎨

⎩

� if �T
T < xmax/ �n� ,

� otherwise,

wherexmax turns out to be anuniversal threshold. Therefore Eq. (�� ) is based on the as-

sumption that the propensity of a driver to accept a further trip of duration�T after

having performed a TTE ofT , scales as�n� /T , where�n� is the average number of daily

Figure 6 Validation of the time consumption model. (Left) Correlation between the time of a single trip
duration � t� and the ratio between the short travel-time expenditures and the average number of activities
α/�n� : each dot refers to a different city (r = 0.57); the straight line has a slope xmax = � t�� n� /α = 2.1 ± 0.1 (error
is s.e.m.). (Left) Comparison between the hazard function (5) inferred from our empirical data and the hazard
function computed using the decision model: the hazard function derived from the decision model (solid
blue line), using realistic parameters values � t� 
 0.2 h, β̄ = 1 h, �n� = 5 and xmax = 2 is compared with the
empirical hazard function (5) (dashed red line) with β = 1.08 × β̄ and α 
 0.5 h.
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activities. In other words the individuals that perform more trips using private vehicles

have a greater TTB: this could be also a consequence of the multi-modal mobility, which

is not included in our database, and that allows individuals to divide their TTB according

the di�erent transportation means used. Moreover, an individual seems to organise the

mobility using the TTB as a mobility energy (with the constraint of performing the com-

pulsory daily activities), but keeping the percentage of TTE ”uctuations constant. Using

empirical values for the di�erent quantities in the relation (�� ) we can estimatexmax 
 �

(see Figure� (left)).

We compute the empirical hazard function for a population of drivers according to the

de“nition ( 	 )

λ(T) = � t�…�
∫ �

�

� …exp(…�T /β)
�T

θxmax/ �n�

(
�T
T

)

exp
(
…�T / � t�

)
d�T .

An explicit calculation (see Additional “le� ) shows that the hazard function of the model

has the same analytic form as the empirical interpolation (
 ), where the timescale of the

short TTE under-expression is

α 
 � n�� t� /xmax, (��)

as one can see in Figure� (right).
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