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Abstract
The application of functional analysis to infer networks in large datasets is potentially
helpful to experimenters in various fields. In this paper, we develop a technique to
construct networks of statistically significant transitions between variable pairs from a
high-dimensional and multiscale dataset of teaching practices observed in Grade 5
and Grade 9 Mathematics classes obtained by the National Institute of Education in
Singapore. From the Minimum Spanning Trees (MST) and Planar Maximally Filtered
Graphs (PMFG) of the transition networks, we establish that teaching knowledge as
truth and teacher-dominated talking serve as hubs for teaching practices in
Singapore. These practices reflect a transmissionist model of teaching and learning.
We also identify complex teacher-student-teacher-student interaction sequences of
teaching practices that are over-represented in the data.

Keywords: complex networks; functional analysis; teaching practices; pedagogy
theory

1 Introduction
In recent years, it has become popular to use networks to visualize and analyze the hi-
erarchical structure within large datasets usually obtained from complex dynamical sys-
tems. Networks are especially useful for representing the extent and magnitude of inter-
actions among the many components in complex systems. In such visualizations we show
the important pair-wise relationships between variables. These relations may be directed
transitions, causation, or activations, or undirected when we examine similarities or co-
occurrences. Examples of such usage can be found in finance [, ], biology [, ], sociology
[], and language []. Even without any further quantitative analysis of the network struc-
ture, showing such pair-wise relationships on a network often gives us a powerful overview
of the structures that exist within the data. Beyond such crude ‘eyeballing’ of the network,
there exist tools to (i) filter out the most essential structure in the network [–], (ii) iden-
tify important central nodes, (iii) quantify the hierarchical structure [, ], (iv) identify
important patterns or paths in the network [], and (v) identify clusters of nodes [, ].
Broadly speaking, there are two approaches to generate networks from data. First, some

datasets such as air traffic data [, ] andWorldWideWeb connectivity data [] contain
explicit information about the network structure. In other cases, we often have to infer the
interactions among various components or variables by performing functional analysis on
the data []. Examples of this approach include the estimation of an undirected network of
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stocks based on the Pearson correlations of their daily returns [], as well as themapping of
a directed functional network of brain regions from fMRI data usingGranger causality as a
directedmeasure []. In both examples, the resulting network provides us deeper insights
into the system it represents - clustering of stocks in similar industries in the stockmarket,
and a functional hierarchy in the brain. We believe there is great potential in applying
functional analysis to infer networks in large datasets under-utilized by experimenters in
various fields.
In , theNational Institute of Education (NIE) conducted a large-scale study of teach-

ing practices in Singapore classrooms drawing on a representative national sample of
schools. The study had the goal of investigating how teachers teach in Singapore, why they
teach the way they do, and the effects of their teaching on student learning. The overall
focus of the study was to map and model the logic of pedagogical instruction, the intel-
lectual quality of knowledge work in classrooms, and the impact of instructional practice
on student achievement while controlling for student and family characteristics. A total
of  English andMathematics lessons fromGrades  and  classes were video-recorded
and manually annotated for the presence of some  instructional indicators over the
course of each lesson. These indicators focus on a broad range of organisational, instruc-
tional and interactional practices in the classroom, the knowledge and cognitive focus of
teaching, the types of classroom talk and their knowledge content, how students respond,
and the quality of the disciplinary knowledge of the subject-domain (English and Math-
ematics). The resulting data set is extremely high-dimensional (one dimension for each
indicator) with greatly varying activities - some indicators are present up to % of the
time while others appear only .% of the time. Using commercial software such as
SPSS to analyse the large dataset proved to be computationally intensive, as it explores
the combinatorially large space of variables to find statistically significant transitions. In
particular, such commercial software was unable to perform complex temporal analysis
of classroom pedagogy, which remains a major methodological challenge for educational
research [].
In this paper, we describe a complex-network approach to the functional data collected

in the NIE study. Our approach is both empirical and normative in that we focus, in the
first instance, on establishing statistically weighted relationships between instructional
practice and, in the second, because we assume that not all instructional practices are
equal and that from a normative perspective, there is a particular logic to instruction that
teachers need to attend to if they are to optimise the intellectual quality of teaching and
learning in the classroom. As such, teaching and learning activities do not follow a ran-
dom sequence but follow a purposeful and deliberate sequence that teachers implement
from their lesson plans, and simultaneously adapt in response to their monitoring of stu-
dents’ work. Effective teaching sequences,most often called learning progressions [, ],
should lead to successful learning outcomes while ineffective sequences, perhaps due to
structural weaknesses in the transition sequence, may not only have the opposite effect,
butmay disengage students from active learning in the long term. It follows that the result-
ing network of activity transitions should contain meaningful structures that correspond
to actual teaching practices. The goals of this work are to (i) construct complex networks
that typify activity transitions in the classroom, (ii) identify prevalent pairwise transitions
and important practices, and (iii) extract sequences of transitions that frequently occur
in the classroom. Since the focus of this paper is on the complex network methodology,
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we illustrate what the method is capable of discovering only for the data of Grade  and
Grade  Mathematics.

2 Data
The data used in our analysis was obtained by the National Institute of Education through
a comprehensive, large-scale, multi-dimensional, baseline study of descriptive and obser-
vational data on the state of instructional practices in Singapore classrooms. Known as the
Core  Research Programme, it was a collaborative effort conducted by a team of over 
research professors, research assistants and associates, and postdoctoral fellows and led
by Professor David Hogan []. The Core  Programme utilized a nested design compris-
ing three distinct, inter-related, and analytical lines of research, each designated a ‘Panel’
with specific foci ranging from teacher and student beliefs, attitudes, and motivations
(using surveys), classroom instructional practices (using videographic observations and
coding), and assessment practices (using artefactual analysis). The anonymized data used
for this paper is drawn from the observational and coding panel which videotaped and
collected data from English and Mathematics teachers in  Primary schools and  Sec-
ondary schools. Grades  (in Primary schools) and  (in Secondary schools) were selected
as these were considered to be years crucial to the development of skills and knowledge
needed for the high stakes national examinations for Primary schools (the Singapore Pri-
mary School Leaving Examination) and Secondary schools (the General Cambridge ‘O’
Level Examination). English and Mathematics were selected as key curriculum areas that
have a significant influence on student social mobility; literacy and numeracy skills are of-
ten seen as key leverages to opening up educational and career pathways. Data were col-
lected from April through November , resulting in  lessons (with - lessons
per subject-level combination). Teachers selected for observation were asked to nominate
a unit of work - a full sequence of lessons around a particular topic, theme or content area.
Rather than discrete, random lessons for observation, the stipulation of a unit of work fa-
cilitates subsequent analyses that charts, models, and examines the developmental ebb
and flow of knowledge and skills over time.
Within the lessons in the unit of work, an average lesson may have the following typ-

ical pedagogical activities. At the start of the lesson, about  students are seated in the
classroom, with student tables arranged in rows of pairs. When the teacher enters the
front of the classroom, students would stand up, bow and greet the teacher. She would
then proceed to use the computer equipment and projector, or the white board, to de-
liver the topical content for the lesson. Students would pay attention to the teacher as she
teaches from the front, engaged in learning what the teacher has to lecture to them. The
teachermay vary the largely teacher-led pedagogical activity by introducingmathematical
activities, usually in the form of mathematics problem-solving worksheets, for students
to practice on. Such practice work is typically done by students individually or in pairs.
Students may sometimes proceed to the white board to demonstrate their understanding
of problem-solving to the rest of the class. The teacher will check the students’ work by
walking around the class, monitoring their mathematical practices and providing feed-
back when necessary. Upon ensuring that students are able to solve the problems in the
worksheet, the teacher may proceed with teaching another, typically more procedurally
complex, content, before getting students to practice again. This cycle of teacher lecture,
student practice, teacher check and feedback, may continue until the teacher concludes
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the lesson with a short summary statement of what was taught for that lesson. Students
would then rise, bow and thank the teacher for the lesson.
All lessons are video and audio recorded using two to three high-definition video cam-

eras and up to four audio recorders, with the aim to capture all whole class interactions
and the majority of pair or group work. Lesson recordings are then coded by subject spe-
cialists who are intensively trained in the use of the Singapore Pedagogy Coding Scheme 
[, ]. Video recorded lessons, unlike in-situ classroom coding, afforded the detailed
refinement of the coding scheme with the possibility of recoding to resolve any coding
errors. Coded data are entered into Microsoft Excel and compiled in SPSS for statistical
analyses. Each lesson is coded in three-minute ‘phases’, with an average one hour lesson
having  phases. In each phase, the states of more than  possible listed variables (we
use variables as a more general term for instructional practices) are coded through man-
ual annotation. See Additional file  for detailed descriptions of the variables as well as
the decision to code in three-minute phases. Segmenting the lesson into phases allows for
a temporal examination of instructional practices from the start to the end of a lesson,
and across the unit of work. From these  variables, we selected roughly  which are
believed to be most essential to the development of the intellectual quality of knowledge
work for our network analysis.
The variables chosen extends current pedagogical research based on John Hattie’s re-

search on ‘Visible Learning’ which describes effective pedagogical practices [], by fo-
cusing on the nature of students doing disciplinary knowledge work in the classroom: the
epistemic focus of instructional tasks; the nature of knowledge practices (including the
generation, representation, communication and justification of knowledge claims); the
epistemic classroom talk that helps makes these knowledge claims explicit, transparent
and visible to students; and the cognitive complexity of the knowledge work undertaken
in instructional tasks, recognising the contested nature of knowledge claims []. These
selected variables are coded as either active () or inactive () for each lesson phase.

3 Methods
3.1 Defining transitions
The starting point of our analysis is to define what constitutes a transition from one vari-
able to another and from this, develop a measure of transition frequency and significance.
Previous work in network analysis tended to use measures like conditional probability
[], transfer entropy [, ], or Pearson correlation [] to denote the relationship be-
tween variable pairs. The major shortcoming in these measures when applied to discrete
binary signals is that they do not consider the characteristic event durations, i.e. a signal
that is activated continuously across several phases are assumed to be distinct events at
each phase and treated independently.
To formulate our definition of a transition from variable i to variable j, we assume: (i) the

dynamics of the variables in our data set are well approximated by a lag- Markov process
i.e. the states of the variables at phase t +  are solely conditioned on their states at phase t
(see Figure (a) and (b)), and (ii) when a variable is active from phase t to t + l, but not
present at t – , it is regarded as a single self-sustaining process first activated at phase t
and lasting for duration l (see Figure (c)). For assumption (i) Figure (a) demonstrates that
for a majority of variables, the ability to determine whether or not they are active at phase
t is vastly improved by around one order of magnitude when we know the state of the
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Figure 1 Comparison of Markov probabilities and colour map of correlations. In (a), the open circles are
the prior probabilities Pi (the probability of observing an active variable i at a given phase), the upwards
pointing triangles are sustaining probabilities P(xi(t) = 1|xi(t – 1) = 1) (the probability of observing an active i
given that i is already active at a preceding phase), and the downwards pointing triangles are the first
activation probabilities P(xi(t) = 1|xi(t – 1) = 0) (the probability of observing an active i given that i inactive at a
preceding phase). We ranked the variables in increasing order of prior probabilities. We see clearly that a vast
majority of the sustaining probabilities are at least an order of magnitude larger than their corresponding
prior probabilities. These variables have the tendency to self-sustain which suggests that we should treat
multiple-phase activation of these variables as a single event. In (b) we compare the lag-1 sustaining
probabilities against the probabilities P(xi(t) = 1|xi(t – 1) = 1, xi(t – 2) = 0) and P(xi(t) = 1|xi(t – 1) = 1, xi(t – 2) = 1)
(i.e. treating variables as a lag-2 dynamical process). Unlike in (a), there is no clear increase in probability when
the second preceding phase is accounted for. In (c) we show, on a colour map, the standard scores of
observed conditional probabilities Pobserved(xj(t) = 1|xi(t – 1) = 1) against their expected values if i and j were
independent. If i and j were independent and characterized solely by their respective prior probabilities Pi
and Pj , the expected conditional probabilities should be equal to the prior, i.e.
Pexpected(xj(t) = 1|xi(t – 1) = 1) = Pj and the distribution of conditional probabilities should have a standard
deviation of σ =

√
Pj(1 – Pj)/Ni . The standard score is obtained from Z = (Pobserved(xj(t) = 1|xi(t – 1) = 1) – Pj)/σ .

The colours on the map range from blue (lower than expected) to teal (equals expectation), and finally
maroon (higher than expected). The dominant feature of this map is a diagonal of higher-than-expected
conditional probabilities for self-transitions.

variables at t – . We also see from Figure (b) that the additional knowledge of their state
at t – , however, did not improve significantly our prediction capability. Thus, the lag-
Markov process is sufficient and also efficient in modelling the dynamics of the variables
in our data set. In Figure (c), we showed that for a variable i which is active from t to
t + l, it is much more likely that the active state at t + k where  ≤ k ≤ l is a self-transition
from t+k– to t+k rather than it being triggered by an external variable (assumption (ii)).
Therefore, we search for inter-variable transitions only at the instances of first activations.
A transition is thus defined as an event whereby a consequent variable has been triggered
(or first activated) by the activity of the precedent. Formally, we say a transition from i to j
occurs at time t if j is first activated at time t with i active at t– (i.e. i(t–) = , j(t–) = ,
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Figure 2 Method of counting transitions. If we count all active state to active state transitions between
variable pairs as shown in (a), there will be 5 transitions from variable A to B. This method assumes that every
phase in which a variable is active is independent of its previous phase(s). If we assume that variables are
activated in blocks, i.e. first activated at a particular time and then self-sustained for a duration, then it
becomes reasonable to count transition frequencies as shown in (b). In (b), transitions always result in a
variable’s first activation. We count two A to B transitions and one B to A transition.

j(t) = ). The total number of transitions from variable i to j is therefore

N(j ← i) =
L∑

l=

Tl–∑

t=

xli(t)
(
 – xlj(t)

)
xlj(t + ) ()

where xlj(t) is the state of variable j at phase t of lesson l, L is the total number of lessons
for a particular subject-level combination and Tl is the number of phases in lesson l. The
procedure is illustrated in Figure .

3.2 Measuring significance
For two variables that are frequently active, the number of mutual first activations will
also be large, even if they are causally unrelated. On the other hand, for two variables
that are rarely active, even a small number of first activations may indicate strong causal
relation between them if this number is larger than expected by chance. To test a transition
frequency for statistical significance, we use the Monte Carlo sampling method described
below.
Given a pair of variables i and j that we assume are uncorrelated, we can create synthetic

signals of each variable with their lag- Markov models using the Monte Carlo sampling
scheme explained in Table . This is our null model for the observed transitions from i
to j. We generated k = , synthetic signals x̂li,h(t), h = , . . . ,k for variable i, and x̂lj,h(t),
h = , . . . ,k for variable j and computed the total number of transitions N̂h, h = , . . . ,k as
described in Equation () for each pair. The population of k transition frequencies form a
distribution of N̂ .
Let p be the fraction of the population of N̂ that is larger than or equal to the observed

number of transitions Nobserved(j ← i). If p ≈  then Nobserved is far above the mean of this
distribution, there is a far greater number of observed transitions from i to j than expected
from the null model which assumed the variables i and jwere independent. If p≈ . then
Nobserved is close to the median of this distribution, and can be well explained by the null
model. Finally, if p≈  then there are much fewer transitions than expected from the null
model.
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Table 1 Monte Carlo sampling example

Phase r P(0) x

1 – – 0
2 0.52 P(0|0) = 0.8 0
3 0.86 P(0|0) = 0.8 1
4 0.67 P(0|1) = 0.3 1
5 0.23 P(0|1) = 0.3 0
6 0.91 P(0|0) = 0.8 1

Suppose P(0|0) = 0.8, P(1|0) = 1 – P(0|0) = 0.2, P(0|1) = 0.3, P(1|1) = 1 – P(0|1) = 0.7, and we start with x(1) = 0. Then to generate a sequence
using these transition probabilities, we draw 5 random numbers r = (0.52, 0.86, 0.67, 0.23, 0.91) uniformly from the interval [0, 1) and
allow x(t) = 0 when r < P(0|0), x(t – 1) = 0 and x(t) = 0 when r < P(0|1), x(t – 1) = 1. Since x(1) = 0, to obtain x(2) we look at P(0|0). Since
r(2) < P(0|0), x(2) = 0. However, r(3) > P(0|0), giving x(3) = 1. Iterating further, since x(3) = 1, we look at P(0|1) and r(4) > P(0|1), x(4) = 1.
Then r(5) < P(0|1), x(5) = 0. Finally, r(6) > P(0|0), and x(6) = 1. The sequence we get is therefore x = (0, 0, 1, 1, 0, 1).

We take the significance value to be s = –p. By rescaling in thismanner, s ≈ , , or –
if the observed transition frequency Nobserved is, respectively, approximately the same as,
greater than, or less than the value expect from the null model. We can then compute
the significance-weighted transition frequencies by multiplying each transition frequency
with its significance. The weighting procedure diminishes insignificant frequencies and
makes lower-than-expected frequencies negative. The weighted scores are

Nweighted(i← j) = sN(i← j). ()

For our analysis, we admit only edges where the significance s > ., i.e. p < . and
thus there is % confidence that the transition is not spurious.

3.3 Network visualization and filtering
We then visualize the weighted transition frequencies Nweighted on two complex directed
networks (one for Grade  Mathematics and one for Grade  Mathematics) where each
node on the network represents a variable and the directed edges between nodes denote
transitions. If we show all the edges in these networks without any filtering, we get ‘fur
balls’ like that shown in Figure . The network is too densely interconnected and the im-
portant structures are obscured. Therefore it is essential to apply filtering schemes that
remove less important edges and highlight themore important ones.We employ two pop-
ular techniques widely used in complex network analysis. They are theMinimal Spanning
Tree (MST) [] and the Planar Maximally Filtered Graph (PMFG) []. Since we seek to
identify transitional motifs (paths) in this work, it is important to choose a method that
preserves connectedness.We selected theMST and PMFGfilteringmethods because they
guarantee connectedness in the resulting network (at least in the undirected sense). Other
popular complex network filtering schemes, such as threshold filtering and disparity fil-
tering [] do not satisfy this condition
For a network with N nodes, the MST is a subgraph where the N nodes are connected

by theN – most important edges. As its name implies, theMST is a tree, and therefore it
can have no loops. It is constructed using Kruskal’s algorithm [] as follows: (i) the edges
of the network are ranked in decreasing order of weight, (ii) populate the MST with all
nodes in the existing graph, (iii) starting from the edge with the largest weight, add an
edge to the MST provided the edge added does not result in a closed loop, (iv) repeat (iii)
until all nodes in the MST are connected. An example of the construction of a MST is
shown in Figure (a).
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Figure 3 Unfiltered network of significant
transitions. Here, we show the network of all
significant (s > 0.5) transitions between variables
from the data of Grade 5 Mathematics. The network
is drawn with the following features: (i) node
diameters are proportionate to the prior probability
Pi of their corresponding variables, (ii) arrowheads
of the edges point in the direction from the
precedent to the consequent, (iii) edges thicknesses
are proportionate to the weighted frequency with
thick lines denoting high weighted transition
frequencies, and (iv) the placement of the nodes are
determined by a multilevel force algorithm [32] that
was included in the graphing software. This
algorithm assigns attractive and repulsive forces
among nodes according to their connectedness
and allows the graph to dynamically relax into a
configuration of low energy. The multilevel treatment ensures that the graph relaxes into the global
minimum energy configuration instead of being trapped in a local minimum. In this scheme, the distances
between nodes are roughly inversely proportionate to the score between them i.e. a pair of nodes with high
score will be placed closed together in the network. For this unfiltered network, the density of edges is so
great that it is very difficult to discern any meaningful structure from it.

Figure 4 Construction of MST and PMFG graphs.
The solid lines in (a) show a MST graph built from
decreasing order of edge weights i.e. the edges with
the highest weights are included first. The edges
represented by dashed lines with weights 8, 4, and 1
are not included since they will result in loops in the
network. (b), (c), and (d) shows the properties of the
PMFG. Even though the edges in (b) intersect, the
graph is planar. This is because the lines can easily
be redrawn such that they do not intersect like in
(c). However, if the new blue edge is added to the
graph (d) there is no way to redraw the edges or
rearrange the nodes such that the links never
intersect. Therefore the graph in (d) is not planar.

The PMFG filtering scheme, similar to the MST, admits edges in decreasing order of
strength starting from the strongest link as long as the graph remains planar. Without
elaborating onmathematical details, a planar graph is a graph that can in principle be em-
bedded on a planar surface without any crossing of links (see Figure (b)-(d)). The PMFG
retains more information ((N – ) links) while conserving all the hierarchical structure
associated with the MST.
More importantly, whereas the MST allows only a single possible undirected path be-

tween any pair of nodes (i.e. only the dominant pathways are preserved), the resulting
PMFG is less restrictive and preserves several alternate paths that can be taken from one
node to another. In Section ., it was shown that many transitions taken in the most
prevalent motifs are captured in alternate pathways preserved the PMFG but not in the
MST. The fact that several important pedagogical transitions happen not along the dom-
inant paths but the alternate paths suggests that the MST filtering is overly restrictive.
Thus, in Figures (a) and (b), we chose to display the PMFG graphs and highlight their
respective MST backbone.
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Figure 5 Time-resolved transition chart. The time-resolved chart of a limited set for variables for a chosen
lesson. Diagonal lines in the chart represent significant (s > 0.5) transitions defined in Section 3.1. There are
several paths in the chart which involves two or more transitions (three or more variables) and some of these
paths are highlighted. For each path on the time-resolved chart there is a corresponding path in the
time-integrated transition network.

3.4 Dynamical motifs
Beyond recognizing just the pairwise transitions between lesson variables, we also wish to
identify important sequences of two or more significant transitions which we call dynam-
ical motifs. These sequences enables us to track the progression of practices across many
phases spanning a longer duration of a lesson. To do so, we return to the annotated data of
individual lessons and search for frequently occurring sequences of significant transitions.
This procedure is illustrated in a form of a time-resolved chart shown in Figure . Dynam-
ical motifs identified are sequences that were repeated frequently over many lessons.

4 Results
4.1 Prevalent transitions in teaching practices
In Figures (a) and (b), the filtered graphs of weighted transition frequencies are shown
for Grade  Mathematics and Grade  Mathematics respectively. We can observe that
across both grade levels, teaching practices are organised around source (outgoing)
hubs that correspond to Knowledge as Truth and Instructional Activity (IA): Teacher-
Dominated Talk. These source hubs are characterized by a large concentration of sig-
nificant outgoing transitions. Although these hubs also tend to be the most frequent prac-
tices, the frequency alone does not account for the large number of significant outgoing
transitions. This suggests strongly thatKnowledge as Truth and Instructional Activity (IA):
Teacher-Dominated Talk are indeed important hubs that drive the initiation of teaching
sequences.
For Grade  (Figure (a)), IA: Teacher-Dominated Talk is an especially generative node

which leads to nodes such as Knowledge as Truth (via Supervisory Monitoring, where
teachers monitor students’ behaviour in class), To Practice What Was Learnt (where stu-
dents practice what teachers taught them), Procedural Talk (classroom talk about proce-
dural knowledge), andDoing Mathematics Activity (students doing a mathematics task in
a disciplinary manner). An attendant observation is that teacher responses during Doing
Mathematics Activity tend to be short (one or two word responses such as “yes”, “good”,
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Figure 6 Transition networks of teaching practices during Mathematics lessons. The PMFG-filtered
networks for (a) Grade 5 Mathematics and (b) Grade 9 Mathematics are drawn with features (i), (ii), and (iii) as
described in Figure 3. We use dark edges to highlight the MST backbone of the PMFG network. The node
placement was determined by the same multilevel force algorithm [32] in Figure 3 acted on the MST edges.
We also indicate the community of the nodes in the graph by their colour. They are detected with a
community-detection algorithm [13] that was built into the graphing software based on its MST backbone as
well. The detection process, not guided by any pedagogy theory, nevertheless produced communities of
variables that are in general agreement in pedagogy theory.

“well done”, etc.). But whileDoing Mathematics Activity is a generative node in Grade , it
all but disappears by Grade  (Figure (b)). We also note the presence of sink (incoming)
hubs such asCD: To Practice WhatWas Learnt, IA: Individual Seatwork, and IS: Monitor-
ing - Individual which attracts several significant incoming transitions. Unlike the source
hubs, sink hubs are practices that occurmuch less frequently and are harder to detect. The
network analysis methodology uniquely discerns these hubs with their special role.
At Grade , Knowledge as Truth and IA: Teacher-Dominated Talk are still present as

large hubs, but additional hubs have appeared: Procedural Talk, Procedural Knowledge
Focus, Knowledge Communication Presentation and Knowledge Representation. The latter
two hubs refer to how students present and communicate mathematical ideas (typically
when asked by the teacher to present a problem solution on the white board in front of
the classroom), and to how students represent mathematical ideas using different repre-
sentational forms (typically abstract forms, rather than concrete or pictorial), respectively.
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Here, we find that while IA: Individual Seatwork and IS: Monitoring - Individual remain
as prominent sink hubs for Grade , IS: Feedback to Individual Students has replaced CD:
To Practice What Was Learnt in its role.

4.2 Motifs of teaching practices
The most common length- and length- motifs for Grade  and Grade  Mathematics
are shown in Figure . A motif is said to be length-n if it consists of n –  successive sig-
nificant transitions, but is not followed by an nth transition that is statistically significant.
Some of the length-motifs contain a length- stem that branches out intomore than one
statistically significant fourth transition.
As we can see, Grade  motifs typically show a common ‘cycle’ of teaching: The teacher

starts talking about content (IA: Teacher-Dominated Talk, Knowledge as Truth, Procedu-
ral Talk); next, students are often given individual practice work (IA: Individual Seat-
work); then, the teacher provides some feedback (Comment/Remark), returns to lengthy
talk (IA: Teacher-Dominated Talk, Exposition), or asks the whole class a closed question
which typically has one correct answer (Teacher Closed Question: WC). Sometimes, the
sequences carry on with more practice work (CD: To Practice What Was Learnt, IA: In-
dividual Seatwork) as well as the teacher’s monitoring of the student learning (IS: Mon-
itoring - Individual, IS: Formative Monitoring, IS: Supervisory Monitoring) or providing
individual feedback (IS: Feedback to Individual Students, IA: Individual Talk to Student).
The Grade  motifs are largely similar to those in Grade , but with a greater focus on

Procedural Knowledge Focus in the middle of the common motifs. Also, some Grade 
lessons tend to end with the teacher providing a closing exposition (Teacher Exposition),
lecture, and IRE (a form of talk where the teacher Initiates, the student Responds, and the
teacher Evaluates) (Lecture, Lecture + IRE).
Interestingly, there are motif links such as IA: Individual Seatwork to Teacher Exposi-

tion for Grade , Procedural Talk to IA: Individual Seatwork for Grade , and Procedural
Knowledge Focus to IS:Monitoring - Individual for Grade which are present in the collec-
tion of common motifs in Figure  while not appearing in their respective PMFG-filtered
networks in Figure . ThePMFGfiltering schemepicks edges in descending order of statis-
tical significance. However, because the statistical significances are time-integrated, there
is no guarantee that successive transitions in the PMFG appear one after the other during
actual lessons. These time-integrated transitions may be part of two motifs, one ending at
the node that the other starts at. This is why a time-resolved analysis must also be carried
out to identify dynamical motifs consisting of successive transitions that are statistically
significant.

5 Discussion
The transmissionist model of teaching views teaching as a straightforward and unprob-
lematic process of transferring information (knowledge) from the mind of the teacher to
the mind of the student [–]. In this model, knowledge is a collection of facts about
the world and procedures to solve problems; knowledge is objective, fixed, and external
and learning is something akin to accumulating goods - but goods in the form of proposi-
tional knowledge, whether factual or conceptual; the goal of schooling is to transmit these
facts and procedures from the teacher to the student; teachers know these facts and proce-
dures, and their job is to transmit them to students; learning is an intra-subjective process
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Figure 7 Common lessonmotifs. The most common motifs for both grades are listed here. For each grade,
the first row lists the most common length-3 motifs that do not significantly extend to other variables and
prevalence r gives the fraction of lessons in which the paths are present. The second and third rows present
length-4 motifs. Motifs with broken arrows indicate the possible terminations of a common stem of three
indicators. For these motifs we show r for each possible ending adjacent to the final node together with the
total prevalence of all alternatives.
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that goes on inside students’ minds as knowledge is transferred or transmitted from the
teacher to the student; simpler facts and procedures should be learned first, followed by
progressively more complex facts and procedures; the way to determine the success of
schooling is to test students to see how many of these facts and procedures they have
acquired through well-established assessment procedures. In the transition networks of
both Grade  and Grade  Mathematics, Knowledge as Truth and Instructional Activity
(IA): Teacher-Dominated Talk are seen as dominant hubs.Knowledge as Truthmeans that
the knowledge that is presented in the lesson is viewed as non-contestable, non-negotiable
and objectively valid. As an Instructional Activity (IA), Teacher-Dominated Talk means
simply that the teacher does most of the talking in the classroom. These practices operate
most effectively in the transmissionist model of teaching, since knowledge is unproblem-
atic and non-contestable, and teachers need only to ensure that they cover the curricu-
lum. Not the least of the opportunity costs for Teacher-Dominated Talk however, is that
when students are not given the opportunity to engage in extended and productive discus-
sions during lessons, misconceptions often go undetected, existing conceptual schemas
can go unchallenged, students might become disengaged with the learning process, and
over time, because they have less agency in the class to speak up, and lose motivation to
become good students.
However, as Ball [] points out, mathematics instruction ought to involve a lot more

than the transmission of facts and procedures. Above all, mathematics instruction should
provide students with rich opportunities to engage in authentic, domain-specific mathe-
matical practices. “Mathematics practices,” she goes on, “focus on themathematical know-
how, beyond content knowledge, that constitutes expertise in learning and using math-
ematics [such as] justifying claims, using symbolic notation efficiently, defining terms
precisely, and making generalisations are examples of mathematical practices.” Thus, the
transmissionist model is insufficient as a teaching and learning model for mathematics.
In Grade , the strong presence of Doing Mathematics Activity is an important practice
that we hoped to see in mathematics classrooms. Doing Mathematics Activity is inher-
ently disciplinary in nature, and students need to acquire the mathematics-specific dis-
ciplinary skills, knowledge and disposition to understand mathematics deeply, debate,
and discuss mathematical procedures and concepts, and appreciate the importance and
relevance of mathematics. It captures the idea that mathematics learning does not con-
sist purely of learning algorithmic procedures (captured in Procedural Talk and Proce-
dural Knowledge Focus) and content (captured in Factual Talk and Factual Knowledge
Focus), but requires students to perform discipline-specific knowledge practices as out-
lined by Ball. Similarly, Stein and Lane [] characterize ‘doing mathematics’ as “The use
of complex, non-algorithmic thinking to solve a task in which there is not a predictable,
well-rehearsed approach or pathway explicitly suggested by the task, task instructions,
or a worked out example. ‘Doing mathematics’ processes are often likened to the pro-
cesses in which mathematicians engage when solving problems.” These activities are the
most demanding of all activities, since they require the students to draw upon a range of
mathematical knowledge and procedures/skills to complete some work that has no well-
rehearsed way of completing the task. Instead, students are likely to be asked to design,
test and justify a new procedure to fit a new kind of problem.
The disappearance of Doing Mathematics Activity as a hub in Grade  suggests that at

this level, the focus on what we consider to be a highly-valued disciplinary understand-
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ing of mathematics has been replaced by a focus on procedural knowledge (Procedural
Knowledge Focus) as an effective and efficient means to present such knowledge, such as
efficient problem solving methods. Yet, we believe that it is precisely because of this peda-
gogical approach focused on a highly proceduralised and efficient formof learning abstract
mathematics that hasmade Singapore one of the top performing countries in international
assessments that measure students’ ability in mathematics. Our observation confirms the
PISA  findings on Singapore Mathematics [] which shows that there is a strong
relationship between the teaching of Formal Mathematics (as opposed to Applied Math-
ematics or Word Problems) and student mathematical performance in the PISA tests.
Finally, teaching and learning must be understood as a process. Christie [] talks of the

prototypical classroom lesson having a beginning, middle and end pattern. The begin-
ning comprises some form of teacher direction (Curriculum Initiation), followed by the
teacher and students’ sharing of direction (Curriculum Collaboration/Negotiation) and
ending with students’ independent activity (Curriculum Closure). In the motifs we iden-
tified for Grade  and Grade , the didactic of teacher-student-teacher as well as teacher-
student-teacher-student sequences highlights the complex interaction cycles that occur
in mathematics classrooms. Almost all lessons begin, as described above, with a teacher-
led initiation (Knowledge as Truth, Instructional Activity (IA): Teacher-Dominated Talk,
Procedural Talk, Procedural Knowledge Focus). Often, these motifs lead immediately to
individual practice work (IA: Individual Seatwork), seemingly replacing the middle phase
of Christie’s pattern with student’s independent activity. Somemotifs then terminate with
feedback from the teacher in the form of lengthy talk (Teacher Comment/Remark, IA:
Teacher-Dominated Talk, Teacher Exposition) following student’s practice work. These
motifs suggest a teacher-dominated closure in the teaching pattern. However, in other
motifs, we discovered a fourthmovement which is a return to more practice work (CD: To
Practice What Was Learnt) coupled with teacher’s monitoring of such practice work (IS:
Monitoring - Individual, IS: Formative Monitoring, IS: Supervisory Monitoring).
In Grade , the greater focus on Procedural Knowledge Focus is in line with the high

stakes environment that Grade  teachers and students are entrenched in, requiring stu-
dents to learn - at least a year early from the Grade  national examinations - procedures
and practice skills that are necessary to perform well in the high stakes mathematics ex-
amination. Interestingly, when the focus is on Procedural Knowledge Focus, it is often fol-
lowed by a more personalised approach where the teacher may provide individualised,
specific, feedback (IS: Feedback to Individual Students) or learning support (IS: Contex-
tual & Flexible Procedural LS). Such feedback and support are positive signs that rather
than a summative exposition at the end (which does occur nevertheless), teachers and stu-
dents have the opportunity to provide some feedback to one another. Expositions do end
in about half of the motifs, likely due to the need to ensure that the important content and
skills are reiterated and summarised, a necessary conclusion to the transmissionist model.

6 Conclusion
In this work, we presented a technique of constructing transition networks from high-
dimensional andmultiscale data to allow for highly simplified analysis of interdependence
and correlation. We applied the technique on teaching practices data obtained by the Na-
tional Institute of Education in Singapore. We were able to identify and verify the dom-
inant transitions between instructional practices and also pick out motifs of sequences
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of several practices and activities that are common in many lessons. We established that
teaching practices of bothGrade  andGrade Mathematics lessons are organized around
Knowledge as Truth and Instructional Activity (IA): Teacher-Dominated Talk hubs which
exemplify the transmissionist model of teaching. In addition, a Doing Mathematics Activ-
ity hub is present in the Grade  transition network. This suggests that teaching practices
at this level have incorporated exploratory elements into the pedagogy, a positive sign to-
wards the goal of st century learning. In contrast, in Grade , disciplinary understanding
ofmathematics has been replaced by a focus on procedural knowledge, which nevertheless
accounts for Singapore’s strong performance in international benchmarks. The motifs we
extracted from the network highlight cycles of complex teacher-student-teacher-student
sequenceswith great similarity betweenGrade  andGrade . In futurework, thismethod-
ology will be employed and modified for more in-depth study of the transitions data. This
includes using knowledge of the topology of the transition network to formulate strategies
that can direct the flow of teaching activities towards a desired outcome.
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