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Abstract

This paper addresses the need of characterizing system instability toward critical
transitions in complex systems. We propose a novel information dynamic spectrum
framework and a probabilistic light cone method to automate the analysis. Our
framework uniquely investigates heterogeneously networked dynamical systems
with transient directional influences, which subsumes unidirectional diffusion
dynamics. When the observed instability of a system deviates from the prediction, the
method automatically indicates the approach of an upcoming critical transition. We
provide several demonstrations in engineering, economics, and social systems. The
results suggest that early detecting critical transitions of synchronizations, sudden
collapse, and exponential growth is possible.

1 Introduction

Detection and prediction of emerging tipping points are major challenges in complex sys-
tems [1-5], because while self-organized emerging interactions can facilitate information
exchange, they increase the risk of attack or failure. When a system operates in a high-
risk, unstable region, a small perturbation can induce a critical transition that leads to
catastrophic failures. Although studies of data-driven computational models, with prior
knowledge of individual systems, have greatly advanced the understanding of such emerg-
ing phenomena, we remain unequipped to accurately detect and predict tipping points
prior to critical transitions [2].

Current works in emerging tipping point detection focus on homogeneous structured
dynamical systems. In [6], Scheffer et al. give a seminal review on early warning signals for
detecting critical transitions in the ecological domain. Signals such as increased temporal
correlation, skewness, and spatial correlation of population dynamics are used to quantify
the phenomena of critical slowing down as early warning indicators. These methods do
not address heterogeneously networked systems. Through the remainder of this paper,
networked dynamical system will be abbreviated as network. Schefter et al. in [7] highlight
the need to anticipate critical transitions in heterogeneous networks with empirical in-
dicators. Such heterogeneity typically leads to connectivity patterns that are statistically
characterized by heavy tails, large fluctuations, scale-free properties, and non-trivial cor-
relations, which cannot be described by traditional modeling techniques that rely on the
homogeneity assumption of a network [8]. Consequently, network science has evolved
from studying complex systems by modeling single, non-interacting networks to model-
ing interdependent networks [9]. In particular, Buldrev et al. [4] show that a network of
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networks is extremely vulnerable with respect to random failures: a random removal of a
small fraction of the nodes from a network can trigger a catastrophic cascade of failures.
The interconnectedness and interdependency of complex networks further pose hyper
risks [1]. Understanding complex interactions and coupling dynamics in large-scale com-
plex networks is undoubtedly a crucial step toward preventing dangerous system behav-
iors.

The spectral early warning signals (EWS) theory [10, 11], inspired by [6], is one of the
few attempts to detect critical transitions in heterogeneous networks. The spectral EWS
theory states that the covariance spectrum can quantify the phenomenon of critical slow-
ing down in heterogeneous networks by mathematically proving the link between com-
plex network structures and observed time series. In particular, the leading covariance
eigenvalue provides a structure-invariant indicator of upcoming critical transitions. As
the system reaches the tipping point, the self-organized structure reveals itself via the
components of covariance spectrum. Although spectral EWS quantifies how much the
elements of a system change together, the symmetric nature of covariance spectrum does
not permit the analysis of directional influences among elements.

Transfer entropy (TE) [12] and symbolic transfer entropy (STE) [13] have been proposed
to identify directional influence in complex systems. For instance, STE is used to analyze
brain activity data for the detection and identification of asymmetric dependences of brain
regions in epileptic seizure activity [13]. In [14], the transfer entropy matrix is used on fi-
nancial market data to analyze the asymmetrical influence of mature markets on emerging
markets. Although the transfer entropy quantified in [13, 14] showed the promising results
in analyzing financial and neurophysiological data, the changing structures and dynam-
ics of networks were not addressed. Therefore, there is a need to quantify local transfer
entropy that is changing in time [15].

Our proposed information dynamic spectrum framework detects and indicates critical
transitions by quantifying both global and local directional influences in heterogeneous
networks. Our framework is based on a novel associative transfer entropy (ATE) mea-
sure which decomposes directional influence of transfer entropy into associative states of
the influences. We transform multivariate time series of a complex system into the spec-
trum of the transfer entropy matrix (TEM) and the spectrum of the associative transfer
entropy matrix (ATEM) in order to capture information dynamics of the system. We de-
velop novel spectral radius measures of TEM and ATEM to detect early warning signs of
source-driven instability and to reveal the sources and dynamics of directional influences.
Motivated by the TE and ATE behaviors observed in different critical transition examples,
we then develop a method to automate the generation of early warning indicators. In par-
ticular, the nature of convex growth of spectral radius of TEM and ATEM (TE and ATE
trajectories), prior to critical transitions, enables us to generate probabilistic light cones of
instability trajectories using natural logarithmic curve modeling. This method enables us
to analyze system instability trajectories, which in turn provides early indications of crit-
ical transitions. We demonstrate our methods on four types of transitions: (1) oscillatory
synchronizations of networked non-Foster circuits; (2) pitchfork bifurcations of chaotic
systems with various canonical network structures; (3) abrupt falls of directional influ-
ences in Latin America stock indices and Dow Jones during the 2008 financial crisis; and

(4) exponential growth in Wikipedia editing behaviors. Our results suggest that one can
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Table 1 Examples of critical transitions demonstrated in this paper

System/Application Nature of transitions What to observe

Non-Foster circuits Oscillatory synchronizations ATE+ cross TE, rapid increase of TE and ATE+
Canonical chaotic networks Pitchfork bifurcations Rapid decrease of TE

Latin American stock market Abrupt falls Rapid decrease of TE

Dow Jones Abrupt falls Rapid decrease of TE

Wikipedia editing behaviors Exponential growth ATE+ cross ATE-, rapid increase of TE and ATE+

analyze the trajectories of system instability to indicate the nature of upcoming critical
transitions prior to their tipping points (see Table 1).

2 Information dynamic spectrum

We propose an information dynamic spectrum framework for monitoring complex sys-
tems. The assumptions in this work are (1) the outputs of the elements in the complex sys-
tem can be observed as time progresses, i.e. time series are available, and (2) the outputs
are the results of internal dynamics within individual elements and external interactions
with other elements. An example is the time series of stock indices over a period of time.
The fluctuations of a stock index depend on its own dynamics, as well as the hidden in-
teractions with other indices. One example application of the proposed framework is to
monitor the dynamics of this complex network of stock indices.

We will here establish the notations. Given the time series of a system of m elements:
X(®) = [x1(8),x2(2), ..., %(8)]T, where ¢ is time and £ = 1,2,...,N, x;(¢) is the time series of
the ith element, and T represents the transpose of a vector, an interesting problem is to
analyze the information dynamics of the system. In the following subsections, we will first
describe the definition of transfer entropy, and then introduce a novel measure, associative
transfer entropy, followed by the proposed information dynamic spectrum framework.

2.1 Transfer entropy

Transfer entropy (TE) is a directional measure of information flow between a pair of time
series. A time series is a sequence of time-ordered observations of a node in a network, or
an element of a system. TE quantifies how much information is transferred from the cur-
rent state into the future from one time series to another. The concept of TE extends from
the concept of mutual information, which is a measure of mutual dependence between
two time series and more mutual information means less uncertainty if knowing one time
series. However, mutual information is symmetric and does not inform the direction the
information flows. To address this, TE takes into account the dynamics of information
transport and provides how much information is transferred from the current state into
the future.

To give a formal definition of TE, let x = {x(1), x(2),x(3),...,x(N)} and y = {y(1), »(2), ¥(3),
...,y(N)} be two time series of interest and denote x)(£) = (x(t — £ + 1),...,x(t)) the vector
of the time series x at time ¢ with length-£ history. The amount of TE from source x to
destination y with a time lag 7 in the future is defined as [12],

PO+ 0)ly"(), 2 ()

PO+ DO D) M

TE,_, = > p(e+1),50(),59() log
y(t+0),y® ()20 (2)

where p(.,-,-) represents the joint probability and p(-|-,-) and p(-|-) represent the condi-
tional probabilities. This definition is derived from the Shannon entropy: H = -, p(z) x


http://www.epjdatascience.com/content/3/1/28

Ni and Lu EPJ Data Science 2014, 3:28 Page 4 of 25
http://www.epjdatascience.com/content/3/1/28

log p(z), a measure of uncertainty. The definition of TE,_., in Eq. (1) can be expressed as
Hy(t +7)lyP(t)) = Hy(t + 7) |y (£), 49 (2)). This is the uncertainty in y at time ¢ + T given
its history y(¢), minus the uncertainty in y at time ¢ + 7 given its history y*(¢) and «’s
history x)(t). Therefore, TE measures the net amount of information transferred from x
to y. An important feature of TE is that it is asymmetric, in contrast to mutual informa-
tion, which is a symmetric measure. More details about TE, including some interesting
examples, can be found in the original paper [12].

2.2 Associative transfer entropy

Since TE only quantifies the net amount of information going from a source to a destina-
tion, it does not distinguish the types of effects the information transferred. The idea of
the proposed associative transfer entropy (ATE) is to decompose TE by constraining the
associated states of processes. It is often important to identify the types of the information
flow, rather than the gross amount of information flow. For instance, the amount of influ-
ence for an increase in x that leads to a likely increase in y in the future can be the same
as the amount of influence for an increase in x that leads to a likely decrease in y. There is
no distinction between these two very different outcomes using TE. Our proposed ATE
addresses such a difference and is defined by:

pOy(t + 1)y @), 59(1))
poE+T)y0@E)

ATES_, = > pOe+0),y0 0,208 log 2)

(t+7).y0 ()20 (1)) eS

where S is the associate state, a subset of the set of all possible states of (y(t + 7),y®(2),
x9(t)). The set S represents a certain associated state between x and y. The purpose of
ATE is to capture information transfer between two variables for a particular association
of their states. For example, for binary time series, TE can be decomposed into a positive
association ATE+ and a negative association ATE—, in order to distinguish two situations
where the amount of information transferred may be the same but with opposite effects:
in one case the value of the source x drives the value of the destination y in the same
direction, and in the other case the source drives the destination in the opposite direction.

To illustrate this case of positive and negative influences, we simulate two time series x(z)
and y(¢) with a binary difference between the current value and the previous value, where
1 represents an increment and O represents a decrement. The probability of increment
or decrement is conditioned by the previous increment or decrement. Figure 1 illustrates
a few simulated examples with the following setup. Let x(f) = x(¢) — x(¢ — 1) and y(¢) =
y(£) — y(t — 1) be the current time-step value minus the previous time-step value. We fix
the conditional probabilities

p(E(t +1) = ali() = b) = p(§(t + 1) = alj(e) = b) = p((t + 1) = alj(¢) = b) = 0.5,

where a,b = 0 or 1. Given that there is an increment in x at ¢, the probability that there will
be anincrementat £ +1 is equally likely. Keeping these conditional probabilities fixed at 0.5,
the only bias will come from p(j(t + 1) = 0]x(¢) = 0) = p(3(¢ + 1) = 1|x(¢) =1) = P. When P <
0.5, an increment in x is more likely to cause a decrement in y, and a decrement in x is more
likely to cause an increment in y. Figure 1(a)-(f) shows a few such simulated time series of
length 1000 from arbitrary initializations with P = 0,0.2,0.4, 0.6, 0.8, 1, respectively.
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Figure 1 Example simulations of positive and negative influence. The conditional probabilities of
pl(t + N[x(@), ply(t + 1)|y(1)), and p(x(t + 1)|y(t) are fixed and unbiased. The only bias is from x(t) — y(t + 1):
py(t+1)=0[x(t) =0)=Pand p(y(t + 1) = 1]x(t) = 1) = P. The influence from x to y is negative when P < 0.5, as
seen in (@)-(c). Similarly, the influence from x to y is positive when P> 0.5, as seen in (d)-(f).

Figure 2 plots TE, ATE+, and ATE- as functions of P, for 0 < P < 1, averaged over
100 trials for each P. In this binary case, we decompose TE into positive association
ATE+ and negative association ATE—, summing over the sets S, = {(y(¢ + 1),%(¢),5(¢)) =
(0,0,0),(0,0,1),(1,1,0), or (1,1,1)} and S_ = {(3(¢ + 1),x(¢),3(¢)) = (0,1,0),(0,1,1),(1,0,0),
or (1,0,1)}, respectively. Note that ATE+ sums over positive associations, which means
that y(t + 1) and x(¢) are either both 0 or both 1. ATE—- sums over negative associations,
which means that one of y(¢ + 1) and x(¢) is 0 and the other is 1. In Figure 2(a), as x is the
only influence for y in the future, we see that when P > 0.5 and increases, ATE+ increases;
similarly, when P < 0.5 and decreases, ATE— increases. One the other hand, TE does not

distinguish the types of influence between the two time series. In this case, the expecta-
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Figure 2 ATE distinguishes positive and negative influence in information transfer. The TE, ATE+ and
ATE- curves are functions of P=p(y(t + 1) = 0|x() =0) = p(y(t + 1) = 1|x(t) = 1).

tion values for ATE+ and ATE- can be derived as functions of P: ATE+ = Plog,(P/0.5)
and ATE- = (1 — P)log,[(1 — P)/0.5]. These are consistent with the numerical results
shown in the figure. To understand more about ATE+ and ATE—, we show two exam-
ples in which the influence on y from itself is positive, instead of a neutral influence in
the case of Figure 2(a). In Figure 2(b), p(5(t + 1) = a|y(¢) = a) = 0.6, while in Figure 2(c),
pO(t+1) = aly(t) = a) = 0.9, which has a stronger positive influence. Near P =1, one can
observe that ATE+ in Figure 2(c) is much smaller than ATE+ in Figure 2(b), even though
the positive influence from x(t) — y(¢ + 1) is high. The explanation of this is that TE and
ATE+ negate its own influence, y(t) — y(¢ + 1), and the self-influence in Figure 2(c) is
0.9, much larger than that in Figure 2(b), which is 0.6. In other words, TE and ATE+
measures the net influence, which is the amount of external influence minus the internal

influence.

2.3 ATE symbolization technique

The definition of TE and ATE in Eq. (1) and Eq. (2) respectively are based on continuous
random variables. To estimate probability distributions from a finite number of obser-
vations, one can discretize the observed values. We adopt the symbolic transfer entropy
method [13] that is based on the symbolization technique for permutation entropy [16].
We adopt this method to compute ATE because ATE sums over a subset of all the possible
discrete states that TE sums over. Therefore, this is a natural extension of the computa-
tion. The key step is to transform the continuous-valued time series {x(t)}ﬁ ; into a sym-
bolic time series with a suitable length n, where n > 2 is an integer. First, for each ¢, the n
consecutive values {x(¢),x(t + 1),...,x(¢ + n — 1)} are ordered in the ascending order. The
sequence of the indices that correspond to such permutation is recorded and denoted by
x(¢), the associated permutation of order-» symbol of x(¢) at £. Then we estimate the ATE
of {x(t)}¥, by calculating the ATE of {%(¢)}%,. This now can be done efficiently because the
number of states to sum over in the ATE equation (2) is finite and the probabilities and
conditional probabilities can be directly calculated based on the discrete-valued symbolic
time series {x(£)}Y .

2.4 Local TE and ATE
In complex systems, the amount of information exchange from one node to another is
typically not constant. To properly handle dynamic data, we calculate the TE and ATE of
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time series in a local time window, so that TE and ATE become functions of time. For il-
lustration, we consider a two-node network, which produces two time series x(¢) and y(£),
for £ =1,...,1000, with symbolic states n = 2 for %(¢) and y(£), where x(t) = 1 represents
increment and #(¢) = O represents decrement. We then simulate the data according to the
conditional probabilities p(y(t + 1) = 0|x(¢) = 0) = p(y(¢t + 1) = 1|x(¢) = 1) = P and therefore
pO(t+1) =1]x(¢) =0) = p(y(t + 1) = 0|x(t) = 1) =1 — P. In the simulated data, the probabil-
ities of associative influence change at ¢ = 300 and 600. For 1 < ¢ < 300, P = [0.9,1]; for
300 <t <600, P =[0,0.2]; and for 600 < ¢t <1000, P = [0.9,1]. Therefore, initially x has a
strong positive influence, then a strong negative influence during the middle period, and
finally a strong positive influence at the end. For simplicity, we fix p(%(¢ + 1) = 0[y(¢t) = 0) =
p@(+1) =1y(¢) =1) = p(x(£ +1) = 0|y(¢) = 1) = p(x(t + 1) = 1|y(¢) = 0) = 0.5. The simulated
data can be seen in the top graph of Figure 3. The local TE and ATE+ curves are plotted
in the bottom graph, with sliding window size W = 100. One can see that initially ATE+
has large values, then ATE— has large values, and in the final stage ATE+ has large values.
This is consistent with our setup of the simulated data. Near the switching of information
flow at £ = 300 and ¢ = 600, the ATE+ curves are not step functions, but instead have
linear transitions. The reason is because the calculation of local ATE relies on a sliding

Pe[09,1] Pe[0,0.2] Pe[0.9,1]
so=—= : : : : :
—Y

(1), y(t)

o
T

[=)

0 100 200 300 400 500 600 700 800 900 1000

time
1 ‘
0.8F
0.6
= 04f 1
0 — ATE+
= — ATE-
W o2 ]
il W_
-02 i
-04

0 100 200 300 400 500 600 700 800 900 1000
time

Figure 3 TE and ATE as functions of time in the dynamic case. Top: Simulated time series with

px(t + 1)|x(t), y(t)) fixed and unbiased, while p(y(t + 1)|y(t), X(1) is switched at time t = 300 and 600, indicated
by the blue vertical lines. Bottom: The ATE curves are able to distinguish positive and negative influence, while
the TE curve cannot.
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window, which moves continuously and can include different dynamics within the win-
dow. Nonetheless, we observe the effectiveness of local ATE, compared to local TE, which

does not distinguish between positive and negative influence.

2.5 Spectral radius of TEM and ATEM

Since TE and ATE are pairwise measurements, they do not give a single measurement of
the total amount of entropy transferred within a system. To extend pairwise TE and ATE,
we first define the ATE Matrix (ATEM) of a system of m elements as an m X m matrix with
ijth entry (M®);; = ATEfﬁxj, where the superscript S is the associative state that is defined
for Eq. (2). Similarly, the jjth entry of the m x m TE Matrix (TEM) is (M);; = TEy;— -
TEM has been used in [14] to reveal the asymmetric influences from mature markets to
emerging markets, but was not used to give the total amount of TE of the entire system,
nor in a sliding window fashion to measure the transient influence dynamics. Note that
since TE and ATE are directional, TEM and ATEM are nonsymmetric, and thus their
eigenvalues are complex-valued.

We use the spectral radius of the TEM (resp. ATEM) to measure the total amount of
TE (resp. ATE) in the entire network. The spectral radius of a matrix is the supremum of
the absolute values of its eigenvalues. Furthermore, to use the spectral radius of a TEM
or ATEM to monitor the system, we use a time sliding window to calculate local TEM
or ATEM and therefore the spectral radius of a TEM or ATEM becomes a function that
depends on time.

To demonstrate the usefulness of our local TE method, we show that for a variety of
pitchfork bifurcations, the spectral radius function of the local TEM is able to detect the
transition in advance. Figure 4 shows four different graph structures: an undirected 9-
node chain, a directed 9-node chain, a downward 7-node binary tree, and an upward 7-
node binary tree. We simulate supercritical pitchfork bifurcations on these network graphs
and examine the simulated data with the spectral radius of each graph’s TEM. The data
x(t) is simulated according to the following ordinary differential equation [11] on a fixed

network:

d
a—j:c(t)x—x3+an+adw, (3)

where A represents the graph Laplacian of the network, « > 0 is a real number that scales
the amount of diffusion across the nodes, and o dw is white noise with scale o. The scal-
ing function in our data simulation is chosen to be c(¢) = tanh(3¢ — 10). We chose this
pitchfork bifurcation equation because it generates data that will transition from one
state to another rather quickly for individual nodes. With the graph Laplacian term in
the equation, as an external force for each node, one can get different interesting bi-
furcation results. Our purpose of using this equation is to show that for a variety of
pitchfork bifurcations, our local TE method is able to detect the transition in advance.

For instance, the adjacency matrix A and Laplacian matrix L of the upward binary tree
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Figure 4 Spectral radius of TEM as early indicator of phase transition. Simulated pitchfork bifurcations
with different graph structures. The spectral radius of TEM decreases before bifurcation, which provides an
early indication for phase transition.
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are:
(0 1 1.0 0 0 0] (2 21 21 0 0 0o o]
0001100 0 2 0 -1 -1 0 0
0000011 00 2 0 0 -1 -1
A=l0 0 0 0 0 0 0| and L=|{0 0 0 0 O 0 0], (4
0000000 00 0 0 0 0 0
00 000GO0 O 00 0 0 0 0 0
00 000TO0 O 00 0 0 0 0 0

respectively. In the adjacency matrix, a;; = 1 means there is a connection from node j to
node i, and a;; = 0 means there is not a connection from node j to node i. The Lapla-
cian matrix L = Dy, — A, where Dy, is the in-degree matrix whose diagonal entry d; is
the sum of ith row of A, the number of connections going into node i. Figure 4 plots
the simulated time series and their spectral radii of the local TEM. We observe that be-
fore transitioning or bifurcation, the spectral radius decreases rapidly, which provides
an early indication of system transitioning. The spectral radius of TEM in these cases
drops to the lowest point during transitioning due to the strong internal dynamics of
individual nodes, and TE measures the net influence dynamics from one node to an-
other.

2.6 Detect critical transitions with ATE and TE spectral radius curves

In this subsection, we explain how to use the TE and ATE curves defined in the previ-
ous subsection to characterize critical transitions prior to their occurrences (see Table 1).
We give our observations on behaviors of TE and ATE in four different critical transition
scenarios. The first critical transition scenario is from a stable state to oscillations in a
network of non-Foster circuits. In this case, as a network starts to synchronize in phase,
the pairwise TEs will likely start to increase because of the growing amount of interacting
dynamics between circuits. The TE and ATE+ spectral radius curves may therefore start
to increase. If the synchronization is in the negative mode, in which the phases differ in
180°, the ATE- spectral radius curve will start to increase.

The second scenario is the case where the time series of a system bifurcate, switching
from one state to alternative states. The examples in Figure 4 demonstrate the nature of
such transitions. Since the phenomenon of critical slowing down is observed prior to such
transitions, the TE and ATE curves may decrease rapidly prior to the tipping point.

The third scenario is when there is a sudden drop in the time series of the system. It
has been suggested that there is a critical slowing phenomenon before the tipping point
of a crash in many real world systems, such as stock markets, housing market, etc. In
this scenario, right before the crash, the interacting dynamics between nodes may start to
decrease, which can be explained by the uncertainty of the information carried by other
nodes. Therefore, the TE and ATE curves are likely to decrease rapidly before the crash.

The fourth scenario is the exponential growth in system activities. In this case, the TE
and ATE+ curves are likely to increase, as a result of an increase in the interacting dy-
namics between nodes. Given one of the above scenarios, we can look out for critical

transitions using TE and ATE curves.
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3 Numerical results of information dynamic spectrum

3.1 ATE indicates instability of non-Foster circuit

3.1.1 Data

The circuit data used for TE and ATE evaluation is simulated from a non-Foster network
described in [17]. A non-Foster network is an active network containing a power source,
therefore it may not obey Foster’s reactance theorem. The non-Foster circuit data analyzed
here contains three coupled circuits with internal feedback loops. The interface points
include two antennas (Antl and Ant2) and two ports (il and i2) to record time series of the
voltage. The circuit is operated in the stable (no oscillation) region, but near the unstable
region. A perturbation is then added at timestep = 250 with 1 milli-Amp. When a small
perturbation is added, the circuits may become oscillatory. The circuits will either become
synchronized in oscillation, which is considered unstable, or return to the original stable

state.

3.1.2 Analysis

Figure 5 shows our ATE analysis of the non-Foster network. At the top is a plot of the cir-
cuits in voltage over time at each interface point. The circuits are initially operated in the
stable region, where there are no oscillations. The circuits become unstable, after a small
perturbation is added. We perform the ATE analysis to determine whether the circuits will
become unstable. The bottom plot shows the TE and ATE= curves over time. The curves
are obtained from the absolute sum of spectrum of TEM and ATEM, respectively. We
found that the spectral radii of TEM and ATEM= also show similar trajectories, but since
TEM is the sum of ATEM+ and ATEM—, the ATE+ spectral radius curve will never cross
the TE spectral radius curve. Thus, the absolute sum of the spectrum in this example is
more informative as an indicator of early detection of synchronizations. As shown in the
plot, the ATE+ spectral absolute sum curve crosses over that of TE around 800, indicating

Fully
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ATE+ crosses TE } i
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Figure 5 Spectral radii of TEM and ATEM as early indicators of synchronization. Top: Signals from
non-Foster circuits in voltage. Bottom: The corresponding TE and ATE curves.
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that a significant positive influence is being transferred. Therefore, the system is likely to
synchronize in the positive mode. On the other hand, if the negative influence had crossed
the overall information transfer, the system is likely to sync in the negative mode. An ex-
ample of this is illustrated in Additional file 4. As an early indication of critical transitions,
the TE and ATE+ curves in Figure 5 increase rapidly before the full synchronization. In-
terestingly, TE and ATE curves reach their peaks at the start of the synchronization, while
the ATE— curve flattens because there is no negative association. In addition, to show how
the measures behave when there are no critical transitions, an example is included in Ad-
ditional file 4 when there is no perturbation applied to the circuits. The parameter choices
for this analysis are symbolic length # = 3 and sliding window size W = 30.

3.2 TEMs infer directional influences in Latin America stock indices

3.2.1 Data

Table 2 shows nine major Latin America stock market indices. Time series of these stock
market indices were collected during a year span, centered at the October 2008 Crash,
with the resolution of a day, except when the market is closed during the weekend. During
the month of October 2008, the stock indices dropped dramatically. Figure 6 (top) shows
the nine Latin America stock indices. Since the volumes of the nine stock indices are very
diverse, we normalized the indices in order to show the drastic drop of the market in
October 2008.

3.2.2 Analysis

The bottom plot of Figure 6 shows the TE, ATE+, and ATE- curves. One can observe the
rapid decrease of the curves before the October 2008 Crash, that is similar to the pitchfork
bifurcation examples in Figure 4. Interestingly, two other decreases of the curves precede
the October 2008 crash and two other bumps after the crash are not directly associated to
any significant transition. They might be due to the general instability of the markets after
these two major events. Additionally, there is another rapid decrease in the TE and ATE
curves in February 2009, which corresponds to the market fall in March 2009. This mar-
ket fall is due to that in March 2009, the stock in USA fell to its lowest level since 1997 for
Dow and 1996 for S&P 500 [18]. We use TEMs of different periods to analyze the dynam-
ics of the stock indices around a critical event. We identify the directional structures in
different periods (see Figure 7), where each node represents a Latin America stock market
index. The top row of Figure 7 shows the TEMs before, during, and after the October 2008
Crash from left to right. The red color corresponds to large values, while blue corresponds
to small values. During the crash, the total amount of information transfer decreases. Af-
ter the crash, the values of TEM return to the values before the crash. Visualization of
the network structure shows that Panama is strongly influenced by Colombia and Brazil
before and after the crash, yet during the crash Panama is primarily driven by Mexico and
Venezuela. It is believed that [19] Panama’s economy has strong ties to shipping needs of
Brazil (iron ore and soy from the north and Amazonia) and Colombia (particularly coal)

Table 2 Latin America stock indices

1 2 3 4 5 6 7 8 9

BVPSBVPS Chile65 COLCAP CRSMBCT IBOV IBVC IGBVL Merval MEXBOL
Panama Chile Colombia Costa Rica Brazil  Venezuela Peru Argentina Mexico
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Figure 6 Spectral radii of ATEM as early indicators of the October 2008 Crash. Top: Latin America stock
indices around the October 2008 Crash. Bottom: TE, ATE+, and ATE- curves decrease rapidly before the
October 2008 Crash as early indicators.

that use the Panama Canal [20]. As for Mexico and Venezuela, there is thought that the
general economic collapse of 2008 is attributed to the downturn of Panama’s real estate
and offshore banking markets that were dominated by Mexican and Venezuelan investors
associated with illicit trafficking and greatly affected by the drying up of funds from the
US and European drug markets [21]. The parameter choices for this analysis are symbolic

length # = 5 and sliding window size W' = 30.

3.3 ATE reveals Wikipedia motifs that drive the changes

3.3.1 Data

The dynamics of editing behaviors of Wikipedia’s content is explored in [22], in which
temporal motifs, temporal bipartite graphs with multiple node and edge types for users
and revisions, are proposed. The first two rows of Figure 8 show the twelve most frequent
motifs from the years 2001 to 2011. For example, in the second row, the first motif at the left

shows a minor edit of a Wikipedia page by an anonymous author, followed by a revert from
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Figure 7 TEM analysis of the October 2008 Crash. TEMs infer directional influences in Latin America stock
indices before, during, and after the October 2008 Crash.
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Major Add
Revert

Minor Edit

Figure 8 ATE reveals Wikipedia motifs that drive the growth of Wikipedia pages. Most frequent motifs

of Wikipedia from left to right and first row to second row. (@) ATEM+ shows motifs 1,8 and 12 have the most
positive influence on other motifs. (b) ATEM- shows motif 9 has the most negative influence on other motifs.
(c) TEM shows asymmetric influence among the motifs but the contrast is not as strong as ATEM+ and ATEM-.

a registered user, followed by a minor edit from an anonymous author. The time series of
each motif is the number of times that motif occurs in each month. The top of Figure 9
plots the counts of the Wiki motifs for each month from January 2001 to April 2011. This

example shows a different type of transition: an exponential growth in Wikipedia editing.

3.3.2 Analysis
The bottom row of Figure 8 from left to right shows global ATEM+, ATEM—, and TEM
from 2001 to 2011 to identify important motifs that drive the changes in other motifs.
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Figure 9 Information dynamics of Wikipedia motifs. Top: Wikipedia motif occurrence in time. Bottom: TE,
ATE+, and ATE- curves in blue, red, and green, respectively. There is a significant increase in the ATE+ curve in
2005, as an early indication of rapid growth in Wikipedia's contents.

In particular, ATEM+ shows that motifs 1, 8 and 12 have the most positive influence on
other motifs, observing that consecutive ‘minor add; ‘revert; and ‘major add’ by regis-
tered users encourage Wikipedia’s content growth. ATEM— shows that motif 9 has the
most negative influence on other motifs. TEM shows the asymmetric influence among
the motifs but the contrast is not as strong as ATEM+ and ATEM-. The bottom of Fig-
ure 9 shows the TE, ATE+, and ATE—-, i.e. spectral radii of local TEM and ATEM, in blue,
red, and green, respectively. There is a significant increase in the ATE+ and TE curves
near midyear 2005 and ATE+ crosses over ATE—. These suggest an early indication of
the growth in Wikipedia’s contents. Interestingly, the peaks of TE and ATE+ in late 2008
occur at the beginning of the stabilization of the editing behaviors. The parameter choices
for this analysis are symbolic length # = 5 and sliding window size W = 30.

3.4 TE and ATE curves as early indicators of stock market crash

3.4.1 Data

We collected the share prices of Dow Jones Industrial Average (DJIA) from June 1 to De-
cember 31, 2008, using 25 shares that persisted throughout the years near the October
2008 Crash. The stock indices are: MMM, AA, AXP, T, BA, CAT, KO, DD, XOM, GE,
HPQ, HD, INTC, IBM, JNJ, JPM, MCD, MRK, MSFT, PFE, PG, UTX, VZ, WMT, and
DIS. The time series resolution is one day, except when the market is closed during the
weekend.

3.4.2 Analysis

Figure 10 shows the Dow Jones indices (top) and the TE and ATE curves (bottom) from
June 2008 to December 2008. The indices are normalized and translated in the index
value for visualization. During the October Crash, all the indices decrease rapidly. We see
that the TE and ATE spectral radius curves behave similarly to the ones in Figure 4 before
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Figure 10 TE and ATE curves as early indicators of stock market crash. Top: Dow Jones indices from June
2008 to December 2008. Bottom: TE, ATE+, and ATE- curves in blue, red, and green, respectively. There are
significant decreases in all three curves before the October 2008 Crash, as an early indicator of market crash.

bifurcations and Figure 6 before the Latin America market crash. The rapid decrease of TE
suggests a critical transition, where the dynamics within individual nodes become more
significant than the dynamics between nodes. An additional observation is that the TE
and ATE curves decrease quickly a second time after October 6, right before the second
drop across all the indices. The parameter choices for this analysis are symbolic length

n =5 and sliding window size W = 20.

3.5 Discussions

Our empirical data analysis suggests that early detection of critical transitions using lo-
cal ATE curves is possible. The local ATE curve, spectral radius of the local ATEM over
a sliding time window, is an indicator of the amount of net entropy transferred in the
entire system at each time. On the other hand, by looking at the entries of ATEM, one

can identify the most positive or negative influential nodes of the system, as well as the
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most positively or negatively influenced nodes. From the observations of the TE, ATE+,
and ATE- curves in different examples that corresponds to different types of critical tran-
sitions, we found that (1) ATE+ increases rapidly before synchronization in the positive
mode. ATE- increases rapidly before synchronization in the negative mode. (2) TE, ATE+,
and ATE- drop rapidly before abrupt falls, because TE, ATE+, and ATE- are the net infor-
mation flow and external information flow begins to decrease before the sudden collapse.
(3) ATE+ increases rapidly before an exponential growth in a system.

4 Probabilistic light cones for trajectory prediction

We propose a model-based probabilistic light cone method for predicting the trajectories
of the spectral radius of TEM or ATEM. As observed in the previous section, the behaviors
of TE and ATE curves can be interpreted manually as early indications of critical transi-
tions. Here, we provide an automated method to generate early indicators. Using a natural
logarithmic model, our method first computes probabilistic light cones for TE and ATE
curves. This gives a prediction value with a confidence interval. If the actual TE and ATE
trajectories are outside the confidence interval, the method declares instability is detected,
which serves as an early indicator of a critical transition.

Our computation of probabilistic light cone is inspired by [23], where an MCMC method
is used to predict citation growth based on the preferential attachment. However, criti-
cal transition is not discussed in [23]. Our method, on the other hand, aims to generate
early indicators for an upcoming critical transition as time progresses. We choose natural
logarithmic curves to model the growth rate of the TE trajectory as information transfer
approaches its maximum prior to a critical transition as observed in the non-Foster circuit
example in the previous section. We apply a moving time window over the observed spec-
tral radius (TE or ATE+) time series to derive the unknown coefficients and constants for
natural logarithm curves. For a given prediction time point, we generate the probabilistic
light cone based on 95% confidence intervals of predicted trajectories with fitted natural
logarithm curves.

4.1 Model-based forecasting

We propose a statistical forecasting model to estimate the TE and ATE trajectories. An
advantage of analyzing the TE and ATE curves is that TE and ATE remove the spikes of
the raw data. We have observed that the TE curve can be well approximated by the natural
logarithm with an unknown coefficient 2 and a constant c:

g(t)=aln(®) +c. (5)

An example of this is shown in Figure 11. We see that this logarithmic function is able
to approximate the TE curve of the non-Foster circuits data very well. The curve fitting is
done on the interval from ¢ = 700 to ¢ = 1100 with the exponential function and logarith-
mic function in solid blue and solid red lines, respectively. The fitted curve is projected
to a future time interval from ¢ = 1100 to ¢ = 1700 in dashed blue and dashed red lines,
respectively. Our observations of the TE and ATE curves in other types of data also show
that the curve approaches its maximum gradually, instead of a spiking or sudden approach.
The idea here is to transform the original raw signals to better-behaved features (signals)
for detection and prediction. Concave increases of curves are very common, such as auto-
correlation, variances, skewness, flickering, state-transition-based local network entropy
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Figure 11 TE curves fitted with logarithm functions. The ATE curve (black) can be fitted quite well with
the logarithm function (blue), in contrast to fitting with the exponential function.

(SNE) [24], and information dissipation length (IDL) [25]. However, TE is a more gen-
eral measure because it is an inherently non-symmetric measure that quantifies the net
entropy transferred with appealing concave increase characteristics.

To estimate the coefficient a of the logarithmic function in (5), instead of fitting the TE
and ATE curves deterministically, we estimate the rate of change with various discrete
time steps. This generates a probabilistic light cone, which consists of a collection of fitted
curves using different discrete time steps. Taking the derivative of Eq. (5), we have g'(¢) = 7.

We obtain the following discretized version for the unknown a:

AN 1
280 (6)
At t

For a fixed timestep At in a window [ Tstart, Tend], We use the least squares method to solve

the unknown a. First, we write the following matrix equation:

1 g+At)—g(t)

f+AE2 At
1 gt +At)—g(tn)

ty+At/2 At

2 . a= ) (7)
1 g+L)—glty)

L+ At/2 At

where #,...,t + At € [Tstart; Tend]- The approximation of a,; for the fixed timestep At is

then obtained by
1 gh-At)—gt1)
AL At
1 gltr-At)-g(tr)
an; = argmin,, m'm/z a-— At . (8)
1 glt—At)—g(t)

e+ At/2 At 2
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The constant corresponding to this timestep is then ca; = g(Tend) — @as In(Teng). There-

fore, the predicted value for the future time Tepq + ¢4 is
FAt(Tend + td) =dnt ln(Tend + td) + Cat- (9)

4.2 Probabilistic light cone and error estimation
Given the method to estimate the constants ¢ and « in previous section, we generate a
probabilistic light cone at each time as we vary At to obtain multiple estimates of ¢ and a.
We define a probabilistic light cone at a given time consists of a collection of natural log-
arithm curves starting from that point.

To estimate the error of this prediction for the immediate next timestep, we calculate

the following:
errorp, (i) = g(¢; + At) — [am In(t; + At) + c(i)], (10)

where ¢(i) = g(t;-1) — an: In(¢;1).

Let E be the collection of all error, over all timesteps At and let o = standard deviation
of E. Let G be the collection of all predicted value Ga.(¢;) over all timesteps At and
= mean(G). Therefore, the 95% confidence interval for the future time Tenq + 4

is

(e

Cl = —-1.96
[“ VL

o
L +1.96ﬁ} (11)

where L is the size of E.

4.3 Numerical results

Figure 12 shows the probabilistic light cone analysis on the non-Foster circuit data. The
top plot shows prediction of the TE curve (blue) in order to find instability. The pre-
dicted values and their 95% confidence intervals are shown in green. In this probabilistic
light cone analysis, the prediction leap time is £; = 20, the discrete timestep collection
is At =1,...,50, and the curve fitting window size is Ttart — Tend = 200. Two (indicated
in magenta diamonds) of the 36 points of the actual trajectory are outside the 95% con-
fidence interval, just before the non-Foster circuits are fully synchronized around time
¢t =1500. These two points indicate the instability of the TE curve and detect the full syn-
chronization in advance. Figure 13 shows two snapshots of the probabilistic light cone
video (see Additional file 1) produced according to the method described above and the
predicted trajectory.

To see how far ahead in time #; one can predict the value in relation to error, the dis-
tribution of errors for each time ¢, is plotted in Figure 14. As the prediction time leap
t, increases, the distribution of errors starts to flatten out, because the error increases.
This is shown in the bottom right plot of Figure 14, where the curve is the mean squared
error of the prediction values versus time leap £;. The prediction method is designed to
work for different values of ; within a reasonable range, since it is based on confidence

values.
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Figure 12 Trajectory prediction and error estimation of non-Foster circuit TE curve. Top: Actual TE
trajectory in dark blue and the predicted trajectory and its 95% confidence interval in green. The predicted
trajectory stays close to the actual trajectory. The magenta diamonds indicate that the actual trajectory points
appear outside the 95% confidence interval of the prediction, which is used as early detection of
synchronization, or circuits entering the unstable region. Bottom: non-Foster circuits in voltage.

Figure 15 shows the probabilistic light cone analysis of the pitchfork bifurcations in Fig-
ure 4, where the leap time £; = 10 and the discrete timestep collection is At =1,...,40,
and the curve fitting window size is Tyt — Tend = 45. The detected abrupt falls of
the TE curve (red points) occur before the start time of the bifurcations. However, a
couple drops that occur far before the transitions were also detected and gave false
alarms.

Figure 16 shows the probabilistic light cone analysis of the Latin America stock indices
that is shown in Figure 6. The abrupt falls of the TE curve is detected and indicated in red,
which occurs before the October 2008 Crash. The leap time is ¢; = 5 days and the discrete
timestep collection is At =1,...,20, and the curve fitting window size is Ttart — Tend = 25.

Figure 17 shows the probabilistic light cone analysis of the Wikipedia motifs. The prob-
abilistic light cone video is included in Additional file 2. At the top is the same TE curve
(blue) of the Wikipedia motifs in Figure 8. The predicted values and their 95% confidence
intervals are shown in green. In this probabilistic light cone analysis, the prediction leap
time is ¢£; = 4 months, the discrete timestep collection is At = 1,...,15, and the curve fit-
ting window size is Ttart — Tend = 18. The two magenta diamonds indicate that the actual
TE values at those times are outside the prediction interval. These two points are above
the respective prediction intervals, indicating rapid increase in TE or the instability of
the TE curve. These can be used as early indications before the Wikipedia contents take
off.

Figure 18 shows the probabilistic light cone analysis of the Dow Jones data. A video is
included in Additional file 3. At the top is the same TE curve (blue) of the Dow Jones
stock indices in Figure 10. The predicted values and their 95% confidence intervals are
shown in green. In this probabilistic light cone analysis, the prediction leap time is ¢; =5
days, the discrete timestep collection is A¢ =1,...,15, and the curve fitting window size
is Tstart — Tend = 18. The two magenta diamonds show that the actual TE at those times
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Figure 13 Probabilistic light cone. Two snapshots of the probabilistic light cone and the predicted
trajectory. The top panel of each snapshot shows the probabilistic light cone in red, the actual TE trajectory in
blue and the predicted trajectory in green. The bottom panel of each snapshot shows the non-Foster circuit
signals.

is outside the prediction interval, indicating the instability of the TE curve. The magenta
diamond on the left occurs at the bottom of the sudden drop of the TE curve, before the
October crash, which suggests the probabilistic light cone method is able to early detect
the market crash. The second magenta indicates a rapid increase in the TE. Since the
objective here is to detect crash, we only look for a sudden drop in the TE curve. The
phenomenon of a sudden increase in the TE curve in stock market will be left for future
work. On the other hand, the second drop in TE that is observed in Figure 10 is not as steep
as the first drop and was not caught by the probabilistic light cone method. We speculate
that large-scale fluctuations after the October 2008 Crash may indicate that the system
were on its paths to another region. Consequently, one may need to change parameters
in our probabilistic light cone method (e.g. sliding time windows) to adapt toward a new
system region.

5 Conclusions

We propose a novel information dynamic spectrum framework for automated detection
of critical transitions and identification of directional influences. We have shown that the
framework is able to: (1) provide an effective measure for quantifying associative, asym-
metric directional influence rather than symmetric influence, (2) provide an effective for-
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Figure 14 Error distribution for each prediction leap time step. As expected, a smaller prediction leap
time step t4 gives more accurate prediction, and as t4 increases, the error distribution flattens out. We see that
the mean squared error of prediction values increases as prediction timestep increases.

time time

Figure 15 TE trajectory prediction of pitchfork bifurcations. TE curves and the predicted trajectories of
pitchfork bifurcations in Figure 4.
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Figure 16 Trajectory prediction and error estimation of Latin America stock index TE curve. Top:
Actual TE trajectory in dark blue and the predicted trajectory and its 95% confidence interval in green. The
magenta diamonds indicate that the actual trajectory points are outside the 95% confidence interval, as an
early detection of the crash of the October 2008 crash. Bottom: Latin America stock indices.
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Figure 17 Trajectory prediction and error estimation of Wiki motif TE curve. Top: Actual TE trajectory in
dark blue and the predicted trajectory and its 95% confidence interval in green. The magenta diamonds
indicate that the actual trajectory points are outside the 95% confidence interval, as an early detection of the
growth of the Wikipedia content. Bottom: Occurrence of the most frequent Wiki motifs.

mulation that captures system-wise directional influence, rather than pair-wise influence
and (3) provide an effective measure for detecting instability in systems with directional
influence dynamics. Within this framework, we further propose the probabilistic light
cone method that predicts the ATE trajectories and indicates instabilities toward criti-
cal transitions. This model-based prediction method captures information that cannot be
discerned by looking at individual time series signals alone and is novel compared to con-
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Figure 18 Trajectory prediction and error estimation of Dow Jones stock market TE curve. Top: Actual
TE trajectory in dark blue and the predicted trajectory and its 95% confidence interval in green. The magenta
diamonds indicate that the actual trajectory points are outside the 95% confidence interval. The magenta
diamond on the left indicates the detection of a critical transition. Bottom: Dow Jones stock market data.

ventional deterministic methods or complicated probability state space predictions. The
analyses performed in this work are based on historical data, and the rapid decrease or
increase in TE is not a sufficient condition for all critical transitions. Rather, as shown in
Table 1, the nature of upcoming critical transitions is revealed by the behaviors of ATE
curves, in conjunction with examining the trends in the time series of a system. Future
work requires a complete analysis of the proposed framework, as well as an adaptive pa-
rameter selection method for the probabilistic light cone analysis.
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