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Abstract
The quantitative study of violent conflict and its mechanisms has in recent years
greatly benefited from the availability of detailed event data. With a number of highly
visible studies both in the natural sciences and in political science using such data to
shed light on the complex mechanisms underlying violent conflict, researchers have
recently raised issues of systematic (reporting) biases. While many sources of bias are
qualitatively known, biases in event data are usually not studied with quantitative
methods. In this study we focus on a unique case - the conflict in Iraq - that is covered
by two independently collected datasets: Iraq Body Count (IBC) reports of civilian
casualties and Significant Action (SIGACT) military data. We systematically identify a
number of key quantitative differences between the event reporting in the two
datasets and demonstrate that even for subsets where both datasets are most
consistent at an aggregate level, the daily time series and timing signatures of events
differ significantly. This suggests that at any level of analysis the choice of dataset may
substantially affect any inferences drawn, with attendant consequences for a number
of recent studies of the conflict in Iraq. We further outline how the insights gained
from our analysis of conflict event data have broader implications for studies using
similar data on other social processes.
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1 Introduction
In recent years the increasing availability of detailed data on conflict events has led to a
number of highly visible studies that explore the dynamics of violent conflict [–]. Tak-
ing a natural science or complex systems perspective, these studies complement a quickly
growing quantitative literature in political science that heavily relies on detailed empir-
ical records to systematically study the micro-dynamics of conflict, in particular how
individual- or group-level interactions lead to the larger conflict dynamics we observe
[–].
The conflict event datasets used in these studies primarily draw on media reports and

rely to varying degrees on automatic coding as well as the expertise of country or sub-
ject experts for coding decisions and quality control [, ]. In specific cases - for exam-
ple in studies focusing on single countries, cities or regions - data may also be based on
records collected through Non-Governmental Organizations (NGOs), local newspapers
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or researchers’ own field work [, , ]. These conflict event data, however, have been
found to be prone to bias [–]. Even for otherwise unbiased and flawless research de-
signs this may strongly affect any inferences with regard to conflict dynamics and mech-
anisms. Data biases do not only arise from variations in data quality and coding across
different datasets but also from systematic uncertainties associated with the data collec-
tion efforts themselves. Unfortunately, such issues are notoriously hard to identify and
difficult to eliminate in the process of data collection, even within institutionalized large-
scale collection efforts. Furthermore, identification of potential biases in existing datasets
is complicated by the fact that usually not more than one independently generated dataset
exists, making it very difficult to infer any biases post hoc.
In this study, we focus specifically on a unique empirical case - the conflict in Iraq - that

is covered by two independently collected datasets, one of them based on media sources
(Iraq Body Count or ‘IBC’), the other collected ‘on the ground’ by the U.S. military (Sig-
nificant Action or ‘SIGACT’ data). We use these data to quantitatively test agreement of
the event reporting in the two datasets at different temporal resolution and thus system-
atically identify relative biases. In particular, we find that even for subsets where both
datasets are most consistent at an aggregate level the daily time series of events are signif-
icantly different. This suggests that whether analyses are based on IBC or SIGACT data
may substantially affect the inferences drawn. Our findings are thus highly relevant to a
number of recent studies that investigate detailed event dynamics of the war in Iraq using
both IBC [, , –] and SIGACT data [, ] and contribute to the ongoing debate on
issues and implications of data quality in conflict event data.
More broadly, our study speaks to a quickly growing literature that systematically an-

alyzes highly resolved data on social processes. This includes work that uses news me-
dia articles to detect international tensions [] or analyzes Twitter messages to detect
mood changes []. In fact, much of ‘Big Data’ derived from artifacts of human interac-
tions corresponds to time-stamped information about social processes. Studies analyzing
such data, however, only very rarely consider the potentially substantive biases arising
from how they are generated. In fact, these data are subject to much of the same struc-
tural limitations as conflict event data (see Section .), with resulting biases that are just
as hard to identify and difficult to infer from data post hoc. Similarly, inferences based on
such datamay thus also be substantially affected by the choice of dataset, its characteristics
and limitations.
This study is structured as follows. Section  introduces the empirical case and the

datasets used: IBC data and the U.S. military (SIGACT) dataset made available by The
Guardian. In Section we systematically compare the reporting of events in both datasets,
starting with an aggregate comparison before turning to an in depth analysis of the time
series of number of events and event severity. We further analyze the timing signatures in
each dataset separately. Section  discusses implications of our findings for quantitative
analyses of conflict and, more broadly, for studies of social processes that rely on similar
data.

2 The case of Iraq
The Iraq conflict ranks among the most violent conflicts of the early st century and
is characterized by excessive violence against civilians with fatality estimates exceeding at
least , bymid- [].a Inmid- the conflict began as an insurgency directed
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at theU.S.military, its allies and the Iraqi central government. Attacks were initially largely
carried out by forces loyal to Saddam Hussein, but by early  radical religious groups
and Iraqis opposed to the foreign occupation were responsible for the majority of attacks.
The insurgency subsequently intensified throughout  and . Increasinglymarked
by excessive sectarian violence between the Sunni minority and Shia majority the conflict
rapidly escalated in  and . Following the U.S.-led troop ‘surge’ in , amassive
increase of U.S. boots on the ground accompanied by a major shift in counter-insurgency
tactics [–], the conflict eventually de-escalated significantly throughout . After
the U.S. withdrawal from Iraq in  the country continues to experience acts of vio-
lence on a (close to) daily basis, both as a result of the continued insurgency against the
central government but also increasingly again as a consequence of a renewed escalation
of sectarian violence. The recent take-over of the north-western (Sunni) provinces by the
Islamic State of Iraq and the Levant (ISIL), an Al-Qaeda affiliate, now even threatens the
very existence of a multi-ethnic Iraq.

2.1 Data sources
In our analysis we draw on data from the twomost commonly used Iraq-specific datasets:
Iraq Body Count (IBC), a web-based data collection effort administered by Conflict Casu-
alties Monitor Limited (London) [], and U.S. military (SIGACT) data available through
The Guardian []. We are very mindful of the sensitivity of the SIGACT data and the de-
bate surrounding their use in academic studies.b While this debate continues studies are
making use of these data, most notably a recent political science publication on Iraq []
and an analysis published in the Proceedings of the National Academy of Science (PNAS)
using data on Afghanistan []. Note that subsets of the SIGACT Iraq data had previously
been made accessible to selected researchers and institutions [, , ] making SIGACT
one of the two leading sources of data on the war in Iraq.
The IBC dataset covers violent events resulting in civilian deaths from January , 

onward until present day and is being updated continuously. We rely here on the publicly
available version of the IBC records that does not disaggregate by perpetrator group [].
The data made available through The Guardian contains information on all ‘significant
actions’ (SIGACTs) reported by units of the U.S. military in Iraq that resulted in at least
one casualty. The dataset covers the period January ,  until December ,  but is
missing  intervals of  month each (from April ,  to June ,  and from Febru-
ary ,  to April , ) []. In order to be consistent in our dataset comparison
we have selected our study period as ranging from June ,  to February ,  - a
period covered by both datasets without any gaps. This period covers the main phases of
the conflict described above.c

The two datasets differ significantly with regard to the geocoding of conflict events. IBC
provides ‘human description’ of the location (such as ‘near Birtilla, east of Mosul’ or ‘be-
hind al-Faiha’a hospital, central Basra’) which implies limited spatial accuracy. In compar-
ison, SIGACT data entries are categorized by U.S. military regional command but more
importantly geo-tagged with latitude and longitude coordinates. These coordinates are
truncated at a tenth of a degree (about  km) for Iraq outside of Baghdad (Figure ) and at
a hundredth of a degree (about  km) for themilitary zone of Baghdad (Figure , inlay). The
two datasets further differ with regard to their temporal resolution. SIGACT events carry
timestamps with a resolution ofminutes while IBC events are generally coded to daily pre-
cision only. Finally, in contrast to SIGACT data which reports the number of individuals
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Figure 1 SIGACT data for all of Iraq and for the Baghdad regional command (inlay). Shape files for the
country and district boundaries were downloaded from the database of Global Administrative Areas (GADM),
http://www.gadm.org.

killed (KIA) and wounded (WIA) for both military actors and civilians, the IBC dataset
exclusively covers deadly violence against civilians.d In order to compare the two datasets
we thus restricted the SIGACT data to entries pertaining to deadly violence directed at
civilians. Note that focusing on civilian casualties exclusively rather than including inci-
dents that wounded civilians may, in fact, lead to a biased view of the violence dynamics
in Iraq - simply because whether an attack lead to casualties or not may dependent more
on chance than intent []. To control for this, we performed robustness checks where we
additionally included the number of wounded civilians reported in SIGACT; these results
are included in Section  of Additional file .

2.2 Structural differences in reporting
There are a number of significant differences between the reporting underlying the IBC
and SIGACT datasets that may introduce systematic biases in their respective coverage of
violent events. An important source of data bias in geo-referenced event datasets arises
directly from the ‘spatial’ nature of the data, i.e., the location of where a violent event oc-
curs may already strongly influence both its chance of reporting and how it is reported
[, ]. Such biases may simply be structural, for example, due to the fact that newspa-
pers and their local sources - NGOs, development agencies etc. - often only maintain a
constant presence in cities or certain regions of a country. Consequently, reporting likely
has a specific urban or regional bias, i.e., amore complete coverage of events in those areas
compared to others with only limited access []. This is often aligned with or equivalent
to a center-periphery bias since the access and coverage of the media and its sources gen-
erally tend to be much lower in remote, peripheral regions compared to the capital or
population centers []. The same may apply for government or military reporting, sim-
ply because administrative infrastructures and a permanent government presence (offices,
police and military installations etc.) are often much less developed in the periphery. In
volatile states a central government might even effectively not have any control over large
parts of the country.

http://www.epjdatascience.com/content/3/1/25
http://www.gadm.org


Donnay and Filimonov EPJ Data Science 2014, 3:25 Page 5 of 29
http://www.epjdatascience.com/content/3/1/25

In Iraq the media-based reporting of IBC is quite likely affected by issues arising from
limited coverage, especially for locations outside of the main population centers. SIGACT
data may also be prone to spatial bias since the U.S. military or coalition forces did not
maintain a constant presence everywhere in the country []. This limitation, however,
should beminimal in a highly patrolled region such as Baghdad. For our quantitative anal-
yses we have thus chosen to focus exclusively on the greater Baghdad area, by far the most
violent region during the entire conflict. This choice guarantees that our analysis is not
systematically affected by geographic reporting bias since within Baghdad both media-
based data and SIGACT’s field report-based reporting are least likely to be systematically
constrained in their coverage.e Focusing on a comparably small and coherent spatial re-
gion also avoids the fallacy of studying time series of potentially unrelated or only weakly
related incidents that are geographically far apart. The violence dynamics in Kirkuk in the
predominantly Kurdish north, for example, are very different from the dynamics in Bagh-
dad. In fact, we contend that since Baghdad was the main locus of violence during the
conflict but least prone to geographically biased coverage, it represents the ‘best case’ sce-
nario for the reporting of violent events in Iraq and any systematic differences in reporting
we uncover should also apply to the full datasets.
Notice that even when focusing exclusively on the Baghdad area, IBC’s reporting may

be prone to additional biases that arise from its reliance on the quality and accuracy of
the media coverage. There is ample evidence that newspaper reports of incidents are sub-
ject to a number of biases including selective reporting of certain types of events [,
], as well as better coverage of types of events that have occurred before and of larger
events compared to smaller events []. Such size bias should be especially pronounced
in situations with a high density of incidents and only limited reporting capacity - in Iraq
this would have been most relevant during the escalation of the conflict in -.
SIGACT data on the other hand is directly based on military reports from the field and
should therefore, as long asmilitary presence is high as in the case of Baghdad, covermore
incidents regardless of size. Based on these structural differences in the reporting we can
therefore expect that:
(I) IBC should cover systematically fewer low casualty events than SIGACT,

but also that
(II) Differences in reporting, in particular of events with few casualties, should be

greater the more intense the conflict.
Note that (II) also extends beyond mere coverage - i.e., whether an incident is reported
at all - to the quality of reporting. The more intense the fighting the less accurately field
reports are able to reflect casualty counts, simply because soldiers may not always be able
to reliably account for all casualties in such situations []. Similarly, media reports may
also not always precisely reflect ‘true’ casualty counts - in fact, IBC explicitly codes for
lower and upper bounds of casualty estimates.f

In the case of events with larger casualty counts, the reliance of SIGACT on field reports
may negatively affect reporting accuracy. One key reason is that longer and intense con-
frontations involving multiple units may be falsely reported as several separate incidents
by each unit instead of being coded as one large episode. This may lead to over-reporting
of the number of incidents and under-reporting of the number of casualties per incident.
Note further that the categorization of incidents and identification of victims, in particular,
may sometimes be ambiguous []. In fact, prior quantitative research confirms that the
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interest of the observer tends to affect how incidents are reported []. Ideological biases
in media reporting - such as government-directed negative reporting on the opposition
or simply general limitations to press freedom - result in an inaccurate representation of
the situation in a country/region and may thus bias how events are reported [].
In Iraq, we would further generally expect coalition troops’ reporting of civilian casu-

alties to be comparably more conservative than the news media. Modern counterinsur-
gency doctrines emphasize the importance of ‘population-centric’ warfare, favoring tac-
tics and rules of engagement that minimize collateral civilian casualties []. In turn, this
implies strong incentives for U.S. troops to keep civilian fatality reports of operations as
low as possible. These incentives are strongest for comparably larger incidents with sig-
nificant unintentional (‘collateral’) civilian casualties. Note, too, that especially during the
escalation of violence in - the conflict in Iraq became highly politicized along
the Sunni/Shia divide. This provided strong incentives for newspapers from either side to
emphasize the atrocities of the other, i.e., to provide less conservative casualty estimates,
especially for large incidents. Overall we can thus expect that
(III) IBC should report comparably more events with many casualties than SIGACT.
Note that in general the timing (and location) of attacks can be expected to be more

accurate when derived from field reports compared to IBC, whose coverage is fundamen-
tally constrained here since newspaper articles usually only report approximate times and
locations. However, it is also known that SIGACT reporting in Iraq did not adhere to ho-
mogenous reporting standards throughout the entire conflict, including the integration
of reports (or initial lack thereof ) from Iraqi military units []. There is also a known
issue of field reports being entered with midnight timestamps if the exact reporting time
is unknown. These differences should not systematically affect aggregate agreement be-
tween the two datasets but may be important when analyzing the microstructure of the
data and whenmatching entries day-by-day. It is important to also mention that both IBC
and SIGACT improved their overall reporting throughout the conflict. Taking into ac-
count that additional biases may arise from reporting during intense conflict periods as
discussed before, we would therefore expect that:
(IV) The most accurate day-by-day agreement between the two datasets should be

found in the later, less violent stages of the war.
We will return to these four theoretical expectations when analyzing and interpreting the
results of our quantitative data comparisons.
Before turning to our analysis of the data on Iraq we would like to emphasize that issues

of data bias are, of course, not unique to conflict event data. Researchers, for example, in-
creasingly rely on socialmedia data - such as Twittermessages - to analyze social dynamics
[]. Similar to conflict event data, thesemessages are time-stamped and carry location in-
formation. The same is true for data on humanmobility derived frommobile phone traces
that provide detailed time-resolved information about the location of users []. In both
cases, data may be subject to biases that arise from non-uniform geographic coverage:
globally Twitter is known to be heavily biased towards users fromNorth America, Europe
and Asia [] but it also tends to be biased towards urban populations in each country
[]. Mobile phone traces rely on data released by phone companies. Since customer base
and coverage of companies tend to vary across regions, they may also have a distinct ge-
ographic bias.g As in the case of conflict event data the character of the data source may
also lead to bias. Twitter, for example, only represents a small, non-representative sam-
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Table 1 Datasets

Codename Number of events Number of casualties

KIA KIA +WIA KIA KIA +WIA

IBC Baghdad 9,068 29,359-31,128
SIGACT Baghdad 18,157 18,504 33,688 59,276
SIGACT 20 km 17,533 17,854 32,522 57,151
SIGACT 30 km 18,548 18,919 34,450 60,465
SIGACT 40 km 19,369 19,782 36,061 63,215

ple of the overall population []. And a recent study of the web presence of scientists
on Wikipedia found that influential academic scholars are poorly represented []. This
suggests that any scientometric analyses based on Wikipedia entries would have a strong
relative bias compared to studies based on Facebook and Twitter, which tend to be much
more consistent with citation-based metrics of academic impact []. The similarities in
the sources of bias thus suggest that analyzing the implications of systematic bias in con-
flict event data also has broader implications for analyses using similar data on other social
processes.

2.3 Baghdad data
The IBC Baghdad subset we analyze comprises events location-coded as ‘Baghdad’ but
also those that carry more precise location tags such as ‘Sadr City’ or ‘Hurriya’. In the
SIGACT dataset we rely on the U.S. military’s definition of the greater Baghdad area and
the corresponding regional command ‘MND-BAGHDAD’. As a robustness check we then
perform each of our analyses for subdatasets generated by selecting all events in SIGACT
that fall within a radius of  km,  km and  km from the city center. These analyses
confirm that the choice of dataset does not affect our substantive findings - whenever not
directly reported in the manuscript the results can be found in Section  of Additional
file .
Table  shows comparative statistics of the five Baghdad subdatasets used in our analy-

sis: (a) IBC data filtered for events in the greater Baghdad area, (b) SIGACT data filtered
by Baghdad regional command and by geo-coordinates for a radius of (c)  km, (d) 
km and (e)  km from the city center. In the aggregate it appears as if IBC reports a much
smaller number of events (approximately - times smaller than in the SIGACTdata). The
total number of deaths over the period of analysis also differs but is comparablymore con-
sistent. Figure (a) and (b) show time series of events per day and casualties per event for
both datasets. Visual comparison already suggests that at a disaggregate level the datasets
differ substantially with regard to the number of events per day and casualties per event
reported. Note further that while both datasets capture the escalation of violence in -
, not only the number of events and casualty counts differ but also the timing of when
violence escalated most.

3 Results
In recent quantitative studies casualty distributions in Iraq have been analyzed in aggre-
gate form [, ], but studies mostly focus on time series of events - monthly, bi-weekly
or most often daily [, , , , ]. In line with theses different levels of analysis we will
compare the reporting of IBC and SIGACT at different levels of disaggregation. We start
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Figure 2 Time series comparison. The top panel in each graph shows SIGACT, the bottom panel IBC data.

with aggregate data and then compare the datasets at increasingly smaller temporal reso-
lutions. The (relative) biases we identify at each level of disaggregation can then be related
to our theoretical expectations on structural differences in reporting.

3.1 Aggregate comparison
The two Baghdad datasets are relatively consistent in the total number of casualties re-
ported: ,-, in IBC and ,-, in SIGACT (see also Table ). They do,
however, differ noticeably in the numbers of casualties reported per event (see Figure (b)).
These differences in overall casualty counts can be best quantified by analyzing aggregate
casualty size distributions. Figure  shows the complementary cumulative distribution
function (ccdf ) of the number of casualties in the datasets ‘IBC Baghdad’ and ‘SIGACT
Baghdad’ on a log-log scale. The distributions for IBC and SIGACT both appear to follow
a power law distribution but differ noticeably in their slopes and their tail behavior. Note
that the distributions for the geo-filtered datasets (‘SIGACT  km’, ‘SIGACT  km’ and
‘SIGACT  km’) only differ slightly from ‘SIGACT Baghdad’ and are therefore not dis-
cussed separately here. In the case of discrete data, such as the casualty counts analyzed
here, the ccdf of a power law distribution is given by:

P(x) =
ζ (α,x)
ζ (α,x)

, x≥ x, ()
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Figure 3 Complementary cumulative distribution function (ranking plot) of the number of casualties
in the ‘IBC Baghdad’ (red circles) and ‘SIGACT Baghdad’ (blue dots) datasets. Dashed lines correspond
to power law fits using maximum likelihood estimation (details provided in the text).

where P(x) = Pr(X ≥ x) is a probability of finding event with no less than x casualties, ζ is
a generalized Hurwitz zeta function [], α is the exponent of the power law distribution
and x is the lower bound of the power law behavior.
To verify formallywhether or not the distributions do indeed exhibit power law behavior

we performed a maximum likelihood fit for a power law distribution using the method-
ology developed by Clauset et al. for analyzing power law behavior in empirical data [].
The SIGACT data exhibits clear power law scaling (with exponent .) starting at x = ,
which is valid for almost . decades. In the IBC data, however, the presence of power
law behavior is highly doubtful from a statistical point of view: the power law fit returns
an exponent of ., but the scaling is observed for only one decade and the tail clearly
deviates from a power law distribution. Note that the power law shape of casualty event
size statistics is a well-known empirical fact. It has been studied historically in the context
of inter-state wars [, ] and more recently for terrorism [] and intra-state conflict [,
]. We here do not intend to discuss the scaling relation of the distribution of event sizes
and their possible origins but rather take these as ‘stylized facts’ and good quantitative
indicators for marked differences between the two datasets. We would, however, like to
note that in complex social or socio-economic systems deviations from power law may
be indicative of incomplete data - see, for example, the discussion in [] with respect to
cyber-risk applications.
The significant upward shift of the IBC ccdf with respect to the SIGACT ccdf indi-

cates the presence of much less small events (- casualties) in the IBC data compared
to SIGACT.h In order to quantify this difference we used a two-sample Anderson-Darling
test [, ]. The test is a modification of the Kolmogorov-Smirnov (KS) test that gives
more weight to the tail of the distribution and is thus a much better choice in the case of
fat-tailed data []. Specifically, we use it to find the minimal threshold of casualty num-
bers for which the hypothesis of equal distribution of the two datasets can not be rejected.
For this we proceeded as follows: For a given threshold, we select from both datasets only
events with casualty counts greater or equal than a given threshold. We then apply a two-
sample Anderson-Darling test (adjusted for ties) to test if both datasets were chosen from
the same distribution. Varying the threshold value finally allows us to identify theminimal
threshold for which the two datasets are statistically not distinguishable.
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Donnay and Filimonov EPJ Data Science 2014, 3:25 Page 10 of 29
http://www.epjdatascience.com/content/3/1/25

Table 2 Results of the pairwise comparison of the distributions of casualties

Threshold Number of events A2 statistic

(i) (ii) (iii) (iv) (v) (i)-(ii) (i)-(iii) (i)-(iv) (i)-(v)

1 9,004 18,157 17,533 18,548 19,369 1,098.13 1,103.76 1,095.52 1,088.41
2 4,273 4,813 4,611 4,940 5,201 84.11 81.82 87.03 85.04
5 1163 876 851 901 952 6.60 7.11 7.81 7.92
10 484 323 310 325 340 7.25 6.72 6.63 6.82
15 296 159 154 161 169 1.93 1.86 1.58 1.94
20 206 105 100 105 108 2.29 1.77 1.54 1.47
25 159 77 75 79 82 3.09 2.82 2.49 2.57
30 123 47 47 51 52 1.43 1.43 1.28 1.30
40 69 29 29 31 32 1.85 1.85 2.02 1.87

The datasets are (i) ‘IBC Baghdad’, (ii) ‘SIGACT Baghdad’, (iii) ‘SIGACT 20 km’, (iv) ‘SIGACT 30 km’ and (v) ‘SIGACT 40 km’. We
used a two-sample Anderson-Darling tests (adjusted for ties) for comparison. Bold font marks cases where the value of the
Anderson-Darling statistic A2 is smaller than the critical level A20.05 = 2.492 (large-sample approximation) and the hypothesis of
two datasets being sampled from the same distribution can not be rejected at a 5% significance level.

The results are shown in Table . The relative comparison of IBC data (i) and SIGACT
data (ii)-(v) clearly shows that IBC under-reports small events and over-reports larger
events compared to SIGACT.While the total number of events in the IBCdataset is almost
two times smaller than in SIGACT, the number of events with  ormore casualties in both
datasets are almost equal. For larger casualty sizes IBC even reports almost twice as many
events with  casualties and more compared to SIGACT. Note that this, of course, also
implies a considerably larger absolute fraction of events with  andmore casualties in IBC
which is clearly reflected in the flatter slope of the IBC ccdf compared to SIGACT. Overall,
this points to very significant differences in the aggregate casualty statistics between the
two datasets.
These differences are also confirmed by our statistical tests. The hypothesis that the

casualty distribution in IBC and SIGACT were sampled from the same distribution can
be easily rejected for small thresholds (- casualties per event, see Table  columns -).
The Anderson-Darling A statistic reaches the critical value for a significance level of .
and stays below it only for thresholds starting at  and more casualties. The hypothesis
of agreement can again be rejected for threshold values between - where the value of
the A statistic stays slightly higher than critical level. Note, however, that a threshold of
 casualties already selects only a very small subset of events from the whole dataset - less
than  in IBC and less than  in SIGACT for the whole  years of data, i.e., less than
% and .% correspondingly. For thresholds greater than  casualties, subsets of the
SIGACT datasets are even smaller (less than  events). In the quantitative comparisons
of the two datasets in the following sections we therefore focus only on reasonably small
thresholds of - casualties.
At an aggregate level, our analysis overall quantitatively confirms that IBC both reports

systematically less events with few casualties (I) andmore events withmany casualties (III)
compared to SIGACT - we can not test expectation (II) or (IV) here since these require a
disaggregated comparison. It is important to point out that the differences in the casualty
reporting we observe extend to the four most violent incidents in the period analyzed. In
fact, their casualty counts in IBC and SIGACT disagree significantly, with IBC reporting
more casualties in all four cases (Table ).

http://www.epjdatascience.com/content/3/1/25
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Table 3 Most violent events and number of casualties reported by IBC and SIGACT

Date Event IBC report SIGACT report

August 31, 2005 Baghdad bridge stampede* 965-1,005 436
November 23, 2006 Sadr City car and mortar bombings† 215 181
April 18, 2007 Baghdad car bombings‡ 140 115
February 3, 2007 Baghdad market bombing§ 136-137 105

* ‘A cry of suicide bomber, and 700 perish in Iraq stampede’, The Guardian,
http://www.guardian.co.uk/world/2005/sep/01/iraq.rorycarroll1 (accessed: 08/07/2013)
† ‘Iraq, Nov 23, 2006: A Day in Hell’, Spiegel Online,
http://www.spiegel.de/international/world/iraq-nov-23-2006-a-day-in-hell-a-722544.html (accessed: 08/07/2013)
‡ ‘Up to 200 killed in Baghdad bombs’, BBC News, http://news.bbc.co.uk/2/hi/middle_east/6567329.stm (accessed:
08/07/2013)
§ ‘Terror takes toll on market, vendors’, The Washington Times,
http://www.washingtontimes.com/news/2007/feb/6/20070206-115808-3925r/ (accessed: 08/07/2013)

3.2 Monthly time series comparison
While aggregate distributional measures of conflict event signatures may already provide
unique insights into conflict dynamics [, ], the majority of recent studies analyzing con-
flict mechanisms in Iraq relies on more detailed time series of incidents and their severity
[, , –]. In this section we first focus onmonthly time series. Note that we again con-
sider a number of subsets with different minimal event sizes to account for the fact that
the agreement between the two datasets may vary with the size of the events reported.
Figure (a) shows the number of events, Figure (b) the number of casualties per month

in all five Baghdad datasets (see Table ) for thresholds of , , , ,  and  casualties
per event. The panel in the upper left hand corner of each graph depicts the full IBC and
SIGACT data (threshold equal to ). It suggests that at the monthly level the two datasets
provide distinctly different accounts of the violence dynamics in Baghdad. These differ-
ences in the number of events appear to be most substantial during the escalation of vio-
lence in - and for low and high thresholds. If we only exclude events with less
than  to  casualties per event - i.e., intermediate thresholds - the monthly dynamics in
the two datasets qualitatively agree much better (Figure (a)).
Before turning to a more detailed analysis of the differences in the monthly IBC and

SIGACT reporting, we first testedwhether at least the overall trends in both the number of
events and casualties per month are consistent. A two-step Engle-Granger cointegration
test [] with an augmented Dickey-Fuller test of residuals [, ] can reject the null
hypothesis of no-cointegration at a % significance level for almost all thresholds analyzed
here. In other words, the differences in reporting between IBC and SIGACT generally do
not affect the agreement of the coarse-grained trends. The exception are the dynamics of
the number of events per month for thresholds of ,  or  casualties per event (top panels
of Figure (a)). Here the Engle-Granger test can not reject the null of no-cointegration
(with p-values of Dickey-Fuller test equal to ., . and . respectively), which
suggests that even the long-term trends in the complete IBC and SIGACT datasets are
statistically significantly different.
Overall, the differences in themonthly reporting of IBC and SIGACTare consistentwith

those observed in the aggregate statistics (Section .). We also find the same casualty size
dependent relative bias between the two datasets at the level of months. In particular, we
again find significantly more small events in SIGACT compared to IBC in line with (I).
However, this is only true during the - escalation of violence. In fact, before
 IBC even reports more small events and  and onward the two datasets largely

http://www.epjdatascience.com/content/3/1/25
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Figure 4 Dynamics of the number of (a) events and (b) casualties per months in ‘IBC Baghdad’ (red
line), ‘SIGACT Baghdad’ (solid blue line), ‘SIGACT 20 km’ (dashed blue line), ‘SIGACT 30 km’ (dotted
blue line) and ‘SIGACT 40 km’ (dash-dotted blue line). The panels correspond to subsets of events for
thresholds of 1, 2, 5, 7, 10 and 15 casualties respectively. Note that the plots for the different SIGACT datasets
(blue lines) are almost indistinguishable.
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agree. This is consistent with our assertion that reporting differsmore noticeably themore
intense the conflict (II) and also suggests that - apart from the escalation in - -
IBC and SIGACT reporting of small events is, in fact, quite consistent. Note, however, that
we also clearly see an overall tendency of IBC to report more events with many casualties
almost all throughout the conflict (III). This attests to differences in reporting also in the
less intensive phases of the conflict prior to  and after .
Figure (a) and (b) also suggest that there is not one threshold value for which IBC and

SIGACT reporting agrees both in terms of number of events and casualties per month.
While they show the best visual agreement with respect to casualty counts for a threshold
of  (Figure (b), upper right panel), the corresponding events per month statistics dif-
fer markedly (Figure (a), upper right panel). Recall, however, that we argued before that
coverage in IBC should be much more limited for small events than in SIGACT. This im-
plies that we should actually not expect an agreement in the number of events per months
for thresholds of  and . In fact, the number of events per month are most consistent
for thresholds between  and  where media-based coverage should be more complete.
Since the casualty counts in IBC are significantly larger for these thresholds, this appears
to suggest that overall IBC systematically reports more casualties than SIGACT.
It is important to keep in mind, however, that we previously also identified a second

possible source of bias that may lead to a similar effect: the reporting of one composite
episode as several incidents with less fatalities in SIGACT. In fact, for large events in the
SIGACT dataset one can typically find a counterpart in the IBC dataset within the same
day or two. In contrast, quite a number of events reported by IBC do not have an equally
sized counterpart in the SIGACT dataset (see also Section .). Since there are typically
many events within a short time window one can, unfortunately, typically not convinc-
ingly establish if there are a number of smaller incidents reported in SIGACT that taken
together match or approximate the total casualty count of an episode in IBC. This makes
it impossible to estimate the extent to which possible mis-reporting of episodes as sepa-
rate incidents may affect the reporting in SIGACT. Overall, we can therefore only say with
certainty that the differences in casualty reporting observed at a monthly level are con-
sistent with IBC systematically reporting more casualties than SIGACT, mis-reporting of
episodes as separate incidents in SIGACT, and/or a combination of both.

3.3 Daily time series comparison
Many of the recent quantitative studies of the conflict in Iraq rely on detailed daily time
series. We therefore now turn to a statistical analysis of deviations in the day-by-day mi-
crostructure of reporting between IBC and SIGACT. Note that in the period -
both datasets exhibit a high degree of non-stationarity (see Figure (a)). In fact, the num-
ber of events in the second half of  and first half of  is up to  times larger
than in  or . Any statistical analysis of these data thus requires us to explicitly
model this non-stationarity, for instance using parametric methods. Alternatively, we can
restrict our analyses to sufficiently small time windows, in which the dynamics can be as-
sumed to be (approximately) stationary. In line with previous works (see for example []),
we here pursue the latter approach and employ standard non-parametric tests to moving
time windows. The choice of appropriate window size is subjected to trade-offs: it should
be as small as possible to guarantee a stationary regime but also sufficiently large to contain
sufficiently many events for robust statistical tests. We found that time windows ranging

http://www.epjdatascience.com/content/3/1/25
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from  months to half a year (T =  days to T =  days) fulfill both of these condi-
tions.i However, we also performed our tests for a window size of  year (T = ) as a
robustness check.
For every window size T we slide the moving window across the whole range of data in

steps of one month and extract the subset of events in both IBC and SIGACT within each
time window. For each of the (approximately) stationary periods we can then compare
the distribution of events per day as a measure of the day-by-day microstructure of the
data using a two-sample Anderson-Darling test. The Anderson-Darling test rejects the
hypothesis of both time-series being sampled from the same distribution if the statistic
A is smaller than the critical level A

. for a significance level of .. Since the number
of samples (window size T ) is sufficiently large we use the large sample approximation for
the critical level A

. = . []. Note that in contrast to the distribution of casualties
per event (Figure ), the distributions of events per day do not have fat-tails and typically
decay almost exponentially (Figure S in Additional file ). A Kolmogorov-Smirnov test
would thus also in principle be applicable here []. However, in order to be consistent
throughout our analysis and to account for the slower-than-exponential tails in case of
small thresholds of  and  casualties per event, we here also rely on the more rigorous
Anderson-Darling test.
Figure  graphically illustrates the results of the Anderson-Darling test for different

thresholds and different window sizes. Color bars indicate the center of all windows of
size T for which the null hypothesis of the number of events per day in both datasets
being sampled from the same distribution can be rejected at a % significance level. The
figure clearly illustrates that the two datasets significantly differ with respect to the dis-
tribution of events per day: the distributions in the two full datasets (threshold equal to
, top panel) are statistically distinguishable from  through ; only in the initial
phase of the conflict and in the calmer phase after the U.S. military troop ‘surge’ in 
we can not detect significant differences. The higher the threshold, i.e., the more small
events we exclude, the better the distributional agreement. It is important to note that in
case of large differences in the numbers of events per day, the Anderson-Darling test will
indicate significant deviations of one sample from another irrespective of the temporal
characteristics. This certainly contributes to the strong disagreement for thresholds of 
and  casualties in - but should not affect the results elsewhere where the num-
bers of events are much more similar. In general, the results for different window sizes are
quite consistent and we can be confident that the exact choice of time window does not
systematically drive our results.
The analysis in Figure  highlights that even though the average number of small events

(thresholds  and ) are relatively similar in IBC and SIGACT prior to  and after 
the detailed daily reporting may still significantly differ, for example, in  or in early
 (top panel). In the period - the daily structure of small events reported in
the two datasets is almost everywhere significantly different except for a short episode in
early . For larger events (threshold  and larger) the average number of events per day
is much more consistent throughout, but in the most intense phase of the conflict -
 the distributions of events per day remain statistically distinguishable. For events
with  casualties andmore the difference is only significantmid- through early 
at the height of the escalation. The fact that the microstructures of the datasets become
statistically indistinguishable does of course not imply that they necessarily correspond
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Figure 5 Distributional agreement of ‘IBC Baghdad’ and ‘SIGACT Baghdad’. Color bars illustrate the
results of a 2-sample Anderson-Darling test for the distribution of number of events for time windows of
T = 120 days (orange bars), T = 180 days (green bars) and T = 360 days (violet bars) for thresholds equal to 1,
2, 4, 5, 7 and 10 casualties. The bars indicate the center of those time windows for which the hypothesis of
agreement of the distribution of events per day can be rejected at a 5% significance level. The black line
represents the RMS difference between ‘IBC Baghdad’ and ‘SIGACT Baghdad’, red and blue lines are the
monthly averages of the number of events per day for the two datasets respectively.

to the same day-by-day occurrence of events. The test simply determines whether or not
the overall distributions of events per day in a given (comparably large) time window are
distinguishable or not. Consider, for instance, the very simple example of two time series
with alternating  and  events on two subsequent days, butwhere the occurrence of events
in the second series is shifted by one day. These time series have the same average number
of events per day and are statistically absolutely not distinguishable even though each day
their number of events differs by two, their average number of events per day.
In order to better quantify the actual day-by-day correspondence between IBC and

SIGACT we therefore additionally consider the root mean square (RMS) difference of
the number of events in IBC (nIBC(t)) and SIGACT (nSIGACT(t)) for a sliding window of
size T – T =  as a simple quantitative metric of (average) daily agreement (black line in
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Figure ):

RMS =

√
√
√
√


T – T + 

T∑

t=T

(

nIBC(t) – nSIGACT(t)
). ()

This difference can be directly compared to the average numbers of events per day in
both IBC and SIGACT for the same moving time window (red and blue line in Figure 
respectively):

nIBC =


T – T + 

T∑

t=T

nIBC(t), nSIGACT =


T – T + 

T∑

t=T

nSIGACT(t). ()

We find that the RMS difference is always of the order of magnitude of the average num-
bers of events per day for all thresholds we consider. In other words, the typical difference
between two datasets is equal to the typical number of events per day. This is true even for
intermediate thresholds of - casualties per event where the cumulative monthly num-
ber of events reported in IBC and SIGACT agree quite well. Note further that the RMS
differences  and onward is not significantly smaller than prior to  contrary to
our theoretical expectation that difference in reporting should be smallest in the later, less
violent phases of the conflict (IV).
To test our intuition for how day-by-day differences relate to distributional agreement,

we analyze the daily agreement in IBC and SIGACT in February . We chose this pe-
riod specifically such that the two datasets are statistically distinguishable for small and
indistinguishable for large thresholds (see Figure ). Figure  graphically illustrates the di-
rect comparison of the number of events reported in each dataset. It is visually apparent
that the number of events per day with thresholds of  and  casualties (upper two pan-
els) reported in SIGACT and IBC differ. Specifically, on some days SIGACT reports more
events, on others IBC does, and there are also days when one of the datasets reports no
event but the other one does. For larger events (up to  and  casualties, third and fourth
panel) the numbers of events per day in both datasets are muchmore consistent but there
are still significant differences. SIGACT, for example, at a threshold of  reports signifi-
cantly more days with one event than IBC and less days with two events. For thresholds
of  and larger (lower two panels) the distributions of events per day are statistically not
distinguishable anymore. In the day-by-day comparison we see that each daily signature
is dominated by days with no, one or two events and the occurrence of these days is over-
all quite similar. Note, however, that at the same time for well more than % of the days
these counts do not coincide, which explains the day-by-day mismatch represented by the
comparably large RMS differences (Figure ).
The large RMS difference we observe throughout the whole dataset should therefore be

an indication that the day-by-day structure of event reporting in SIGACT and IBC does
indeed significantly differ - despite the fact that they may be statistically indistinguishable
at an aggregate or distributional level. In order to quantitatively estimate this daily mis-
match, we compared how many events of a given size in SIGACT - the dataset with more
events - can be matched to events in IBC. In matching events we allow for an uncertainty
of ± day. Please refer to Section  of Additional file  for the details of our automated
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Figure 6 Dynamics of the numbers of events per day for ‘IBC Baghdad’ (red) and ‘SIGACT Baghdad’
(blue) in February 2006 for thresholds equal to 1, 2, 4, 5, 7 and 10 casualties. The vertical axis for the IBC
dataset was mirrored for clarity purposes.

matching procedure. Figure  shows the number of matched events (blue bars) as a frac-
tion of the total number of events in SIGACT (red line) for every month in the dataset.
For simplicity we have grouped casualty sizes in categories. Note that for months with no
events in a given casualty category, the fraction of matched events is set to  by default.
The figure suggests that daily SIGACT and IBC records are most consistent outside of

the escalation of violence in - - this is particularly true for events with less ca-
sualties. Excluding the escalation phase - we find that on average .% of the
entries with  casualty and .% of the entries with  or  casualties in SIGACT coincide
with an entry with the same number of casualties within ± day in IBC (Table ). In con-
trast, during the period - only .% of SIGACT reports with  casualty - by far
the largest share of incidents - can be matched to IBC entries. In the same period, .%
of SIGACT records with  and  casualties have a corresponding entry in IBC within ±
day. For events with few casualties we can thus also confirm at a day-by-day resolution that
differences in the reporting are generally larger the more intense the conflict (II). In con-
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Figure 7 Day-by-day match of events of a given size s in ‘SIGACT Baghdad’ to entries in ‘IBC Baghdad’.
Blue bars indicate the number of matched events as a fraction of the total number of events in SIGACT for
every months in the dataset (left axis), the red line illustrates the overall number events per months for the
given casualty sizes (right axis). When matching events we allow for a timestamp uncertainty of ±1 day.

trast, the day-by-day agreement of events with  and more casualties is generally better
in the - period (see Table  for details). Notice that especially the match of very
large events (more than  casualties) is generally very good throughout (.% match).
Finally, we do not find any systematic evidence that the detailed match of SIGACT and
IBC has increased significantly after , contrary to our theoretical expectation (IV).
It is important to emphasize here that we thus far only considered a one-sided compar-

ison that matches SIGACT events to IBC. We previously observed that IBC reports more
events with many casualties than SIGACT (Figure (a)), i.e., matching IBC to SIGACT
events will yield a noticeably lower match. For example, the match of events with more
than  casualties in this case is only .% (please refer to Section  of Additional file 
for the full comparison). The large RMSdifference in Figure  reflects thismismatch.Note,
too, that the RMS difference is a measure of daily agreement whereas we here allow for a
timestamp uncertainty of ± day - it is consequently a much more conservative estimate
of the agreement of the two time series than the one tested here. As we would expect, us-
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Table 4 Number of SIGACT reports matched to IBC entries

Casualties 2004-05 & 2008-09 2006-07

matched total % matched total %

s = 1 1,264 1,473 85.81 2,925 11,871 24.63
s = 2, 3 343 417 82.25 1,556 3,054 50.94
s = 4-6 86 133 64.66 480 693 69.26
s = 7-10 22 45 48.88 149 202 73.76
s = 11-20 18 36 50.00 83 143 58.04
s > 20 15 23 65.21 55 67 82.08

ing smaller tolerance (± days) tomatch events generally decreases agreementwhile using
larger tolerance (± days) increases agreement of SIGACT events with IBC (see Section 
of Additional file  for details). There is one notable exception though: very large events
(with more than  casualties) are equally well matched for all tolerances suggesting that
their reporting is clearly the most consistent.
We validated our day-by-day comparison by comparing it to results of a study performed

at Columbia University. In the study, a small random sample of SIGACT events with civil-
ian casualties was compared to entries in the IBC database []. Specifically, students were
tasked tomanually match SIGACT entries to IBC events following a specific detailed pro-
tocol. The analysis revealed that only .% of the events in their SIGACT sample had
corresponding entries in IBC. The Columbia researchers noted though that most of the
events in their sample had only very few casualties - a consequence of the fact that by
randomly sampling events for their study they mainly selected incidents during the pe-
riod - where by far the most SIGACT events were recorded. In fact, the large
majority of records in this period reports only one casualty per event (see Table ). In our
analysis we find an agreement of .% for these events in the - period, which
is very consistent with the Columbia estimate. For events with more than  casualties
.% of the SIGACT entries could be matched to entries in IBC in the Columbia study.
The estimate of .% based on our automated comparison is similar but clearly more
conservative. Note that the specification of timestamp uncertainty of ± day used in our
automated procedure is equivalent to the matching prescription used in the Columbia
study (see Section  of Additional file  for details).
It is important to emphasize two key shortcomings of the manual, in-depth compari-

son performed in the Columbia study. Most importantly, the random selection of events
across the whole dataset effectively limits their analysis to the period - - the
period in which all of our previous analyses find the most significant disagreement be-
tween IBC and SIGACT. Their findings thus likely systematically underestimate the over-
all match of events. In fact, our analysis shows that for the full period of analysis .% of
all SIGACT records could be matched to IBC entries with the same number of casualties.
This is significantly more than the .% reported in the Columbia study. Furthermore,
manual comparisons are only possible for small (random) subsets of event. Having verified
that we obtain results consistent with an in-depth comparison by human coders, the clear
advantage of an automated comparison is its coverage, i.e., it efficiently yields estimates of
the correspondence of daily reports in IBC and SIGACT for the full period of analysis.
In summary, our results strongly suggest that at any level of analysis - aggregate statistics,

monthly statistics, detailed distributional level and daily time series - IBC and SIGACT
reporting differ significantly, most strongly for events with few casualties but also for
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larger event sizes where aggregate event statistics are comparably more consistent. Con-
sequently, we can expect that the choice of dataset would strongly affect any inference we
draw from these data, simply because the conflict dynamics represented in each datasets
at any level of analysis are indeed quite different.
In the following sections we complement these comparative insights with an in-depth

analysis of the reporting in each dataset. Specifically, we explore if and where the two
datasets contain non-trivial timing information - i.e., information about the occurrence
of subsequent events - and how robust these are to uncertainty in timestamps. This is, of
course, a critical precondition for the use of the datasets for any kind of timing or causal
analysis. It is complementary to our prior comparative analysis in the sense that both, ei-
ther or neither of the datasetsmay actually be suitable to study event dynamics in Baghdad,
regardless of the relative differences in reporting we have already identified.

3.4 Distributional signatures
In Section . we used the distribution of events per day to characterize day-by-day event
dynamics. A second very common measure that captures the micro-structure of event
data is the distribution of times between incidents, or inter-event times []. The latter is
always favorable if the data resolution is more fine-grained than days. Inter-event timing
distributions at a resolution of hours, for example, provide a much more detailed charac-
terization of the dynamics of subsequent events. We here chose to rely on the distribution
of inter-event times because it also tends to be more sensitive to differences in the distri-
bution of sparse data for which it is generally more difficult to detect deviations from a
trivial timing signature. As before, we consider the dynamics in a given time window of
length T within which the conflict dynamics can be assumed to be (approximately) sta-
tionary. Notice that the results for the event per day statistics are substantively equivalent;
please refer to Section  of Additional file  for details.
In a structureless datasets, i.e., in datasets where the timing of events is statistically in-

dependent, the distribution of events per day simply follows a Poisson, the corresponding
distribution of inter-event times an exponential distribution. The deviation of timing sig-
natures from a Poissonian or exponential is thus mainly indicative of the usefulness of
the dataset because a featureless dataset is essentially useless for any kind of quantitative
(causal) inference or timing analysis. We would, however, also like to note that empirically
and theoretically it is not plausible that the timing of conflict events in Iraq is completely
independent. In fact, most theories of political violence prominently feature mechanisms
that emphasize reciprocity and reactive dynamics [, ], spatial spillover effects or diffu-
sion of violence [].
Figure  shows the number of events per day for both datasets and graphically illustrates

the results of a Kolmogorov-Smirnov test for a moving window of  days (results for
larger window sizes are consistent and are discussed in Section  of Additional file ).
Specifically, bars indicate the center of time windows for which the Kolmogorov-Smirnov
test rejects the hypothesis of agreement of the distribution of inter-event times with an
exponential distribution at a % significance level. The analysis suggests that in the full
SIGACTBaghdad dataset the timing of events deviates significantly from that of a Poisson
process all throughout  to mid-. In the much calmer periods prior to  and
after mid- the timing signature, however, does not deviate significantly from that
of a featureless process. For events larger than thresholds of , , ,  and  casualties,
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Figure 8 Inter-event timing signatures. Color bars illustrate the results of a KS-test for exponential
distribution of the inter-event times in time windows of T = 180 days for thresholds equal to 1, 2, 4, 5, 7 and 10
casualties (see text for details). The bars indicate the center of those time windows for which the hypothesis of
agreement of the distribution of inter-event times with an exponential distribution can be rejected at a 5%
significance level (i.e., the datasets exhibits a non-trivial timing structure). The graph also shows the dynamics
of the number of events per day in ‘IBC Baghdad’ (red) and ‘SIGACT Baghdad’ (blue). The vertical axis for the
IBC dataset was mirrored for clarity purposes.

SIGACT still consistently features periods where the timing of events does not follow a
featureless Poisson process, mainly in the most violent period mid- to mid-.
In the full IBC dataset and for events with more than  casualties the timing of events

also has a significant non-trivial timing structure that allows to reject the null hypothe-
sis of Poisson dynamics for periods throughout late  to . This finding, however,
is much less robust than for the SIGACT data. In fact, there is a half-year stretch in early
 for the full IBC dataset that features only a trivial timing signature. For a threshold of
, the inter-event signature is also not distinguishable from a Poissonian in a period from
late  to late ; notice that in both periods the number of events per day is quite
large. The differences between the signatures in IBC and SIGACT are most pronounced
for subsets of events with minimally  or more casualties. Even though the overall num-
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ber of events in SIGACT and IBC is comparable for those subsets, there is hardly any time
window forwhich the timing signature in IBC significantly differs from that of a featureless
process. This is especially obvious in the escalation phase mid- to mid- where
the timing of events in IBC is statistically independent everywhere but deviates signifi-
cantly from a featureless process in SIGACT.
As emphasized before, based on theories of political violence, we would expect that the

timing of events should not be independent. The empirical narrative of the conflict in Iraq
similarly suggests that events tend to be related. It is, however, in general not possible to
decide whether or not the absence of non-trivial signatures in these periods is a conse-
quence of incomplete reporting or evidence that the timing of events of a given size is
indeed uncorrelated. The fact that both datasets feature time windows with trivial timing
signatures thus simply suggests that it would be ill-advised to use the respective datasets
in these periods to study (causal) relations between the timing of events. This is true for
large parts of the IBC data - especially for larger thresholds - whereas SIGACT generally
features more and longer time windows with non-trivial timing signatures (Figure ). No-
tice though that in the low intensity conflict phases prior to  and also after mid-
our statistical tests do not indicate any non-trivial timing signatures in SIGACT either.
Overall IBC appears to be much less suitable to study timing dynamics and thus to in-

fer (causal) relationships between events. This is consistent with our observation in Sec-
tion . that the reporting of timestamp in IBC may be more constrained through the use
of approximate - or possibly misreported - timing of events provided in newspaper ar-
ticles. It is important to keep in mind though that we only tested for non-trivial timing
signatures in data drawn from the whole Baghdad area - significant correlations in the
timing of events may, for example, simply be limited to smaller geographic scales.

3.5 Uncertainty of timestamps
We now turn to a systematic test of the effect of timestamp uncertainty on the distribu-
tional features analyzed in the previous section. In other words, we address the question
of how robust the timing signatures we find are to uncertainties in the coding of times-
tamps. The robust coding of event timestamps is critically important for any quantitative
technique where inferences hinge on the (causal) order of events. Examples of commonly
used techniques using such time-ordered data include point process models, such as self-
excited Hawkes processes [, ], Autoregressive Conditional Durations (ACD) [, ]
orAutoregressiveConditional Intensity (ACI) []. Note that in both IBC and SIGACT the
reporting of event timing may, in principle, be subject to systematic coding inaccuracies.
Themedia sources IBC relies onmay report events with a delay, provide only approximate
timing information or may misreport the timing of an event altogether. SIGACT data is
compiled from field reports, which may also systematically miscode the true timing of an
event. Common problems include delayed reporting in situations of heavy engagement
with enemy forces, reporting post hoc on incidents that a unit was not directly involved in
and for which the timing is not precisely known, or summary reports filed at the end of a
day (see also Section .).
In order to statistically characterize the effect of timestamp inaccuracies on the day-

by-day signatures of events, we again rely on the distribution of inter-event times τi =
ti – ti–. We further assume that both IBC and SIGACT report events with timestamp
uncertainties �IBC and �SIGACT. Note that the IBC dataset only codes timing of events
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with a precision of days, i.e., �IBC ≥  day. SIGACT on the other hand carries much more
precise timestamps with a resolution of minutes and thus does not have this constraint.
In order to account for uncertainties � in the timestamps we adopted the methodology
proposed in [] and assume that the difference between the real time of an event t̃i (which
is unknown) and the timestamp ti ≥ t̃i is some effective ‘noise’ ξi = ti – t̃i < �.
To test the impact of a given uncertainty � on the timing signature in each time se-

ries we then proceed as follows. For a given time window T we draw random variables
ξi,IBC and ξi,SIGACT from the uniformdistributionsU([,�IBC]) andU([,�SIGACT]) respec-
tively.We then construct time series t̂i,IBC = ti,IBC – ξi,IBC and t̂i,SIGACT = ti,SIGACT – ξi,SIGACT,
and calculate the distribution of inter-event times τ̂i,IBC = t̂i,IBC – t̂i–,IBC and τ̂i,SIGACT =
t̂i,SIGACT – t̂i–,SIGACT for each. Note that the values τ̂i represent proxies for the unobserved
real values of inter-event times τ̃i. We then apply a two sample Anderson-Darling test to
the distributions of these inter-event times (for both IBC and SIGACT independently).
We repeat this procedure M =  times, generating a set of binary values {hj,IBC} and
{hj,SIGACT}, j = , . . . ,M, where hj =  if we can reject the null hypothesis at a % signifi-
cance level, and hj =  if the null hypothesis can not be rejected.
The effective measure for whether or not the timing distributions of the two time series

with uncertainties are distinguishable is then simply the fraction of cases when the null
hypothesis can not be rejected: FIBC =

∑M
j= hj,IBC/M and FSIGACT =

∑M
j= hj,SIGACT/M. If the

value of FIBC (or FSIGACT) is close to we can be certain that the distributions of inter-event
times τ̂i,IBC (or τ̂i,SIGACT) are different from an exponential distribution - independently
of particular values of the ‘noise’ terms ξi,IBC (or ξi,SIGACT respectively). This also implies
that the real inter-event times τ̃i,IBC (or τ̃i,SIGACT) exhibit non-trivial clustering. Similarly, a
value of F close to  suggests that formost of the cases we can not reject the null hypothesis
for the proxy values τ̂i. This, in turn, implies that we will most likely not reject the null
hypothesis at the same significance level for the real (unobserved) values τ̃i.j Effectively
the fraction F may thus be referred to as the ‘likelihood’ of the time series to have been
generated by a Poisson process.
From a conceptual point of views, the random time shifts t̂i = ti – ξi simply introduce

bias to the time-series: the larger �, the larger the ‘randomness’ in our proxy time-series
t̂i. Note that the more robust the timing signatures in the data, the larger the uncertainty
� at which τ̂i,IBC and τ̂i,SIGACT start to only represent iid random samples drawn from an
exponential probability distribution. The functional dependence of F on� is thus a quan-
titative measure for the robustness of the timing signatures. In particular, we will identify
the critical value of �c for which we can be more than % certain, i.e., F < ., that
uncertainties in timestamps do not destroy the non-trivial signature in τ̂i,IBC and τ̂i,SIGACT.
Figure  shows the p-values of the KS-test and the fraction F as a function of the value of

� for the time window October ,  to February ,  - a period specifically cho-
sen to reflect a situation where both full datasets show non-trivial timing signatures, but
where for larger thresholds this signature breaks down in IBC. For both IBC and SIGACT
the figure clearly demonstrates that the non-trivial timing distributions in the full datasets
are quite robust to uncertainties in timestampswith�c,IBC �  days and�c,SIGACT �  days
respectively (Figure (a)). Notice, too, that the transition to Poissonian dynamics for in-
creasing � is continuous and relatively slow. At uncertainties of about  days (IBC) and 
days (SIGACT) % of the reshuffled datasets are indistinguishable from featureless data.
Note that we also analyzed events with  ormore casualties (Figure (b)). Here IBC clearly
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Figure 9 Robustness of timestamps.We test whether the inter-event timing distributions of ‘IBC Baghdad’
(left) and ‘SIGACT Baghdad’ (right) in the time window October 15, 2006 to February 15, 2007 exhibit
non-trivial timing signatures for different timestamp uncertainty �. (a) shows the results for the full datasets
and (b) for threshold equal to 3 casualties per event. The top panels illustrate how for 100 different
redistributions (see text for details) the p-values for the test for exponential distribution of the inter-event
times changes as a function of �IBC and �SIGACT . The horizontal red line corresponds to the significance
level of 0.05, below which the null hypothesis of exponential distribution can be rejected. The bottom panels
show the fraction F of realizations (out of 100) for which the exponential distribution can not be rejected.

does not feature robust non-trivial timing signature since already at the minimal uncer-
tainty of one day F is close to . For SIGACT we do observe a non-trivial signature and
�c,SIGACT �  suggests that this signature is similarly robust as that observed for the full
dataset.
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Our analysis thus suggests that - where they exist - the non-trivial timing signatures for
the full IBC and SIGACT data are indeed quite robust against uncertainty of timestamps.
In fact, the signatures are robust enough that even if event timingmay have beenmiscoded
by up to  days, we could still expect to see non-trivial timing dynamics. Note that this
does, of course, not imply that timestamp uncertainties of up to  days would not affect the
inferences we draw from day-by-day and even distributional comparison - it only suggests
that some timing information will be preserved.

4 Discussion and conclusion
In this study we systematically identified a number of key quantitative differences between
the event reporting in media-based IBC data and field report-based SIGACT military
data. In fact, we find significant differences in reporting at all levels of analysis: aggregate,
monthly, distributional and day-by-day comparisons. These relative biases are consistent
with a number of structural differences of the reporting in IBC and SIGACT. We further
showed that even for subsets of events where both datasets were found to be most consis-
tent at an aggregate level, the daily time series of eventswere significantly different.Overall
this suggests that at any level of analysis the specific choice of dataset may have a critical
impact on the quantitative inferences we draw - at the extreme using IBC or SIGACT data
might, in fact, lead to substantially different results.
In an individual analysis of each dataset we further showed that SIGACT and IBC differ

markedly with regard to their usefulness for event timing analyses - a key application for
both datasets. In fact, IBC was found to have only trivial timing signatures, i.e., signatures
indistinguishable from an iid random process, for much of the time period analyzed. In
comparison SIGACT codes much more non-trivial timing dynamics and is thus generally
more suitable for the analysis of event timing. In the low intensity conflict phases prior to
 and after mid-, however, even SIGACT generally does not feature non-trivial
timing dynamics. This strongly suggests that any analysis of event timing and causal rela-
tionships between events using SIGACT should best be restricted to the period  to
. Our analysis, however, also confirmed that where non-trivial timing signatures for
the full datasets exist these signatures are quite robust against uncertainties in timestamps
of events.
In order not to be systematically affected by geographically biased coverage, our quanti-

tative analysis focused exclusively on the case of Baghdad. We contend, however, that the
relative as well as absolute differences in reporting of IBC and SIGACT extend beyond
this ‘best case’ scenario to all of Iraq. In other words, for the full Iraq datasets reporting
differences are at best what we found here, but they are likely even more pronounced due
to fundamentally more limited event coverage outside of the greater Baghdad area.
Our findings have a number of concrete implications for recent studies analyzing the

conflict in Iraq. First, we would like to re-emphasize that the substantial disagreement
between the two datasets suggests that using one or the other will likely yield substantively
different results. This applies to studies using IBC data at a distributional [] or aggregate
level [], but most notably to studies using IBC [, , ] or SIGACT [, ] data at
a daily resolution where the differences are most substantial. The lack of simultaneous
agreement with regard to number of events and casualty counts per months implies in
particular that time series analysis with models that describe both event occurrence and
casualties - for instance, models of marked point processes [] - may lead to substantially
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different results depending on which dataset is used, even if focusing on subsets of events
of certain minimal sizes.
Second, the absence of non-trivial timing signatures for significant parts of both datasets

may pose a substantial problem if data is used for detailed timing (or causal) analysis. In
fact, none of the above mentioned studies using either IBC or SIGACT data at a daily res-
olution confirmed whether they actually feature robust timing signatures. The analyses in
[, ], for example, employ a Hawkes point process model [, ] to study event timing
dynamics. However, our analysis suggests that the IBC data used is almost featureless at
short time-scales, having only long-term non-stationary trends for long periods in ,
 and . It is therefore clearly not suitable for this kind of analysis. Moreover, given
the daily resolution of timestamps in IBC and the corresponding clustering of events on a
given day, we strongly caution against the direct calibration of aHawkesmodel evenwhere
robust timing signatures exist, simply because the resulting model fits will be (falsely) re-
jected by standard goodness-of-fit methods. Instead, it is better to rely on randomization
techniques such as those proposed in [] and used for the timestamp analysis in our study.
Note also that the absence of non-trivial timing signatures in SIGACT prior to  and
after mid- may affect the inferences regarding causal relationship between events in
[, ] - this applies particularly for [] which analyzes event dynamics exclusively in the
first six months of .
The growing number of recent contributions addressing issues of bias in conflict event

data [–] points to an increased awareness for data related issues in conflict research.
Our study contributes to this literature by systematically analyzing relative biases in con-
flict event data and relating them to structural differences in reporting. The sources of
systematic bias discussed here are, however, clearly not restricted to conflict data. For re-
searchers using data on other social processes that may be subject to similar biases our
analysis suggests two important ‘lessons learned’. First, the often very substantial differ-
ences between the two datasets analyzed here should raise awareness that data bias is not
an afterthought but a critical issue worthy of our fullest attention. In particular, if analyses
are meant to provide concrete policy advice we must be especially wary that substantive
findings do not arise from biased inference. Second, we showed how structural differences
in reporting directly translate into relative biases. This demonstrates, that a careful a pri-
ori understanding of the strength and limitations of a given dataset allows to anticipate
possible biases in subsequent analyses - even if there is only one dataset that covers the
case in question. If more than one comparable dataset exists one can either directly ana-
lyze their relative bias or, at least, perform the same analysis for all datasets to verify that
the substantial conclusions drawn are robust and consistent. We also showed that statis-
tical tests may help identify datasets that are more suitable than others for the analysis at
hand.
To date most studies using these data unfortunately neither address potential biases nor

systematically test the robustness of their findings. There is certainly not one compre-
hensive strategy to mitigate bias in empirical data but the present study suggests that re-
searchers can at least actively address it. Especially with the growing availability of large
and highly-resolved datasets it will be more important than ever that issues of data quality
are taken seriously. As the case of the conflict in Iraq shows, if unaccounted for, we other-
wise face the risk that the ‘views to a war’ will indeed be driving our substantial findings.
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Additional material

Additional file 1: Supplementary Information.
Additional file 2: IBC and SIGACT data for the greater Baghdad area.
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Endnotes
a The estimates of the total fatalities over the course of the Iraq war differ substantially. For a detailed discussion

please refer to http://www.iraqbodycount.org/analysis/beyond/exaggerated-orb/.
b For reactions by leading conflict researchers to the release of the data see [60], for more general statements

regarding their relevance and impact see [61]. We contend that the data can be used in a responsible manner for
academic research, given that the empirical analysis does not in any way and under any circumstances harm or
endanger individuals, institutions, or any of the political actors involved. Note in particular that all data used here
has been intentionally stripped of any detailed information on specific incidents beyond information on timing,
severity and location of attacks.

c Details on data format, preparation etc. are provided in Section 1 of Additional file 1. Data used in this study is
provided as .csv files for download (see Additional file 2).

d We include all SIGACT events independent of perpetrator identity consistent with the coverage of IBC.
e Events in Baghdad make up about 35% of all events in IBC and 50% in SIGACT suggesting that there is indeed an

element of relative geographic reporting bias.
f In our analysis we always rely on the lower bound as its is the most conservative estimate; see Section 3 of
Additional file 1 for details and sensitivity analyses.

g In the U.S., for example, the geographic coverage of different providers varies significantly, independent of
population density.

h Note that some of the ‘missing’ small events in IBC might at least be partially accounted for in the aggregated
monthly (morgue or hospital) reports that were excluded from our study.

i A previous analysis of the number of events per day in Iraq also used a half year temporal window size [2].
j As a consequence of the nature of the statistical test used here we reject the correct null hypothesis in 5% of the
cases by chance and we thus effectively expect to obtain Fmax = 0.95 even if the dataset is completely featureless.
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