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Abstract

The Internet has unleashed the capacity for planetary-scale collective problem
solving (also known as crowdsourcing), with ever increasing successful examples.

A key hypothesis behind crowdsourcing is that, at a critical mass of participation, it
has the capacity not only to agglomerate and coordinate individual contributions
from thousands of individuals, but also to filter out erroneous contributions, and even
malicious behavior. Mixed evidence on this front has arisen from limited
observational data and controlled laboratory experiments with problems of
moderate difficulty. We analyze behavioral data from our participation in the DARPA
Shredder Challenge, an NP-hard combinatorial puzzle beyond computational reach,
which involved 3,500 participants from five continents over three consecutive weeks.
We study thousands of erroneous contributions and a number of large-scale attacks,
and quantify the extent to which the crowd was able to detect, react, and recover
from them. Whereas the crowd is able to self-organize to recover from errors, we
observe that participants are (i) unable to contain malicious behavior (attacks) and (ii)
the attacks displayed persistence over the subsequent participants, manifested in
decreased participation and reduced problem solving efficiency. Our results raise
caution in the application of crowdsourced problem solving for sensitive tasks
involving Financial Markets and National Security.

Keywords: crowdsourcing; collective intelligence; error and attack tolerance

1 Introduction

Crowdsourcing [1] allows us to harness human intelligence and skills in order to solve
problems beyond the reach of current algorithms and computers [2-15]. Solving a prob-
lem using crowdsourcing typically proceeds through a dedicated Web site or social media
outlet, and inviting almost any willing individual over the Internet to join in and con-
tribute. The system collects answers from these individuals (volunteers or paid workers)
from the crowd and combines their answers into a complete solution. The crowd of in-
centivized users can either parallelize and speedup the completion of a batch of tasks [16],
or solve problems beyond the reach of any individual even if given sufficient time to do so
[17].

A successful crowdsourcing platform requires a sufficiently large pool of users who ac-
tively engage their time and effort. In order to build such a user base, Web sites need to
incentivize people to participate, for example using small payments. Among the platforms
© 2014 Stefanovitch et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
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following this principle, Amazon Mechanical Turk is the best known. Crowdsourcing
projects relying on financial rewards have to satisfy time, budget and quality constraints
[18-22].

In many cases, people are also willing to participate freely in a crowdsourcing project
when they see it as fun, or useful to a greater good. Examples of crowdsourcing projects
based on voluntary work are Wikipedia, the collaboratively edited encyclopedia, Foldlt,
a gamification of protein folding for biomolecular research [23] and Tomnod, a company
specialized in rapid natural disaster response by providing crowd-based satellite image
analysis [24, 25].

Crowdsourcing systems adopt different incentives and algorithmic strategies to both
enhance the quality of the collective endeavor and to protect it from malicious behavior
[14,19-22, 26-43]. However, there is no incentive scheme that is foolproof. Users might
commit errors either due to lack of sufficient motivation, due to honest mistakes, or as
part of trial-and-error exploration of the task.

A typical approach to dealing with such errors is to replicate a single task, then aggregate
the answers of several users, for example using fusion algorithms [44]. The simplest form
is to average numerical answers, but sophisticated machine learning techniques can also
be used to cluster answers and detect outliers [36]. Some platforms, such as Wikipedia,
tolerate errors assuming that erroneous contributions will be corrected by other genuine
users after some time [45].

Deviation, however, seems possible and quite pervasive. In the context of paid crowd-
sourcing, users often exert the minimum effort possible in order to secure the pay. This
form of deviation is well understood. Platforms like Mechanical Turk employ several safe
guards to counter it, such as a reputation system that can be used to filter workers who do
not meet quality standards [46].

While errors and deviations from incentivized users received much attention, an im-
portant and largely unaddressed problem is dealing with users willing to invest time and
resources to actively attack a crowdsourcing system [47-51].

Crowdsourcing systems are particularly vulnerable to attacks due to their accessibility,
allowing attackers to easily feed the platforms with false information [49, 52-55]. The
increasing appeal of crowdsourcing solutions from governments and companies exposes
them to the risk of suffering deliberate attacks from competing or adverse agents. Crowd-
sourcing can also be used to promote distributed denial of service attacks performed by
politically [56] or financially [57, 58] motivated attackers.

In this paper, we study the capacity of a crowdsourcing system to cope with errors, lone-
wolf attacks, and distributed attacks. We use data collected during a month-long crowd-
sourcing effort led by the University of California, San Diego (UCSD) to solve the DARPA
Shredder Challenge [59]. In this challenge, contestants were asked to solve five puzzles of
increasing difficulty. Puzzles were the result of documents being processed through dif-
ferent commercial shredders. A prize of $50,000 was at stake for the first team able to
answer a set of questions that required re-assembling the shredded documents.

Solving a jigsaw puzzle is known to be an NP-complete problem [60], and requires highly
specific cognitive capabilities and observational skills (e.g. recognizing matching patterns
in images, and using context to infer likely word completions) as well as tedious repetitive

work. As such it lends itself ideally to crowdsourcing.
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Figure 2 Virtual board. Screenshot of the board used by the participants to solve the puzzles. Depicted is
the solution of Puzzle 2. The rich features of this puzzle, red ink, mug stain and lines made it easier to be
solved than subsequent puzzles.

The UCSD team was not the only team to use crowdsourcing [61]. It is, however, the only
one that succeeded at using an open platform, while all other teams kept their solution and
methods closed. The UCSD team provided users with a virtual puzzle board, depicted in
Figures 1 and 2, over which anybody could directly modify the solution state. In doing
so, the team was able to leverage the collective capacity of the crowd [62]. Users were
incentivized to contribute effort and to recruit additional users by dividing the prize using
a split contract scheme in case of winning [35].

The UCSD team entered late (two weeks into the challenge) but was able to solve the
first three puzzles in 4 days. The team managed to reach the same level of achievement as
the top contenders, reaching as far as the second place on the scoreboard put in place by
the challenge organizer to keep track of progress.

Members of a competing team subsequently attacked the UCSD platform. They ex-
ploited the platform’s openness by making deliberate detrimental moves. The system un-
derwent a series of such attacks of different scale, span and nature over three days. Despite
the short span of the attacks, the platform was unable to recover, progress stalled and no

other puzzle could be successfully assembled.
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One day after the attacks, the attackers sent an anonymous email to the UCSD team
summarily describing their intentions, actions and how they changed their attack strat-
egy to defeat the protective measures put in place by the team and exhibited by the crowd.
Noteworthy is their claim to have recruited a crowd of attackers through 4chan, an anony-
mous image hosting and discussion board with a large and reactive following [63] that is
regularly involved in massive distributed pranks and militant attacks [64].

To our knowledge, this is the first detailed dataset documenting an attack on a deployed
crowdsourcing system. The dataset provided a rare opportunity to explore the behavior of
crowdsourcing under two different regimes (i) normal: when only genuine users interact
with the system; and (ii) attack: when one or more attackers are active. While it is im-
possible to obtain perfect understanding of the underlying processes behind the crowd’s
behavior, we made substantial progress in this direction, and drew several key observa-
tions that can inform future crowdsourcing deployment.

To identify suspicious behavior, we developed a set of domain-independent features and
domain-specific quality measures to evaluate the behaviors of individual users and the
crowd. In the normal regime of puzzle assembly, we find that only a small proportion of
users (at most 10%) drove most of the progress. We also found that recovery from errors
follows a long-tailed distribution with an exponential cut-off. This implies that the crowd
can cope with small perturbation with high efficiency.

Under the attack regime, we find that just few attackers are able to inflict considerable
damage even when numerous genuine users react in real-time, giving the upper hand to
attackers. However, we could not find conclusive evidence that the platform sustained
a distributed attack from a large number of recruited attackers. This has an important
consequence that only motivated attackers can be harmful.

Moreover, we find that attacks on crowdsourcing systems are successful not because
they destroy progress made by the crowd, as this can be easily restored from backups.
Rather, it is attackers undermine the confidence of the crowd, eventually leading to the
destruction of the user base. In particular, we find an order of magnitude decrease in ac-
tivity subsequent to the attacks on the platform.

Crowdsourcing systems are complex socio-technical systems [5], whose behavior is de-
termined by technical design, individual human cognition, and social interaction among
workers. The DARPA Shredder Challenge data provides a rare glimpse into some of those
dynamics, particularly in relation to error and attack tolerance. We believe that the in-
sights gained from this study are important in the development of future crowdsourcing
platforms where state security or money are at stake. Our study highlights the importance
of taking into account the security of crowdsourcing systems at the core of its design, and
motivates the need to adapt reputation systems for these settings [65].

2 Results
2.1 Crowdsourcing under normal regime
The crowdsourcing approach to puzzle-solving proved effective as it was able to solve the
first three puzzles within almost one day each. It was able to do so despite the necessary
transient errors of users exploring different combination of pieces. This section describes
the mechanisms behind this.

Crowd behavior is the combination of the individual actions of users in a common space,
a virtual board in our case. In order to study it, we use several ad-hoc measures related to
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puzzle pieces edges moves span(h) manhour(h) users users>0

1 221 257 6200 11.87 58.91 94 41
2 374 835 19224 10.22 159.91 558 228
3 1137 650 79658 49.07 523.32 1011 224
4b 2306 189 49834 38.24 243.11 367 121
4a 2306 219 79846 335.68 514.03 544 59

Figure 3 Puzzle characteristics and crowd performance statistics. Pieces is the number of pieces in a
puzzle, edges is the number of correctly assembled edges - which correspond for the first three puzzles the
minimum number of edges required to solve the puzzles, moves is the total number of moves, span is the
difference in time between the last and first move on a puzzle, man hour column is the cumulative total
number of hours spent on the system collectively by the users, users is the total number of users participating
in a puzzle, users > 0 is the number of users which assembled at least one correct edge. The last two rows
describe two separate periods of Puzzle 4: before (4b) and after (4a) the attacks.

the evolution of cumulative achievement. Of particular importance are the progress and
exploration measures, which are related to the linking and unlinking of correct (respec-
tively, incorrect) links between pieces. The cumulative or instantaneous value of these
measures will be used throughout the paper (refer to Section 4 for details on their com-
putation).

Characteristics of the puzzles and statistics of the crowd performance are given in Fig-
ure 3. While Puzzle 4 was never solved as a consequence of the attacks, we report the
statistics relative to the two longest stable periods: before (4b) and after the attacks (4a).
We focus in this section only on the first three puzzles. The impact of attacks is the topic
of Section 2.2.

2.1.1 Crowd efficiency

While the complexity of solving a puzzle increases with the number of pieces to be as-
sembled, this measure fails to capture actual difficulty. First, puzzles possess an increasing
number of characters written in a decreasing font size. Second, puzzles differ in the num-
ber and richness of extraneous features (e.g. different colors, stains, line markers) that add
significantly to the difficulty. Third, the puzzles need to be solved only to the extent that
they can provide the answer to the set of questions laid by the organizers, possibly requir-
ing only a subset of the pieces to be reconstructed. For all these reasons it is not possible
to precisely compare the difficulty of the puzzles. Note that Puzzle 3 is actually a sparse
black and white image, with mostly featureless pieces, making it equivalent to a puzzle of
a smaller size.

However, comparing the effort needed to assemble a given number of correct links pro-
vides an indirect way to compare the efficiency of a crowd. We can observe that puzzles 1
and 2 took about the same time to solve (around 12 hours). Puzzle 2 required to assemble
3 times as many edges and took 3 times more man hours, by about 6 times as many users.
This is a straightforward illustration of the power of the crowd. Puzzle 3, with 2.5 times
more edges than Puzzle 1, required 10 times more users developing 10 times more man
hours, within 5 times the time span needed to solve Puzzle 1. This shows a non-linear
increase in the complexity of solving puzzles of increasing size due to the combinatorial

nature of the problem, as well as the intricate relationship between different features.
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Figure 4 Effort repartition. The 4 panels represent the Lorenz curves of individual user contribution to
positive progress (i.e. the number of correct links assembled) for the different puzzles, and the corresponding
Gini index. The Lorenz curve represent the cumulative distribution of the positive progress of users, where
users are ordered increasingly along this measure on the x-axis. It exhibits the relative importance of
difference in contribution to total progress across users. The Gini index is the proportional area between an
hypothetical uniform repartition (red line) and the actual repartition (Lorenz curve, in black). A high Gini index
indicates a high inequality in the contributions of different users.

2.1.2 Work repartition

We study the inequality among users’ contributions by studying the Lorenz curves [66]
and respective Gini index [67] of the different puzzles, reported in Figure 4. The curves
indicate large inequality of contributions across users. Consistently, half of the progress
has been made by at most 10% of the users, while in puzzle 3 and 4 this ratio is close to
5% of users. Moreover, as the platform gains momentum, the Gini index increases, except
for Puzzle 1, which implies that the proportion of highly active user tends to decrease as
the pool of participants gets larger. This can also be seen in Figure 3, under the column of
users with a positive count of correct links created: the ratio of those active users to the
total number of users is decreasing, except for Puzzle 4b, which is the part of Puzzle 4
after the attack.

We can conclude that most of the progress has been achieved by a small proportion of
users. While the contribution of others cannot be downplayed, it nevertheless indicates
that the primary driving force behind crowdsourcing are motivated overachieving indi-
viduals. The pool of such users is scarce or hard to reach, as their proportion decreases
with respect to the total number of participating users.

These results are consistent with recent results from another DARPA challenge, the Net-
work Challenge (a.k.a. Red Balloon Challenge), which show that finding the right people
to complete a task through crowdsourcing is more important than the actual number of
people involved [15]. This seems to indicate a trend in crowdsourcing were it is not the
crowd per se that solves the problem, but a subset of individuals with special task-specific

attributes.
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Figure 5 Error response time. Empirical complementary cumulative distribution function (ccdf) of error
recovery time in Puzzle 3 on a log-log scale. The ccdf indicates the proportion of errors that takes more than a
given amount of time to be recovered. (Left panel) Log-normal best fit, shown in green, captures the
empirical distribution better than a power law, shown in red; (Right panel) The data is best fitted by two
log-linear models (thick green lines): a fast and lightly skewed one between 1 and 84 seconds representing
62% of the cdf and a slower heavily skewed one starting from 178 s representing 31% of the cdf, suggesting
at least two error correction behaviors from the crowd: the initial, which covers most of the data, with
extremely fast responses time, and another one with a slower response time.

2.1.3 Error recovery

An error is defined here as the unlinking of a correct edge between two pieces. Correct
edges are defined as belonging to hand-picked clusters of correctly assembled pieces on
the final state of the board. Correct edges between these pieces can be created and de-
stroyed several times during the solving procedure. We study the error recovery capacity
of the crowd by measuring how long it takes for a destroyed correct edges to be re-created.

We focus on the recovery capacity exhibited by the crowd on Puzzle 3, which is the
largest solved puzzle that did not experience an attack. Figure 5 shows the empirical com-
plementary cumulative distribution function (ccdf) of error recovery times in Puzzle 3.
The ccdf shows the proportion of errors that have been solved after a given amount of
time. Most errors are recovered quickly with 79% of the errors corrected in under 2 min-
utes, 86% in under ten minutes, and 94% in less than an hour.

The distribution is heavy tailed which is an important factor behind the efficiency of the
crowd to cope with errors. We fit a power law, log-normal and exponential models to the
data following the procedure of [68], and compare them using the Vuong test [69]. The
Vuong test is a likelihood ratio test able to discriminate which of two models better fits
the data and is able to tell whether it can confidently do so. While close fits do not provide
a proof that the data follow the best model, they nevertheless pose a basis for studying
the generating process. The log-normal model is the most supported one, with a high
test statistic and p-value close to zero, indicating that it is a better fit than the power law.
The fitted model has a location (i.e. mean in a logarithmic scale) of 6.89 and a shape (i.e.
standard deviation in logarithmic scale) of 1.92. This distribution has a mode of 24 s but
is heavily skewed with a median of 27 min and a mean of 1.75 hours.

However the region fitted by this model starts at 178 s and as such represents only 31%
of errors. So we performed an additional study of the previously non-fitted region of the
data. The log-normal model is again supported by the Vuong test as the best fit in the range
of 1 to 84 seconds, with a location of 2.4 and a shape 0.98. The upper value of the range
was found by sweeping through the unfitted section of the data and selecting the value
minimizing the Kolmogorov-Smirnov statistic. This model accounts for 62% of errors, and
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Figure 6 Returning users. The entries above the diagonal gives 1 2 3 4
the return rate of users of puzzle i (row) in puzzle j (column). The
lower triangle gives the proportion of users of puzzle j (column) 1 L 024 040 046
returning from puzzle i (row). Return rate of users in Puzzle 4 from 2 | 0.04 1. 025 025
before the attacks to after the attacks is 0.98 and 1.0 in the opposite

. . . 3 0.04 0.14 1. 0.26
direction (no new user have been recruited after attacks).

4 0.05 0.15 0.28 1.

is lightly skewed, with a mode of 4.1 s, a median of 11 s and a mean of 18 s. Unaccounted in
the data are the errors which have never been solved, which represent 0.013% of the error
and are therefore negligible. Thus, the data suggest that the crowd is able to respond to
errors in at least two different ways with different characteristic times.

2.1.4 User engagement

As seen previously, the bulk of progress relies on the number and dedication of a few
talented users. It is therefore important to attract and retain such users. We report the
proportions of shared users across pairs of puzzles in Figure 6. Given the sequential solving
of the puzzles, we can quantify the attrition rate, which is about 75% for all puzzles except
Puzzle 1. The reason behind the peculiarity of Puzzle 1 may lie in the fact that only a few
users participated, and that these users were likely more tightly connected to the social
network of the UCSD team.

Figure 3 also shows that Puzzle 3 has about twice as many users as Puzzle 2, but has
actually the same number of performing users. This indicates that despite the increase in
crowd size, the number of people willing to participate is small and increases more slowly
than the number of people visiting the site. The rarity of talented users, combined with a
high attrition rate, means it is necessary to keep new users coming as previous users leave.

2.2 Crowdsourcing under attack

Our analysis reveals that the attacks sustained by the UCSD varied in scale, duration and
nature. The attackers adapted to the defensive behavior exhibited by genuine users and the
UCSD team. We were able to identify five different attack intervals. Each interval corre-
sponds to one or more attackers attacking either once or several times, giving short breaks
to genuine users before attacking again. To compare crowd behavior under the normal and
attack regimes, we define a set of time series. Moreover, in order to help identify attackers,
videos replaying the moves of all users have been produced (see Additional files 1 and 2).
We refer the reader to Section 4 for more details.

Figure 7 summarizes the identified attacks and their diversity characteristics. The dura-
tion of the attacks ranged from 3 minutes to 1.5 hours, and the scale varied between less
than 200 moves to more than 5,000. The average moves-per-second (MPS) of a period is
the ratio of number of moves by the crowd during this period and the length of this pe-
riod (we similarly define the user MPS as the number of moves s/he performed divided by
participation span). The MPS of the attacks ranges from 0.1 to more than 10. High MPS
is a combination of at least three factors: fast motivated attackers, parallel attackers and
imperfect times-tamp collection.

We can distinguish at least two attack mechanisms: scattering the pieces of the correctly
assembled cluster, and piling pieces on top of each over. Two attacks, a2 and a5, use an
unknown mode of operation, which may correspond to the exploitation of a software bug,

as claimed by the attackers.
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attack  span  attack moves  non attack moves  attack MPS  attack type

al.l 491 88 167 0.179  scattering
al.2 2825 349 392 0.123  piling
a2 14 100 19 7.142  unknown
a3 133 190 51 1.428 piling
a4.1 1000 5618 594 5.618  piling
ad.2 133 1775 60 13.345 piling
a5 376 658 110 1750  unknown

Figure 7 Attacks statistics and type. Attacks a1l and a4 proceeded in two phases and as such are
considered separately in this table, labeled .1 and .2. Reported are the span, the duration of each phase of an
attack (in seconds), the total number of attack moves and non attack moves, the average moves per second
(MPS) of attacks, the type of the attack, as it can be observed on the videos. Attacks of type unknown are
perpetrated by reported attackers whose mode of operation is unfathomable. Note that total span of attack
a4 is of 72 min, consisting of 19 min of actual attacks and 54 min of recovery between the two phases.

2.2.1 Unrolling of attacks

The first attack happened about two days after the start of Puzzle 4 and proceeded by
scattering the pieces of the largest assembled clusters (attack al.1). However, the attacker
quickly changed his strategy from scattering to piling (attack al.2), as the other users de-
tected and repaired the damage. By piling up the pieces, the attacker made the work of
genuine users much more complex, as they had first to unstack the pieces and then search
for correct matches. While dedicated users were able to counter the attack, albeit slowly
(refer to Section 2.2.5), the system was put offline for 12 hours and the state of the board
reverted to a previous safe state (first rollback). The team also reacted by banning the IP
addresses and logins used by the attacker, which was only a temporary solution.

The next attack (attack a2) was very small in scale and its nature is dubious, as it did not
have any impact on progress and does not show any piece displacement on the video. The
two subsequent attacks (attacks a3, a4) were clear, involving only piling moves. Thanks
to the small scale of a3, it did not have a lasting impact (we discuss this attack later in
more detail). Attack a4 was the largest, and it disrupted the system for about two hours,
which was then put offline for 8 more hours before being reverted again to a safe state
(rollback 2).

Attackers adopted different strategies because the crowd was able to observe the un-
usual behavior and react accordingly by unpiling, unscattering and possibly reconnecting
edges. This is reported by the attackers in the email they sent to the UCSD team. While
we observed additional attacker activity after a4, examination of the video does not con-
clusively support the attackers’ claims. This last attack, a5, was undetected at the time and
no rollback was performed.

In their email, the attackers claimed to be part of a competing team and to have recruited
a crowd of attackers via 4chan and to have instructed them to disconnect assembled clus-
ters and stack pieces on top of each other. Whether this recruitment was successful is hard
to evaluate. Nevertheless, to the best of our knowledge, only two physical attackers per-
petrated the attacks under 8 different log-in names. In the remainder of the paper we will

not make this distinction and talk about each attacker log-in as a separate attacker.
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Figure 8 Impact of attacks on user behavior in Puzzle 4. Each dot represent a user plotted along two
features: the total participation time (x-axis) and the total number of contributions, i.e. moves (y-axis) on a
log-log scale. Large red dots in Puzzle 4 represent reported attackers. Thick lines are linear fits. In all three
panels of Puzzle 4, the fit of Puzzle 4 before the attacks (blue) is represented to provide a reference point to
visually assess the effect of the attacks. For the same purpose the fit of Puzzle 3 (green) is represented in the
panel of Puzzle 4 before the attacks. Note that Puzzle 4 before and after the attacks contain about as many
users although they lasted respectively 1.5 and 14 days. Moreover these are about the same set of users with
98% of users of Puzzle 4 before the attacks returning after the attacks.

2.2.2 Immediate impact of attacks on user behavior

The total duration of the attacks, from the first to the last move made by an attacker,
spans only about two days. We assess the immediate impact of attacks by looking at the
features of users during and after the attacks and comparing them to baseline behavior.
This baseline is given by Puzzle 3 and Puzzle 4 before the attack.

In Figure 8 users are plotted along two behavioral features: the total time spent on the
system and the total number of moves. Linear regression lines are plotted for each panel,
along the baseline in Puzzle 4. Reported attackers are indicated by red dots.

Across all panels except Puzzle 4 during attacks, a relationship between total time spent
and total number of moves is apparent. This relationship however varies across panels as
the linear regression coefficient shows: 0.69 in Puzzle 3, a faster 0.82 in Puzzle 4 before
the attacks and a slower 0.66 after the attacks, all with comparable intercepts.

The attacks have an immediate impact of slowing progress and changing the behavior
of genuine users. The relation between time spent on the system and number of moves
does not hold any more: a large proportion of users (about half), makes a large number
of moves within a short period of time. The slope of the linear fit not only decreases to
0.70 but also the intercept is higher. The behavior of six out of the eight reported attackers
departs from the baseline, but so does an even higher number of genuine users, compelled
to match the speed of attackers to respond to the attacks. The two attackers which do not
depart significantly from the baseline of behavior correspond to the 2 logins used during
attack al, which was short and small paced.

While users departing from the baseline behavior can be suspected of being attackers,
this is unlikely. Figure 15 plots users of puzzles 3 and 4 along the user participation span

Page 10 of 27
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category operation visualisation valuation

progress create correct link B <:| = B:’ +1
progress destroy correct link B:’ = B <:| -1
exploration  create incorrect link B <:| = B:’ -1
exploration  destroy incorrect link B:’ = B <:| +1

Figure 9 Move evaluation and time series. Moves are numerically evaluated with respect to their impact
on the overall puzzle completion. Moves that involves two pieces that should be connected fall under the
progress category, moves that involves other pieces fall under the exploration category. Progress moves have a
direct impact over the completion, while exploration move have an indirect impact. A move is valuated +1 if
it creates a correct edges or destroy an incorrect edges, and -1 if it destroys a correct edge or create an
incorrect edges. Given the time at which a move is performed, we obtain time series for each categories. We
define an additional completion time series as the sum of the cumulative progress and exploration time series.
More details can be found in Section 4.

and the number of exploration moved performed by the user. This combination of two
kinds of features is able to highlight the pilling attackers, which clearly stand apart, with a

high number of exploratory moves within a short time span.

2.2.3 Long term impact of attacks on crowd behavior

Attacks had a long lasting impact over the performance of the system, reducing its activity.
It is noteworthy that after the attacks, no new users have been recruited, while 98% of the
users before the attacks contributed at least once after the attacks. The same set of users
are therefore being compared, ruling out difference that could arise from different user
sets.

The long term impact of attacks can already be seen in Figure 8, when comparing the
panel of Puzzle 4 before and after the attacks. The overall reactivity of users measured
by the linear regression lines decrease from its highest before attacks at 0.82 to its lowest
after attacks at 0.66, thereby requiring more time to achieve a given number of moves.

To further assess the long term impact of the attacks, we first define three discrete time
series: progress, exploration and completion. These time series are based on a numerical
evaluation of each move, which is given in Figure 9. Progress corresponds to the actual
solving of the puzzle, exploration captures moves that do not directly lead to the creation
of correct links. Completion is defined as the sum of the cumulative progress and explo-
ration.

An illustration of the attacks unrolling is given in Figure 10. The figure represents the
cumulative progress and exploration time series, highlighting the attacks and their direct
impact. While none of these time series is sufficient by itself to capture different kinds of
attacks, their combination is more informative. For this reasons we use the completion
time series as the basis of our study of crowd behavior.

We now define three measures based on the set of local optima of the completion time
series: the difference in time (Ame) and completion (A completion) between two successive

optima, and the time to the same level after a local maxima (Agame level) (for details see Fig-
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Figure 10 Progress and user flow in Puzzle 4. The first three panels represent the time series of the
cumulative progress (black) and absolute value of instantaneous exploration (red) in Puzzle 4, plotted on the
same scale, from top to bottom and left to right: (a) across the whole span of the solving, (b) during the
section s1, as indicated in blue in the first panel (spanning from the start of the puzzle to before first rollback)
and (c) during the section s2 (spanning between two rollbacks). The lower right panel (d) also corresponds to
the section s2 and is the smoothed time series of users first moves (blue) and last moves (red). Spans of
reported attacks are indicated in shaded orange area.

ure 11). The two last measures capture the reactivity of the crowd, while the first captures
its efficiency.

In order to rule out the impact of a particular choice of local optima size on the analysis,
we computed the ratio before attack over after attack for each feature and for 13 values of
local optima size ranging from 10 s to 1000 s. The ratios are remarkably stable, indicating
that crowd behavior is invariant to the time resolution. Here we report their mean and
standard error: Acompletion = 1.438 & 0.105, Agme = 0.192 £ 0.003, Agme level = 0.098 =
0.002. We can already see that on average, after the attack, the crowd is about ten times
slower to recover from a drop in completion, and that it is about 1.5 times less efficient.
We further refine analysis of the crowd behavior by studying it in details for a given size
of the local optima size of 400 s. See Section 4 for more details on this particular choice.

The local optima of Puzzle 4 are plotted in Figure 12 along two dimensions: Aye and
A completion- Optima are partitioned along a qualitative variable indicating when the optima
happened: before the attacks (blue), after the attacks (red), between the attacks but ex-
cluding them (purple), and during the attacks (green). This plot provides two key insights.
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Figure 11 Measurement of crowd behavior. A set of 3 features is defined in order to numerically evaluate
the behavior of the crowd. These features are based upon the set of local optima of the completion time
series which measures the global achievement of a puzzle. This time series (black dots) is highly noisy and in
order to focus on overall behavior the time series is first smoothed (green line) prior to finding the local
optima. Local optima indicate remarkable points of the time series whose position in time and value
summarize the progress and the efficiency of the crowd (local maxima are orange, local minima are yellow).
We further refine this information into three measures to capture crowd behavior: A completion the difference
in completion between an optima and the next optima, A¢ime the difference in time between an optima and
the next optima, and Agame level the difference in time between a local maxima and the moment at which
the completion reaches back for the first time the same level as the maxima (indicated in purple for the first
maxima of the figure). The local optima are local within a windows of a given size, as a consequence not all
optima are included in the final features. Details about the choice of a particular local optima size are given in
Figure 12.

local optima size = 400
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Figure 12 Impact of attacks on crowd behavior. Scatter plot of two of the features (Atime and Acompletion)
for a given size of 400 s for the local optima of Puzzle 4. While the completion is discrete, the optima are based
on a smoothed time series, resulting in a continuous scale for the feature A completion- All attack local optima
but one clearly stand apart from the local optima outside attacks, their position correspond to different attack
scales and operating modes. The clouds of point corresponding to normal regime indicates a progressive shift
in crowd behavior between before and after attacks.

First, crowd behavior during attacks stands apart from the normal behavior. Second, there

is a marked slowdown in crowd response time after the attacks.

This slowdown is better visualized in Figure 13, which shows box-plots of the three fea-
tures of Puzzle 4 before and after the attacks, excluding the attacks themselves, compared
to all the other Puzzles. The measure A ompletion, While being a lower bound on the actual
variation of completion due to smoothing, is nevertheless comparable across all puzzles,
implying that completion always varies by the same order of magnitude. There is however

a significant variation across puzzles when considering the two other measures, related to

the reactivity of the crowd.
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Figure 13 Impact of attacks on crowd behavior. Box-plots for each puzzle of the three crowd behavior
features: Acompletion (1€ft panel), Atime (right panel), and Agume level (lower panel). Puzzle 4b and 4a are Puzzle
4 respectively before and after the attacks. The box delimits the first and third quartile of the data, the dashed
line the median. The whiskers extend to the most extreme points within 1.5 the interquartile range, others
points are represented as outliers.

When considering the box-plot of Ayine, Puzzle 1 and Puzzle 4 after attacks clearly stand
apart with a median difference in time magnitude slower than the baseline of the other
puzzles. Specifically, Puzzle 3 has a mean of 18 min, which makes Puzzle 4 before attacks
1.83 times slower and Puzzle 4 after attacks 9.73 times slower. A likely explanation for
the low reactivity in Puzzle 1 is because the crowdsourcing effort had just started and the
platform did not have enough users (c.f. Figure 3), while Puzzle 4 after the attacks lost
momentum due to the attack itself.

When considering the box-plot of Agme level, Puzzle 1 and Puzzle 4 after attack stand
apart even more clearly: Puzzle 3 and 4 before attacks have a mean time of about 1.5 hour,
which is 11.53 times faster than Puzzle 4 after attacks. This order of magnitude slow-down

indicates the drastic impact of attacks on crowd performance.

2.2.4 Distributed attacks

Despite the attackers’ claim that they recruited a crowd of attackers on 4chan, it is diffi-
cult to corroborate this claim from the data. Log analysis shows that all of the anonymous
logins and IP addresses related to massive attacks are related to two real name emails.
Moreover, at no time has there been more than two reported attackers acting simultane-
ously. We are thus led to conjecture that there were only two individuals behind all the
known attacks.

We have already seen, in Figure 8, that during the attacks the behavior of attackers and
genuine users gets entangled. Nevertheless, Figure 15 reassures us that we did not miss
any important attacker as these clearly stand apart from the rest of the users.

However, this plot does not allows us to rule out the existence of several low scale at-
tackers which would have a behavior similar to low performing genuine users. As matter
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of fact, the bulk of participants contribute only a few moves before leaving the system.
Attackers with such a behavior are impossible to detect as their profile is too similar to
normal users. Indeed, the only two such reported attackers were detected thanks to the
acquaintance network inferred from logs.

It is therefore not possible with these methods to detect a crowd of unrelated distributed
attacker, which is our concern in this section. This is a matter of concern as the combined
effect of a large crowd of several low scale attackers could do as much damage as one large
scale attacker and would also be significantly harder to detect.

However, upon further inspection of the data, it is possible to find clues, pointing to-
wards a distributed attack. The span between the first rollback and the start of the large
attack a4 is the time during which the alleged crowdsourced attack is most likely to have
happened. Incidentally, it is also during this span that the behavior of users deviates most
from the norm. This change in behavior is characterized by a high number of pileups, high
user MPS and a low total number of moves.

Additionally, the smoothed time series of first and last moves within this span, reported
in Figure 10(d), shows a sharp influx and outflux of users peaking during attack a3. This
indicates a massive wave of users joining and leaving immediately, which is what would be
expected after an announcement on 4chan. During this time, significant noise is added to
the system while no significant progress is achieved. However, such is also the case during
the beginning of Puzzle 4, which experienced a massive influx and outflux of users with
similar consequences.

We are therefore not able to elucidate whether a 4chan crowdsourced attack actually
took place. We can argue that if it did, its impact was negligible; and if it did not, this
would mean that the original attackers failed to recruit even a small crowd of attackers.
In both cases, we can conclude that for a crowdsourced attack to work, it is necessary and
sufficient for the participants to be motivated as it is illustrated by the very large damage
that only few users were able to infringe. Effective attackers may have belonged to a rival
team and were clearly motivated by the $50,000 prize at stake. Such was not the case
for attackers recruited through the Internet. They had no incentive to attack the UCSD
platform as it was not involved in any controversial (e.g. political) activity, and they had
no financial gain from doing so. In contrast, the UCSD team’s strategy was altruistic, and
promised to redistribute the potential prize wholly among the participants.

2.2.5 Attack recovery

Out of the five attacks the system sustained, two shattered all progress, and two had almost
no effect. The two phases of attack a4 were separated by 54 minutes without attacks during
which users, despite trying, were unable to recover from the first phase. Thanks to the
rollbacks, users did not have to start from scratch, but this prevents us from adequately
measuring how users recover from attacks.

We were nevertheless able to study the recovery of a smaller undetected attack, attack
a3, which did not call for a rollback. This attack was not significant enough to be detected
by the UCSD team but important enough to be detected by the crowd. We will therefore
be able to describe crowd recovery only on this single attack. However, because of its small
in scale, the conclusions we can draw from it are limited. The precise recovery capacity
remains an open question that requires targeted experiments.

Attack a3 lasted about 133 seconds, and involved a unique attacker making 190 moves to
disconnect and pile up pieces. This attack destroyed 88 correct edges. Recovery, defined
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as the time to reach the same level of completion as before the attack, lasted 199 second
and involved 628 moves from 16 unique users that recovered 86 of the 88 disconnected
correct edges.

Interestingly, recreating what has been destroyed took genuine users about 1.5 times the
duration it took to perform the destruction. However, it took them about 3 times more
effort by 16 times more users. The attack MPS was 1.5 for the attackers against 3.15 for
the defenders, which is significantly above the average MPS of 0.5 around this attack. This
indicates that users identified an attack and deployed frantic effort to counter it.

Most of the users present during recovery were genuine and actively reacted to the at-
tack as indicated by Gini index of their move count which is 0.35. This indicates a clear
imbalance of power between attackers and defenders. Moreover, counting the number of
moves as a proxy for the time individual users spent on recovery, we observe 0.23 man
hours of work to defeat the damages inflicted in 0.03 man hours of works, i.e. an 8-fold
increase in required effort.

Although the small scale of this particular attack made it easier to resist, it nonetheless
illustrates the power imbalance that attackers have over genuine user. It can be expected
that the time required to recover from an attack is super-linear in the number of pieces
involved, while the destructive effort is linear.

2.2.6 Destructive effort

Rather than measuring the effort it takes to recover from an attack, we can also consider
the efforts an attack needs to destroy what had been previously done. We also have a
unique sample of this phenomenon: the effort it required the first attack to destroy most
of the progress that was made since the beginning of puzzle 4. During this attack, all the
assembled clusters were first scattered and then pieces were randomly piled on top of each
others. After this attack the system was rolled back to a safe state.

Reaching the state of the puzzle before attack 1 required 39,299 moves by 342 users
over 38 hours. Destroying all progress required 416 moves by one user and was done in
8 minutes of scattering and 47 minutes of piling. The user MPS of the attacker was 0.15,
which is considerably slower than normal behavior, and much slower than the MPS of
subsequent massive attacks. This can be explained due to the low reactivity of genuine
users who contributed only a total of 473 moves by 18 users during the span of this attack
and an average period MPS 0.13.

One attacker destroyed progress in about 1/100th of the moves and 1/60th of the time
it took a crowd of several hundred users to create. The defenders were hapless. The im-
balance of power is even starker in this sample.

3 Discussion
The question of how people organize to solve complex problems has always fascinated sci-
entists. Of particular interest is the way incentives that shape individual behavior impacts
the performance of the group [70-72], and how people are often able to overcome their
self-interest to create sustainable communities [73]. However, it is often very difficult to
observe a system of collective problem solving by observing every individual action. The
data we collected from the DARPA Shredder Challenge provided us with unique oppor-
tunity to do just that.

As collective problem solving gets increasingly open to the public, it becomes more cru-
cial to understand its resilience to errors and attacks [74]. Crowdsourcing is a powerful
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technique for problem solving, yet highly vulnerable to disruption. The crowdsourcing
approach proved itself highly effective, as in a matter of 4 days, the first three puzzles
were solved. However, in the two remaining weeks the fourth puzzle, which was twice as
large as the third puzzle, got completed only up to approximately 10%.

Crowd reaction to errors was efficient and seamless, with most errors recovered within
minutes. However, the crowd was helpless against motivated attackers that could inflict
damage far quicker than the crowd’s recovery.

Long term impact of the attacks has been a sharp decrease in participation and activity.
Previously active users were driven away and new users possibly discouraged. If no dead-
line is set for a crowdsourcing project, slowing down would not be an issue. However, such
was not the case for the DARPA Shredder Challenge and each additional delay decreases
the likelihood of winning, thereby reducing the motivation of users even further. Thus,
the real impact of the attack was not to destroy the assembled pieces but to destroy the
user base of the platform, and to disrupt the recruitment dynamics. We believe this is the
main reason behind the inability of the UCSD team to win the challenge, which finished
in the sixth position despite persistent large-scale attacks.

Openness is both the strength and the weakness of crowdsourcing. The power of crowd-
sourcing lies in allowing a large number of individuals to contribute freely by giving them
unfettered access to the problem. However, because the power and the freedom given
to the users are important, crowdsourcing stops working as soon as users start abusing
this power. Such abuse can happen to any crowdsourcing project. However, large widely-
publicized projects, which naturally attract more attention, or projects involving political
or financial stakes, may easily find highly motivated opponents.

A number of safeguards have to be placed in crowdsourcing systems. Monitoring is the
first component, as prompt measures have to be taken in case of attacks. Monitoring and
behavior assessment are not trivial issues, and require the design of problem-specific mea-
sures for detecting attacks modes.

However, monitoring by itself cannot protect the system from damage. Actions such
as banning users or IP addresses can help, but are inefficient against motivated, skilled,
relentless, and adaptive attackers. Effective safeguards require constant (possibly auto-
mated) monitoring to detect unusual behavior and, more importantly, to lower the po-
tential threat of attackers by temporarily closing parts of the system. Such measures could
control or restrict one or several mechanisms, such as user recruitment, reach and actions.

It has to be noted that Wikipedia, arguably the largest open crowdsourcing platform in
the world, is vulnerable to attacks. Such attacks, in the context of collaborative editing, can
take the simple form of page defacing, or the more subtle biased rewriting. Page defacing
can be easily detected by returning users and are easy to revert thanks to the edit history.
To prevent small-scale attacks, a set of tools monitoring both the behavior and content
of modification have been deployed to alert the crowd to suspicious updates. While users
are not financially motivated in Wikipedia, they are often politically motivated to establish
their point of view. Wikipedia’s code of honor and neutral point of view policy does not
prevent regular politically motivated attacks. In such a case the only effective measure is
to lock down sensible page and only let reputable users contribute to them.

Another popular crowdsourcing platform, Mechanical Turk, differs in that users are paid

to participate. Quality control is left to the task proposer, and a reputation mechanism is
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used proposing higher paid tasks only to users that have proved their efficiency on lower
paid ones.

No security solution can be fully automated and all ultimately rely on the supervision of
the behavior of the system by the crowd or the organizers [34]. While this may seem to de-
feat the purpose of crowdsourcing, we believe that integrating security in crowdsourcing
system design and investing resources in monitoring is fundamental. Any attacked crowd-
sourcing project risks not only converging to the wrong solutions but, more importantly,
losing its core driving force: its user base.

Crowdsourcing can be viewed as a public good game in which a group of strangers get to-
gether to promote their collective well-being [75]. While these games create opportunities
for individuals to free ride, thus leading to the tragedy of the commons [76], competitive
crowdsourcing has the added dimension of inter-group competition [77-79]. Although
our data is insufficient to study inter-team dynamics, capturing such data is possible in
future experiments. Nevertheless, our analysis of the limited anonymous attacks provide
a glimpse of what such analysis might look like. Simulation-based models can potentially
be helpful in exploring these types of complex dynamics [80].

The recently proposed crowdsourcing contest dilemma game provides a starting point
for studying inter-group conflict in crowdsourcing [48]. Moreover, game-theoretic anal-
ysis of incentives provides opportunities for designing mechanisms that encourage indi-
viduals to fix errors, as we have demonstrated elsewhere [34]. These incentives are non-
trivial. For example, one can explicitly reward people who contribute to ‘error recovery,
but this may create incentives to collude with attackers who create an artificial need for

such recovery.

4 Methods and dataset
All data collection was conducted using our custom-built crowdsourcing platform. A ded-
icated web site includes further details about the system, recruitment etc. [81].

4.1 Data and features

4.1.1 Puzzle

The Shredder Challenge provided 5 puzzles of increasing complexity. The puzzles were
the result of processing papers through document shredders. As a result, the pieces were
tiny but had a regular size. All of these documents were handwritten text of increasing
density and quantity, except for Puzzle 2 which was an image. It must be noted that the
contestant were not required to solve all the puzzle to win the prize but had to answer
specific questions. In order to do so, the answers had to found in part or totality of a
document. Some artificial features like coffee mug marks, capital letters, different writing
colors were introduced in the document to make solving the puzzles and answering the
specific questions easier. As a consequence, the connection between puzzle time, solving
time and effort is loose. Figure 2 is a screenshot of the virtual board provided by the UCSD
team to the public. The figure also depicts the solution of Puzzle 2.

4.1.2 Dataset

The UCSD Shredder Challenge dataset, that will we refer to from now on, is simply the
dataset with a log of all users’ actions on the web interface to solve the puzzles. The log-
ging of these information proved itself invaluable during the challenge to rollback to safe


http://www.epjdatascience.com/content/2014/1/13

Stefanovitch et al. EPJ Data Science 2014, 2014:13 Page 19 of 27
http://www.epjdatascience.com/content/2014/1/13

state before attacks and afterward study the behavior of the crowd and the reaction of
the crowd in presence of disruption (this study). Among the data collected, two tables are
of particular importance, the login table and the moves table. The login table is consti-
tuted of: email, IP address and time stamps. It was used to detect connected components
of users and help in classifying users into two groups: genuine users and attackers. This
table contains 7,725 entries. The move table consists of the following tuples: update_id,
piece_id, piece position (3 coordinates: X, Y and rotation), email, IP address, time stamp.
This table contains 290,479 entries made by 2,106 distinct users. From this raw data, we
derived several measures and features that have been subsequently used to perform all the
analysis presented in this paper.

We define a set of simple features that are associated with each move. As a result, we
construct a time series for the resolution process and a set of simple features that are asso-
ciated with each user. We also define complex measures for the crowd behavior through
processing and aggregating the feature information in the time series. User features are
also used to distinguish between attackers and genuine users, while the complex measures
are able to distinguish most of the attacks from normal regime and allow us to quantify
the impact of the attackers over the crowdsourcing process.

4.1.3 Features

We define several measures based on the dataset and from these we construct simple fea-
tures that describe the progress of individual moves and the behavior of individual users.
Also, we construct complex features that describe the aggregated behavior of the crowd.

These different features are used to understand the normal behavior of the system and
accordingly to detect unusual behaviors that follow attacks and to assess their impact.

Progress. In order to capture how each move contributes to the solution of the puzzle,
we define several progress measures associated with the move. Each of these measures
is computed by comparing the neighboring pieces of the moved piece before and after
the move to the actual neighboring pieces in the final state of the board when the puzzle
is completed. More precisely, we count the progress related only to correct clusters of
pieces that are hand identified in the final state of the board. We say that two pieces are
placed correctly when they are linked in a final cluster, and incorrect otherwise. During
the resolution, each piece can be linked and unlinked several times. We define the features
CC (correct create) and CD (correct destroy) and associate them with the value of +1 or
—1 when two correct pieces are respectively linked or unlinked. We similarly define IC
(incorrect create) and ID (incorrect destroy) to refer to incorrect pieces and associate them
respectively with a value of -1 or +1. See Figure 9 for illustration. The contribution made
by correct edges is called progress and the contribution made by incorrect edges is called
exploration or noise in the case of attacks. When a piece is piled over another one, that
is to say two piece share the same location on the board. We discard the progress of both
pieces if they are piled and count the move as a pile up.

Time series. In order to study the dynamic of puzzle solving process, we create several
time series. Each time series correspond to the impact of moves as described in the pre-
vious paragraph and illustrated in Figure 9. Among these, we used three particular time
series: The progress time series captures how many correct links between pieces are cre-
ated and destroyed that corresponds to the actual solving of the puzzle. We are interested
in the cumulative progress time series that reports the overall progression of the puzzle.
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The exploration time series captures how incorrect links are created and destroyed. Ex-
ploration is necessary to test the matching of different pieces. It is reported in the figures
using its absolute value to show the quantity of effort that is put into exploration. The ac-
tual value of exploration is null on average. The completion time series is defined as the
sum of the cumulative progress and exploration. It is used to measure the crowd perfor-
mance at solving puzzles. Time series of the number of first and last participation has been
built in order to study the flux of users.

User behavior. In order to study the users’ behaviors, we define a set of features which are
computed based on the progress related measures and the timing of their moves. Users’
contribution is irregular. They can participate only once but can also participate several
times across the week, the day or the hour. As such, we distinguish continuous period of
participation by setting a threshold of 15 min. If two moves are made during the threshold,
they are counted as being part of the same participation. Otherwise, they belong to two
different participations. Once we define the participations of a user, we define also: the
sum of moves, sum of duration, mean of moves and mean of duration and mean of moves
per second (average user MPS over each participation). We also include the span of users’
participation and the time of their first and last move.

Crowd behavior. Crowd behavior is the combined effect of the action of different users.
To study it, we define a set of complex features that are all based on the local optima of the
completion time series. More precisely, we are interested in measuring the crowd reactiv-
ity and its work quality. For this purpose, we define three features: the time between two
successive local optima (Ame), their difference in completion (Acompletion) and the time
between a local maxima and the moment when the completion reaches again the same
level as the local maxima for the first time (Agame level)- An illustration of their computa-
tion are given in Figure 11. We define the MPS as the number of moves performed by the
crowd during a given period divided by its length.

Because the completion time series is highly noisy, a smoothing is performed in order
to remove the most important instantaneous fluctuation with a kaiser window of size 50
and parameter beta set to 1. The corresponding smoothing time span is a function of the
MPS which varies across several order of magnitudes. The parameters have been manually
selected in order to remain close to the original time series while reducing the number of
local optima due to instantaneous fluctuations, thereby focusing on the global behavior
of the crowd. A side effect of the smoothing is that the Acompletion is @ lower bound of the
actual variation of completion.

The impact of the choice of different local optima size over the values of the features is
depicted in Figure 14. Small optima sizes can exhibit changes in the time series at an arbi-
trary small scale, while large optima size are better able to characterize the global behavior
of the crowd. Larger optima size makes also the attacks stand out more clearly.

While the actual value of the features for each size is different, the ratio of the values, as
reported in Section 2.2.3, is almost constant. This allow us to choose any particular value
of local optima size for a detailed study of crowd behavior. We select a local optima size
of 400 s to focus more on the global behavior of the crowd and because it is the smallest
value for which attacks become clearly separated from normal behavior.

4.1.4 Data cleaning
During the resolution of puzzle 4, two rollbacks happened to take the system back to a pre-
vious safe state. The averaging of the cumulative progress related time series is required to
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Figure 14 Impact of attacks on crowd behavior. The panels depict the influence of the local optima size
over the mean and standard error of the features defined in Figure 11. A local optima is selected to be part of
the computation of the features only if it is optimum within a centered time window. Colors denote the time
at which the optima happened with respect to the attacks: before, after, during (the non-attack period
between the first and last attack move) and during the attacks themselves. We can observe that while the
value of the features of non-attack periods increase, their ratio remains constant.

take into account these time boundaries by considering them separate time series because
of the sharp discontinuities. The computation of the complex features necessitated to take
into account these same limits. This is the reason why for the time to same level feature,
there are no points corresponding to attacks for local optima size larger than 200 s: the
system never had the time to fully recover from important loss before rollback. This lim-
its our ability to quantify how efficiently the crowd reacted to attacks. However among
the several attacks withstood by the system, one was important enough to have an impact
over the progress but not enough important to require a rollback as the crowd was able to
seamlessly fully recover from it.

4.2 Attacker detection

In order to detect attacks and attackers, we proceed in a layered way using increasingly
sophisticated approaches. The first step is to use the database to perform a replay of each
move of Puzzle 4 and manually identify suspicious sets of moves. In order to do so, we
generate a video where each moved piece left a trail on the board between its initial po-
sition to its final position. Each frame of the video is comprised of hundred consecutive
moves, thereby giving us a stepped global view of the crowdsourcing process. Figure 16
gives an instance of such a video frame.

In the following description, we will distinguish between genuine users, average users,
reported attackers, and suspicious users. Genuine users are reported as such, if they fully
satisfy at least one of the criterion of being genuine. Reported attackers shall fully satisfy at
least one of the attack criterion to be an attacker. Suspicious users are users who take part
only during the attacks and present similar traits as attackers but also as genuine users.
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Figure 15 Attacker detection through user behavior. Each dot represents a user plotted along two
features: the difference in time between his/her last and first move (span, x-axis) and the total number of
exploratory moves (y-axis) on a log-log scale. A move is exploratory if it does not help or hinder progress
directly. Large red dots in Puzzle 4 represent reported attackers. The two outliers on the upper left of Puzzle 4
are the fictitious users used to perform the rollbacks. Note that the term ‘exploration’ supposes a genuine
intention behind the move. When the move is performed by an attacker, the term ‘noise’ is more accurate as
the attacker intentionally adds unnecessary information to the system.
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Figure 16 Video frame. Sample frame of the videos generated from the database. The videos replay all the
moves that were performed on the virtual puzzle boards. Static pieces are white. Moved pieces are gray.
Pieces moved by attackers are red and rollbacks are blue. The gray lines indicate the displacement of every
moved piece. Timing and progress information are given in the lower left corner. Videos are available at the
following URL: http://vimeo.com/user27628641.

Average users are small or medium scale contributors who participate outside the attacks,
while they can also do detrimental move. There is no reasonable reason to attribute them
as being part of a wider coordinated attack. Most of the subsequent work has been done
in order to classify suspicious users as either genuine users, attackers or average users.
Crowd behavior. Visual identification of attacks is what the crowd did at the time of the
attacks. It requires high level knowledge about what suspicious move may look like. It is

an ad-hoc approach to the problem and hard to automatize. We are able to identify on
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Figure 17 Piece move patterns. Four most common patterns of pieces’ moves observable in the videos.
The first two patterns correspond to normal behavior: (a) corresponds to crowd behavior of different users
acting independently on different parts of the board, (b) corresponds to a single user behavior rearranging
coherent cluster of pieces. The last two patterns are the attack. It has to be noted that pattern (c) is also used
by genuine user to counter the effect of attackers using the pattern (d).

the videos four patterns of crowd behavior as depicted in Figure 17: (1) independent users
moving pieces uniformly across the board, (2) a user focusing over a cluster: arranging
the precise location of its pieces or moving all of them to a new position, (3) scattering
stable clusters of pieces to random positions (4) piling up pieces. The first two patterns
of behavior were used solely by genuine users while we doubt about the last two patterns.
The last two patterns are mostly used by reported attackers. Nevertheless they have been
used by some genuine users as well.

Using this simple method, we are able to identify two of the four groups of attacks. The
attacks of smaller scales are evading us. Given these large scale attacks, it is easy to identify
the attackers’ emails in the database by looking which email did massive participation at
the same moment. However, attackers always acted while genuine users were presented in
the system. The genuine users who spent a long time during solving the puzzle or partici-
pated a lot, were easy to tell apart from attackers. They can be identified by looking at their
participation records, plotting user names along side the videos and identifying the ones
corresponding to moves that could not have been done by attackers: unstacking and rear-
ranging pieces. However, this method remains imprecise, yielding many suspected users,
principally among the ones with medium or small scale participation.

Social network. Through the previous method, we are able to identify emails of 5 at-
tackers. We then built from the login database, that provided IP-email relation, an ac-
quaintance graph of users. Two users are accounted if they logged in at some point from
the same IP or if there exists a path in the acquaintance graph between them. By using
this method, we are able to identify several connected components of non trivial size (>4
users). Users with UCSD email addresses are connected to a dummy “UCSD” node in the
graph. A user is considered genuine if the user belonged to the UCSD cluster or to a cluster
that is reported as genuine.

The UCSD component contained the largest number of users. The second largest com-
ponent of 18 users is the one to which all of the five identified attackers belong to. Among
the newly identified users of this component, only 2 users made moves. Their naming
pattern and disposable email address system that they used allow us to identify two more
active attackers.

It has to be noted that a logical identity does not necessarily correspond to a physi-
cal identity. It can be suspected that behind these 18 email addresses, there were actually
only 2 or 3 people because some emails were blacklisted in response to attacks during
the challenge. At no time there was more than two reported attackers who were active
simultaneously.
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User features: progress related. In order to make sure that suspected attackers were ac-
tual attackers, we have to look into the user features. Progress-related measures give a
good indication of attackers, even though they are not perfect. No single user feature that
is considered alone can group attackers together. It is remarkably also the case for progress.
However, this feature as well as exploration and the number of pile ups can give a loose
indicator.

By grouping these features together, we get much better classification rules. However,
there is no combination of rules that is able to classify perfectly the reported attackers.
Considering the sum of the cumulative progress and the exploration, it is possible to get a
much better decision rule as 6 out of the 8 attackers that performed moves clearly stand
apart in one group. One of these attackers made a negligible number of contributions, but
the other was the attacker removing pieces and totally evaded this mode of detection as
its impact over the progress was null.

Having a decision rule that is learned on the reported attacker would allow us to filter
the database and automatically classify users as attackers or genuine users. However, it is
impossible to perfectly classify the few reported attackers, since attacks employed different
behaviors in reaction to the defensive strategies exhibited by the crowd. Therefore attacks
had different impact on progress measures. Scattering destroyed progress but generated
no noise; pilling had a low impact over progress while generating considerable noise; and
piece removal was transparent on any progress related measure.

User features: behavior related. For each kind of attack, we have to find the suitable
set of features that is able to isolate attackers. However, no such choice makes attackers
perfectly separable from the rest of the users and each one of them would detect the set
of suspicious users. When looking at progress related measures, 3 users looked strongly
suspicious. However, looking at behavior related features was possible to classify them as
genuine user as we explain as follows.

By behavioral features, we refer to non-problem specific measures which are more
generic features like the span of participation, number of contribution and average con-
tribution length. In Figure 8, each user represents a point and is plotted according to the
total number of moves he/she performed and the total number of seconds he/she partic-
ipated. The color indicates the type of the users: black dots denote genuine users and red
dots reported attackers. All suspicious users, when looking a their progress feature, had
a behavior totally in par with the one of genuine users. It has to be noted that the two
attackers in the middle of the genuine users correspond to the two emails sent during the
first attack which was very slow paced. All subsequent reported attacks had a much faster
pace, making them stand clearly apart.

As can be observed, we can disambiguate some users. However, when we look at the
progress of some other unsuspected users, they become very suspicious as their behavior
is close to the one of attackers. However, telling apart attackers and genuine users is made
more difficult by the behavior of some genuine users to respond quickly to the fast random
moves of the attacks. During the attacks, genuine users respond by making similar quick
random moves and thereby acquired traits, high number of moves in short time span and
high number of pile ups, that were originally characteristics of attackers. Figure 15 which
mixes behavioral and non-behavioral features reassures us that we did not miss any im-
portant attacker. However, they can be used to rule out the existence of other low scale
attackers. Looking at the video and connected clusters of pieces made it possible to re-
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move the ambiguity for half of the suspicious users but not all of them. They might be

part of a crowdsourced attack or not.

Additional material

Additional file 1: Video of Puzzle 2 (successful completion). Video of every move made by the crowd in solving
puzzle 2. Each shred is shown as a circle (content is not shown to simplify the visualization).

Additional file 2: Video of Puzzle 4 (crowd response to sabotage). Video of every move made by the crowd in
solving puzzle 4. Recognized attacks are indicated and slowed down.
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