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Abstract

One might think that, compared to traditional media, social media sites allow people
to choose more freely what to read and what to share, especially for politically
oriented news. However, reading and sharing habits originate from deeply ingrained
behaviors that might be hard to change. To test the extent to which this is true, we
propose a Political News Sharing (PoNS) model that holistically captures four key
aspects of social psychology: gratification, selective exposure, socialization, and trust &
intimacy. Using real instances of political news sharing in Twitter, we study the
predictive power of these features. As one might expect, news sharing heavily
depends on what one likes and agrees with (selective exposure). Interestingly, it also
depends on the credibility of a news source, i.e,, whether the source is a social media
friend or a news outlet (trust & intimacy) as well as on the informativeness or the
enjoyment of the news article (gratification). Finally, a Twitter user tends to share
articles matching his own political leaning but, at times, the user also shares politically
opposing articles, if those match the leaning of his followers (socialization). Based on
our PoNS model, we build a prototype of a news sharing application that promotes
serendipitous political readings along our four dimensions.

Keywords: news sharing; political news; political diversity; social media; Twitter

1 Introduction

Media bias has been widely studied in cultivation theory. This holds that popular me-
dia such as newspapers, television, and now the Internet have the power to influence our
view of the world and set our day-to-day norms. Media bias - appearing as either selecting
what to report or choosing a slant on a particular report [1, 2] - matters because it affects
the political beliefs of the audience, alters voting behavior [3, 4], and has negative soci-
etal effects like increasing intolerance of dissent and creating segregated and polarized
communities [5].

Since social media sites have been recently used to share news stories at a global scale [6—
8], they promise to connect millions of individuals who hold very diverse political views
[9] and diversify their media consumption [10]. Unfortunately, in social media, people’s
news consumption patterns have not changed much compared to those in traditional me-
dia - people tend to avoid information that conflicts with their views, resulting in the old-
fashioned problem of media bias, even reinforcing what is known as the filter bubble [11].
© 2014 An et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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Figure 1 Overview of political news sharing (PoNS) model.

The choice of what to read and share is a process determined by a number of psychologi-
cal factors such as cognition and motivation. Investigating them thoroughly will lead us to
understand the media bias problem better and develop a tool mitigating this effect. One set
of theories is related to the ‘ego’s perception’ and includes two main factors: gratification,
suggesting that people read and share news to satisfy their desires such as informativeness
and entertainment [12] and selective exposure, suggesting that people like to read informa-
tion in agreement with their views and avoid conflicting information [13]. Another set of
theories is associated with ‘alter’s perception’ and focuses on social aspects of information
sharing: whether the person who passes the information is credible (trust & intimacy) and
whether the person who will receive the news would like it (socialization). These two sets
of theories have not been considered together, and we will do so here.

To this end, we propose a Political News Sharing (PoNS) model based on the two popu-
lar perspectives as theoretical foundation. The PONS model is graphically summarized in
Figure 1. There are four major factors that might impact news sharing: gratification, selec-
tive exposure, socialization, and trust & intimacy. We have evaluated the PONS model with
more than 150,000 cases of sharing political news in Twitter. Using data of twenty-four
popular news media outlets and twenty-one million Twitter users, we study the predic-
tive power of the four factors separately and collectively. More specifically, we make the
following contributions:

1. We investigate the extent to which Twitter users are exposed to political diversity.
We find that 90% of the users receive information from news media of only one
political leaning - that is, most people do not subscribe to politically diverse media
outlets. On the other hand, their friends’ retweets lead them to diversify their news
consumption, in that, 41% of the users are exposed to politically diverse news.

2. We test which factors motivate people to share news. The most important factor is
the source’s credibility: a user is 49% more likely to retweet news coming from media
sources (original tweet) than news from other users (retweeted one). However, when
sharing political news, people prefer those from friends (Trust & Intimacy). The
second strongest factor is exposure: with an extra exposure to a news article, a user is
23% more likely to retweet the news (Gratification).

3. Political news is not generally considered to be a retweeting subject, but when people
share, they mostly retweet articles they agree with (agreeable news), confirming the
key role of selective exposure theory. We also find a weak evidence that when the
articles is interesting to their followers, people share political news reflecting views
different from their own (socialization).
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4. These findings provide a holistic view of how people share political news. The first
finding suggests that the formation of echo-chambers resulting from subscriptions to
traditional media outlets is countered by the more serendipitous news sharing
happening among users. Also, the fact that followers hold a certain influence over a
user is not surprising, if one considers that people are influenced by peers who are up
to three (social network) hops away from them [14]. Based on these four generic
factors that motivate political news sharing, we demonstrate a new way of visualizing
news articles that gives users a fine control over the PoNS’ four dimensions.

2 Background
Researchers in media communication have long been studying the media effect, and we
review some of those studies below.

2.1 Media bias and its consequences

Media bias has been shown to have negative societal consequences (e.g., intolerance of
dissent, political segregation, group polarization) [5]. Republicans and Democrats read
different newspapers and books [15] and geographically sort themselves by choosing in
which neighborhoods to live [16]. Media slant changes people’s beliefs, for example, in
whom to vote [3, 17]. Group polarization is prevalent not only in the offline world (e.g.,
in the form of geographic sorting) but also in the online world. Blogs reflecting different
political views rarely link to each other [18], and online news consumption is also biased,
much like offline news [19].

A few recent studies examined how people exchange political content in online social
networks. [20] has looked at Twitter use of U.S. political parties. [21] has shown a retweet-
ing network of political hashtag that shows a clear segregation of two political parties;
however they have found active interactions across those two parties in a mention net-
work. Related to this work, [22] has reported that political discussions taking place in
Twitter can go to extreme easily. We build upon this work and expand it by determining
to which extent Twitter users segregate themselves into echo chambers, and what could
be done about it.

2.2 News sharing in social media

Due to its popularity and the data’s easy accessibility - Twitter data is publicly available -
research on Twitter has been flourishing for the last few years. Kwak et al. [23] studied
the topology of the Twitter graph, finding a non-power-law follower distribution, a short
effective diameter, and low reciprocity. Other studies have provided insights into the pat-
terns of user participation in Twitter by looking into the use of Twitter as a medium of
information spreading, including sharing URLs and reporting news [24], posting local
news [25], and promoting political views [26]. Despite a large body of research on infor-
mation sharing being conducted, news articles published by media sources have less been
examined.

A news article published in social media can reach many more audience members than
media outlets’ direct followers, passed through the social network. Consider the example
of a news article exchanged by Twitter users in Figure 2. It shows how the same news could
propagate with different sentiments (i.e., positive and negative comments). The article is
originally tweeted by the Washington Times and is then received by followers of the me-
dia source, who might have different political views. Among the followers, two of them
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Figure 2 Pictorial flow of news in Twitter.

might decide to retweet the article to their followers. In the toy example, user A is in tune
with the political view of the Washington Times and he adds a comment (‘cool. check this
out’). Then, user A’s followers, user C and user D, get to receive the Washington Times’
original tweet along with user A’s positive recommendation. However, not all news articles
are positively recommended. In the case of user B, he may decide to retweet the news, but
with a negative comment (‘Unreal. they want to regulate hot tubs #energtax’ and his fol-
lower user E might further decide to add another negative comment ‘pure liberal extremist

ideology?’) before he retweets.

2.3 Motivations of news sharing
A number of theories in media and communication research have been suggested to un-
derstand why people consume news. Gratification theory states that satisfying audiences’
social and psychological needs is the key to attracting and keeping those audiences [12].
Specifically, desires such as entertainment, interpersonal communication, information
learning, escapism, and surveillance are the general factors that are associated with news
consumption on the Internet [27-30]. The few studies that have focused on content shar-
ing activities in online communities found that gratification, social interaction, reciprocity,
and self-identifications are strongly related to why people share knowledge online [31].
On the other hand, as an attempt to understand how people manage opinion conflicts,
selective exposure theory hypothesizes that individuals tend to favor information that re-
inforces pre-existing views while avoiding contradictory information [13].

In the context of social media study, number of exposures has been widely considered as
a proxy of social impact. Social impact theory states one’s belief, motive, behavior changes
as a result of presence or actions of other individuals’ [32]. The first principle is that it is
a multiplicative function of the strength, immediacy, and number of sources present in
the environment. A number of studies have examined the impact of exposure in relation
to whether it motivates people to share a piece of information. Previous work has found
a strong evidence that the number of exposures is strongly related to a hashtag adoption
[33] and a rapid growth of hashtags [34].

However, in this work, we use the number of exposures as a proxy to measure infor-
mativeness of a tweet. Social impact theory also states that the relative impact of each
additional person decreases and when an individual is a part of a group, the impact of
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sources is divided among individuals exposed and is therefore reduced - as more people
exposed, less likely to change their behavior. The theory also relates to a theory of ‘diffu-
sion of responsibility’ in a socio-psychology phenomenon whereby a person is less likely to
take responsibility for action or inaction when others are present [35, 36], hinting that one
may feel less obligated to share a piece of information as more exposures happen. Thus,
we do not use the number of exposures as directly connected to the motivation of sharing.

‘We rather consider it as an additional context of the tweet.

3 Political news sharing model

When ideas spread, there are always three parties: the person(s) creating the news, the
person passing on the news, and the person(s) receiving it. Considering how these three
parties influence motivations of a person in sharing news, we identify four major factors:
gratification, selective exposure, socialization, and trust & intimacy. Followed by relevant

prior literature, we discuss corresponding Twitter specific measures of each factor.

3.1 Gratification

We assume that how a user perceives a given article contributes to whether or not he will
share it. More precisely, informativeness describes the extent to which news shared can
provide users with relevant and valuable information. A user would perceive a piece of in-
formation as valuable when he is exposed to it multiple times, resulting in motivating him
to share it further. Related to this, entertainment is another key factor for understanding
news consumption [29]. People are more likely to share news that they deeply care about
and are interested in. To study why users retweet news articles, we derive two predictors
from gratification theory:

1. FI numexposures denotes how many times the retweeter repeatedly gets exposed to
the article.

2. F2 topic-interesting-me reflects the extent to which the retweeter is interested in the
article’s topic. To compute it, we create, for each user, his interest-vector by
considering each article the user posts, classifying the article’s categories, and
aggregating the classifications of all the user’s articles into a unique interest-vector.
The classification consists of 12 categories and is performed by the Alchemy
Application Programming Interface (http://www.alchemyapi.com/), which is a

popular text-mining web service that classifies news articles in a number of topic.

3.2 Selective exposure
Selective exposure theory states that individuals tend to favor information that reinforces
pre-existing views and avoid contradictory information. In this theory, individuals are
likely to choose political articles with opinions that fit with and support what they already
know. Various studies have examined whether selective exposure exists in news consump-
tion and consistent evidence has been found across a variety of media [37]. Below are the
two predictors associated with the selective exposure theory:

3. F3 political reflects whether the article is about politics or not (binary).

4. F4 leaning-matched-me indicates that the retweeter’s political views match those of

the media outlet that published the article (binary). This factor is considered only if

the news article is about politics.
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3.3 Socialization

Socialization plays a critical role in determining whether a user will share a news arti-
cle. This is particularly true in social networking sites. The experience that a user has in
sharing news articles depends on the context created by the user’s peers (e.g., only few
reactions on what has been shared, being ignored). To encourage discussions or idea ex-
change and to ultimately enrich the social media experience, users might consider what
their online friends like to read or agree with.

We thus expect that one retweets news articles that are relevant to one’s followers. Hence

the two predictors related to socialization are:

5. F5 topic-interesting-followers indicates the extent to which the retweeter’s followers
are interested in the article’s topic. This is computing based on the average similarity
between the categories of the article (as per Alchemy categories) and the
interest-vectors of one’s followers.

6. F6 leaning-matched-followers represents a fraction of retweeter’s followers whose
political views match that of the article. This factor is considered only if the news

article is about politics.

3.4 Trust and intimacy

In social media, news articles are shared not just by news outlets but also by users. People
easily turn their ears to a piece of information or an opinion coming from their ‘friends’
The stronger the relationship, the more easily people accept what friends share. Through
peer influence, users might receive news articles reflecting views different from their own.
We would like to examine whether trust and intimacy affect a user’s decision to share a
given article. Trust in the sender might also impact one’s willingness to retweet the article.
To capture the impact of friendship on retweeting news articles, we consider a number
of measures between a user who tweets an article and his follower who receive it. The
predictors related to trust and intimacy are:

7. F7 fromfriend indicates whether a news article comes from one of the retweeter’s
friends or from a media source (binary).

8. F8 mutualfriend is a measure of whether the user and the propagator(s) are friends
with each other (i.e., have a mutual relationship).

9. F9 difference-in-followers is the difference between the retweeter’s number of
followers and the propagator’s. A friend having a greater number of followers may
be a public figure or influential.

10. FIO sharedfollowers is the number of common followers between retweeter and
propagator. Having more common followers may mean that the two have common
interests.

11. F11 sharedfollowees is the number of common followees between retweeter and
propagator.

12. FI2 sharedleaning reflects whether the retweeter’s political views match those held
by the propagators.

4 Data

4.1 Collecting Twitter data

Twitter was created in 2006 and it has been rapidly growing, attracting 255M monthly
active users [38]. In Twitter, the users share content composed from 140-character text
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messages called tweets. Users can choose whom to follow - a social relationship in Twitter
is not necessarily mutual. Hence, topologically, a Twitter network is a directed graph: an
individual has a number of ‘followees’ whom he follows and ‘followers’ who follow him.
A user will receive all tweets posted by his followees. Unless a user sets his privacy setting
as ‘private’ explicitly, all tweets he posts are visible to the public by default.

For our analysis, we gathered publicly available information from Twitter. We firstly
identified a set of news media sources by consulting both the website http://newspapers.
com (which listed the top 100 newspapers in the USA) and Twitter’s ‘Browse Interest’
directory (its news directory) [39]. From these two lists, we generated a list of news
providers, including mainstream news outlets such as the New York Times and CNN.
We also included individual journalists and anchors as they are known to have a large au-
dience and play a prominent role as news providers. We only considered US-based news
media outlets, a total of 22.

Using the Twitter API, we obtained all follow links to media sources and their corre-
sponding tweets for an 8-month period (from January to August 2009). To efficiently
identify the consumption behavior of news on Twitter, we focus on the set of news media
tweets that contain a URL. Through the Twitter API, we collected all tweets that contain
any of the URLs posted by the 22 media sources. Not all of these users were directly fol-
lowing media sources. For each user who posted, retweeted, or replied to those URLs, we
also gathered his follow links.

The resulting dataset includes 22 media sources with 55,777 tweets with a total of
8,793,507 subscribers. Among all tweets, there were 42,483 tweets containing URLs,
397,640 retweets, 21.4 million Twitter profiles, and 720 million directed follow links. For

convenience, Table 1 shows a summary of the data collected from all media sources.

Table 1 Summary of the three media sources under study

Account Subscribers Tweets URLs RTs of URLs Mondotimes
abcnews 16,397 3,800 3,729 10,412 left
ariannahuff 23912 185 94 894 left
davidgregory 1,115,405 575 159 2,361 left
huffingtonpost 54418 4,186 4174 29,385 left
jdickerson 953,993 1,469 413 14,501 left
maddow 1,091,269 127 116 12,316 left
nbcnightlynews 12,602 2,118 2,105 3,234 left
nprnews 116,834 1,956 1,848 30,825 left
nprpolitics 1,272,479 2,803 2,342 20,238 left
nprscottsimon 887,009 893 68 763 left
nytimes 1,755,740 5676 5,527 91,379 left
theearlyshow 6,873 1,524 1,413 4,191 left
todayshow 108,481 1,672 1,050 26,291 left
washingtonpost 27,196 1,903 1,617 9,619 left
andersoncooper 319,257 3,528 3,436 23,495 center
cnnbrk 2,596,796 524 240 32,131 center
jackgraycnn 587,758 3,109 368 26,598 center
richardpbacon 819,312 1,793 224 16,116 center
foxnews 100,272 6,401 6,361 15,699 right
chicagotribune 17,588 1,010 1,010 15,610 right
usnews 4,747 4,239 4,233 7,545 right
washtimes 6,954 2,025 1,956 4,037 right

all 8,793,507 55,777 42,483 397,640



http://www.epjdatascience.com/content/2014/1/12
http://newspapers.com
http://newspapers.com

An et al. EPJ Data Science 2014, 2014:12 Page 8 of 21
http://www.epjdatascience.com/content/2014/1/12

4.2 Extracting political discourse

To categorize the URLs in our tweets, we use, again, the Alchemy API. We use this API
because it has been shown that it entails superior classification performance compared to
other popular classifiers [40]. Given a URL, Alchemy extracts the associated text and re-
turns featured words, the main topic, and a confidence value for the categorization which
scales from O to 1 representing the API’s degree of belief that the text pertains to that cat-
egory. The main topic is chosen from the following 12 topics: Arts Entertainment, Busi-
ness, Computer Internet, Culture Politics, Gaming, Health, Law Crime, Recreation, Reli-
gion, Science Technology, Sports, and Weather. We excluded URLs that are categorized as
‘None’ (e.g., video live streaming or personal photos) and URLs that have low confidence
values (<0.5 on Alchemy’s scale of [0,1]).

Out of 42,483 URLs from the 22 media sources, 23,017 URLs were successfully clas-
sified. For these categorized news articles, 41% of them have been retweeted at least
once, where culture_politics is the mostly popular category, where 73% of articles in cul-
ture_politics has been retweeted at least once, followed by entertainment (68%), and sci-
ence_technology (57%).

Next, to classify news outlets into liberal, conservative, or center, we consulted the web-
site http://www.mondotimes.com and used the Americans for Democratic Action (ADA)
scores of media sources [1] that is widely used for comparing media bias across different
outlets [2]. The ADA score measures a media outlet’s political bias based on the number
of times the outlet cites various think-tanks and other politically-oriented groups. The
score is on the scale from 0 to 100, where 0 indicates a strong conservative tendency. Four
media outlets (Fox News, Chicago Tribune, U.S. News & World Report, and Washington
Times) were classified as right-wing, five (including CNN) as center, and fourteen (includ-
ing Huffington Post, NPR News, and New York Times) as left-wing. As we are interested
in how different political opinions reach users having different political views, we chose to
focus on left and right media outlets (18 in total), since they have a clear political stance.

4.3 Inferring political leaning of users

We inferred the political leaning of each user based on the set of media outlets that the
user subscribed to. To reduce noise in the data, we only considered users who tweeted
more than 5 times in the last three months of our data collection period (this leaves us
with 2.9M users). Then we filtered out users who follow only one media source under the
assumption that they are less interested in news reading through social media. After this
pruning, 419,446 users were still left.

To infer the political leaning of individual users, we have used their subscriptions to me-
dia outlets, under the conservative assumption that one’s political leaning can be deter-
mined only if all media outlets the user follows exhibit the same political leaning [41]. Re-
cent study has shown this mapping method is valid [42]. To analyze the restrictions intro-
duced by this assumption, we randomly picked 30 left-leaning users and 30 right-leaning
users in our dataset, and asked them their political leanings. We received 22 and 16 re-
sponses from left and right-leaning, respectively, retaining a response rate of 63%. Among
those 38 people who answered, we found 30 users (78.9%) were classified correctly (16 left-
leaning users with 72.7% matching rate and 14 right-leaning users with higher matching
rate of 87.5%). With such a high level of accuracy, we choose to use the conservative rule
of thumb to assign political leanings of users. These users accounted for 380,568 or 90.7%
of our users. Most were left-wing (88%) and only 44,943 users (12%) were right-wing.
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Table 2 Summary of the two compared datasets

Active Classified Retweets
followers URLs (Retweeters)
Original dataset 419,446 22,179 154,078
(14 left & 4 right) (68,225)
Balanced dataset 146,480 11,289 60,524
(4 left & 4 right) (27,597)

The balanced dataset is a subset of the original dataset, where we balance the number of left and right media sources.

Because our original dataset includes many more left-wing media sources, it may over-
represent left-leaning users. Even though they are over-represented compared to the gen-
eral population, they are still representative of the Twitter population. We therefore gen-
erated a ‘balanced dataset’ that includes the same number of media sources from each
political leaning (four of each are selected randomly). A summary of the two datasets is
shown in Table 2. The numbers reported in the row ‘balanced dataset’ correspond to the
mean values across 20 different reshuffled versions of the balanced dataset. All our analy-
ses have been carried out on both datasets, and the corresponding results remain consis-
tent between the two, suggesting that the ways in which we select outlets do not impact
the results.

5 Status quo of media bias

Retweets from friends can expose individuals to diverse political views. To test the extent
to which this is the case, we map retweets back to the original tweets by tracking URLSs,
which do not change from tweet to retweet. By consolidating all tweets containing the
same URL, we build a propagation tree for each news article.

5.1 Top news covered by left and right media

From our eighteen media sources, 14,568 URLs were categorized as political news articles.
These URLs spawned 31,473 retweets. 17.5% of users engaged in political news propaga-
tion, and users who follow both left and right media sources (following four media outlets
at least) were three times more likely to propagate political news than others.

To give a sense of which political news stories are shared in Twitter, we listed the top
stories in Table 3. One can see that the left and right media have a different tone of voice
even on the same topic. For example, on an issue regarding North Korea, left-wing media
reported ‘North Korean Leader Pardons, Releases U.S. Journalists’ while right-wing media
said ‘North Korea Threatens to Wipe Out U.S!

5.2 Exposure to diverse opinions

To investigate whether Twitter users live in echo chambers or not, we examined what
users receive and what they decide to promote by retweeting. More specifically, we ini-
tially consider two main sources of news articles (i.e., media sources a user follows and
his Twitter friends) and compute the political diversity of news articles coming from the
two sources based on the Shannon Index, which is defined as the (political) entropy of the
news articles associated with the user. It is —Zle (pilog p;), where S is the total number of
possible political preferences, and p; is a proportion of news articles that reflects the ith
political preference. If a user’s articles reflect all political views to the same extent, then
the Shannon Index (the user’s political diversity) is maximum. While the Shannon Index
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Table 3 The top 10 mentioned political news articles from the left-leaning and the
right-leaning media sources in Twitter

Rank Left-leaning media Source # of RT
1 The President’s Opening Remarks on Iran nytimes 203 (1100, r50, b53)
2 Cheney Is Linked to Concealment of C.LA. Project nytimes 13(197,r2,b14)
3 Sarah Palin Resigning as Alaska’s Governor nytimes 50 (138, b12)
4 N. Korean Leader Pardons, Releases U.S. Journalists nytimes 48 (138, b10)
5 ‘Military Coup’ Underway In Iran nytimes 47 (139, r3, b5)
6 Health Care Hecklers & the Rise of Right-Wing Rage nytimes 43 (141, b2)
7 Conservatives Don't Know He's Joking nytimes 42 (138, b4)
8 N.Y. Assembly Passes Gay Marriage Bill nytimes 39(139)
9 10 Most Offensive Tea Party Signs From Tax Day Protests nytimes 39 (134, b5)
10 Rick Perry Calls For Fed Help With Swine Flu nytimes 37 (128, b9)
Rank Right-leaning media Source # of RT
1 North Korea Threatens to ‘Wipe Out’ U.S. foxnews 40 (2,120, b18)
2 Obama Claim of AARP Endorsement ‘Inaccurate’ foxnews 30(r16,b14)
3 House leaders drop their plans to buy fancy jets foxnews 30 (r20, b10)
4 WH Says Girl Chosen at ‘Random’ to Speak at Town Hall foxnews 28 (12,18, bb8)
5 Pelosi Calls Health Care Critics ‘Un-American’ foxnews 28 (r14, b14)
6 Latino Leaders Call for lllegal Immigrants to Boycott Census foxnews 24(12,r12,610)
7 Outbursts, Hot Tempers Fill Town Hall Meetings foxnews 24 (r16, b8)
8 Obama: Recovery Will Take Years Not Months foxnews 24 (r20, b4)
9 AARP Faces Backlash From Seniors Over Health Care Reform foxnews 22 (r16, b6)
10 Palin to stump for conservative Democrats foxnews 20 (r6, b14)

The table also shows the news source of the article and the number of retweets of the article from different political groups,
where / stands for liberals, r for conservatives, and b for others.
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Political diversity score
Figure 3 CDF of political diversity score. The plot shows the distribution of political diversity score from
direct subscription (solid line) and that from social media friends (dotted line).

is popularly used as a measure of diversity, the resulted values may be biased as it does not
take the sample size into consideration. To solve the bias problem, we apply Miller-Madow

correction technique [43].

5.2.1 Diversity from subscribing to media sources

For each user, we consider the media sources the user follows, determine their politi-
cal leanings, and compute their overall political diversity score using the Shannon index.
Across all users, we find that the distribution of political diversity is skewed. Figure 3 shows
that 90% of users have a political diversity score of 0, meaning that they only subscribe to
media sources of their political leaning, and only 10% have diversity score greater than 0,
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meaning they subscribe to at least one media source whose political view is different from
their own. Based on the classification of different ‘user types’ in previous studies [44], we
could classify the users in the 90% group as either challenge-averse (i.e., users who seek
out affirming opinions but reject the idea that they avoid challenging items) or support-
seeking (i.e., users who are primarily interested in opinions that are similar to their own),
while the remaining 10% would be classified as diversity-seeking (i.e., users who are inter-
ested in considering opinions that challenge their own).

To then distinguish who is support-seeking among the 90%, we consider which of these
users have retweeted news articles containing political views different from their own.
People in the support-seeking category do not like political diversity, yet they do not mind
receiving a few articles they disagree with. We find that, among the low-diversity users in
the 90% group, 86% are challenge-averse and 14% are support-seeking. Compared to the
previous work suggesting that there was no evidence of the existence of support-seeking
individuals [44], we observed three very distinct groups: users who do not subscribe media
outlets nor share articles contrasting their political views, users who occasionally share
articles even if they are in conflict with their views, and users who enjoy diverse opinions.

5.2.2 Diversity from friends

Having looked at the political diversity introduced by the media outlets users subscribe
to, we now examine the diversity introduced by their Twitter ‘friends’ Thus, for each user,
we consider the news articles the user receives not only from media sources but also from
friends. We then compute the diversity of political views contained in those articles using,
again, the Shannon index.

We find that the distribution of political diversity score among users is still skewed
as seen in Figure 3. However, there is a crucial difference: now the proportion of users
with political diversity score of 0 drops from 90.7% to 40.7%, suggesting that social media
friends are a primary source of political diversity in Twitter. At the population level, the
geometric average of political diversity shows a 7.13-fold increase (the same goes for the
politically balanced dataset in which the increase is even higher - it is 12.24-fold). We also
find that the higher the diversity from direct media subscription, lower the changes in the
diversity from friends with Pearson’s correlation coefficients of r = —0.29 (p < 0.0005) and
with a Spearman’s correlation coefficients of r = —0.14 (p < 0.0005).

To see which set of media outlets gets more exposure through social media friends, we
select users who follow: (1) only left-leaning media sources; and (2) only right-leaning me-
dia sources. We find that both left-leaning (55.6%) and right-leaning media outlets (56.7%)
profit from the social network (Figure 4), reaching more than half of non-subscribers in
our dataset. With a balanced set, 45.3% of left-leaning and 47.8% of right-leaning users
are exposed to media outlets having views different than their friends’ The row percent-
ages slightly change between the two cases yet they are comparatively the same and lead
to the same conclusion: left-leaning media outlets reach non-subscribers slightly less than
right-leaning media outlets do.

6 Evaluation of PONS model

Having observed that users are exposed to politically diverse news articles far more by
their friends than directly by the media sources, we now test the PONS model and exam-
ine which of the four factors (gratification, selective exposure, socialization, and trust &
intimacy) are better associated with the chance of sharing political news. We use a logistic
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Figure 4 The probability that political news stories reach the other political group through social
media friends. The bar plot shows an increase in political diversity after incorporating indirect media
exposures through social media friends.

binomial regression, which models the probability that a user retweets a given news arti-
cle based on twelve predictors extracted across the four factors. All predictors undergo a
logarithmic transformation, when necessary (i.e., when they are skewed). The dependent
variable is thus:

1 if user i retweeted,

y= 0 if user i did not retweet.

Since our data only includes positive cases - that is, the cases when people share the
news articles - we need to augment our dataset with negative cases (by under-sampling
them): we do so by adding an equal number of negative cases - that is, with a set of ran-
dom news article-and-user pairs. By construction, the resulting sample is balanced (the
response variable is split 50-50), and the accuracy of a random prediction model would
thus be 50%. We model a retweeting probability as a linear combination of the predictive
variables, plus terms for interactions. We use the first 7 and a half months of our data to
calculate the independent variables and use the last two weeks of data for the test, which
had 14,309 retweeting cases. Adding the same number of random negative cases, we use
28,618 cases to build the model.

The results of the logistic regressions are reported in Table 4. The coefficients reported
tell us the extent to which the corresponding predictors explain the retweeting behav-
ior. The p-values indicate the extent to which coeffiecients are statistically significant. To
show how well the model fits the data, we use Hosmer-Lemeshow test of ‘goodness-of-fit’
and report x? and its p-value. Please note that with Hosmer-Lemeshow test, the higher
the p-value of the model, the better the model fits the data. The Hosmer and Lemeshow’s
(H-L) goodness of fit test divides subjects into deciles based on predicted probabilities,
then computes a chi-square from observed and expected frequencies. Then a probability
(p) value is computed from the chi-square distribution to test the fit of the logistic model.
If the H-L goodness-of-fit test statistic is greater than 0.05, as we want for well-fitting
models, we fail to reject the null hypothesis that there is no difference between observed
and model-predicted values, implying that the model’s estimates fit the data at an accept-
able level. That is, well-fitting models show non-significance on the goodness-of-fit test,
indicating model prediction that is not significantly different from observed values.
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Table 4 Logistic regression results for retweeting news

Predictive variables Original Revised
Gratification
F1 numexposures 0.93%** 0.93%**
F2 topic-interesting-me -0.09 -
Selective exposure
F3 political -0.80*** -0.89***
F4 leaning-matched-me 0.72%** 0.97%**
Socialization
F5 topic-interesting-followers 0.57%+* 0.49%**
F6 leaning-matched-followers -0.14 -
Trust and intimacy
F7 fromfriend —2.09%** —1.47%%*
F8 mutualfriend 0.13* -
F9 difference-in-followers 0.05%** -
F10 sharedfollowers -0.00 -
F11 sharedfollowees -0.00%** -
F12 sharedleaning —0.37%** -0.38™**
F13 politicsfromfriend 0.3717%** 0.35%**
Both models pass the goodness-of-fit tests: Original (x2 = 11.1629, p = 0.45) and Revised (x2 = 13.2977, p = 0.39). Signif. codes:

0 (***)0.001 (**) 0.01 (*) 0.05 ().

Logistic regression coefficients cannot directly be interpreted on the scale of the data
as models are nonlinear on the probability scale. To ease the interpretation of the logistic
regression coefficients 8, one could apply the ‘divide by 4’ rule which can be applied if the
probabilities (i.e., values of the outcome variable) are close to 0.5, that is the case for our
data [45]. To see how, take a predictor x (e.g., whether or not the article is about politics),
its regression coefficient 8, and the outcome variable y;. From the idea that the slope of the
logistic curve is maximized at the center point, one can take the logistic regression coeffi-
cient B, and divide it by 4 to get an upper bound on how much a unit difference in x (e.g.,
whether article is about politics or not) would change the outcome variable (e.g., probabil-
ity of retweeting the article). If B, is, for example, 0.8, then articles about politics are likely
to be retweeted with a probability 20% (% =0.2) more than articles of any other subject.

6.1 General news sharing

We first investigate the generic news sharing pattern. We consider retweeting cases not
only of political news but also of other kinds of news for comparison. Table 4 reports the
results of the logistic regression: the ‘original model’ column fits the original dataset, while
the ‘revised model’ column includes only the significant predictors whose sign remain
unchanged compared to those of the original model. Both models fit the data better than
the null model and the prediction error rate of our model is only 0.19, while that of the
null model is 0.5. Below we discuss the findings.

Gratification: The F1 feature is statistically significant, while F2 is not. The number of
repeated exposures to the same article (F1) is positively correlated with retweeting the
news, emphasizing the importance of a news article being informative to be retweeted.
The positive coefficient of 0.93 indicates that one extra exposure to the article increases
one’s retweeting probability by 23% (0.93/4 = 0.23). On the other hand, what a user gen-
erally likes is not correlated to what he shares (F2). This finding counters what had been
found in more traditional settings: one major motivation for consuming and sharing news

is entertainment [29].
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Figure 5 Factors ranked based on their predictive power (i.e., beta coefficient value of the model) to
retweeting behavior. Fach column reports the results from the original dataset and the balanced dataset.
Even the scale of impacts may vary, the list of significant factors and their signs are matching in two models,
which gives a confidence in the original dataset.

Selective exposure: Both F3 and F4 are statistically significant variables. People tend to
retweet news articles in subject areas other than politics. The negative correlation for F3
indicates that a user is 20% less likely to retweet political articles as opposed to other types
of news (—0.8). When articles about politics are concerned, one retweets them more with
a high positive correlation, if they express political views one agrees with (F4, 0.72). This
suggests that although Twitter allows the flow of politically diverse news articles, people
have a strong tendency to retweet only what matches their views.

Socialization: We find that what one’s followers are interested in (F5) is positively related
to what one chooses to share (0.57). This finding is in line with findings from other work
[31] in that social interaction is a key factor that encourages information sharing in the
online world. Trying to please one’s friends may be particularly important in Twitter.

Trust and intimacy: The results show that all the variables except for F10 are statis-
tically significant, and only few are mildly correlated. The significance of source credi-
bility (F7) shows a negative correlation (-2.09). This indicates that a user is 52% more
likely to retweet news articles that come from media sources than from friends. How-
ever, news from a friend who has a mutual relationship (F8) have a 3% higher probability
of being retweeted (0.13). To a limited extent, one is also likely to preferentially retweet
news coming from popular friends (F9). Finally, political news is unlikely to be shared,
yet a user is 8% more likely to share a political article given that it was shared by a friend
(F13, 0.31). This peer pressure effect was even true for friends who had opposing political
views (F12, —0.37).

The regression analysis can determine the relative importance of the 13 predictors (in
the following order): trust & intimacy, gratification, selective exposure, and socialization.
Significant factors are ranked based on how much they increase the retweeting probability

and are summarized in Figure 5. Each column reports the results for the original dataset
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Table 5 Predictors for retweeting political news articles

Predictive variables Agree with  Disagree with
article article
F1 numexposures 0747+ 0.83%***
F2 topic-interesting-me 0.16 1.23*
F5 topic-interesting-followers 0.22 -0.36
F6 leaning-matched-followers — —-0.44* 1.55%*
F8 mutualfriend 0.14* 0.52
F9 difference-in-followers 0.06™** -0.13**
F10 sharedfollowers 0.00 0.00*
F11 sharedfollowees 0.00 -0.01*
F12 sharedleaning —0.27%** -1.60%*

Both models pass the Goodness-of-fit tests: Agree (x2 =4.5227, p=081) and Disagree (x2 = 16879, p=0.97). Signif. codes: 0 (***)
0.001 (**) 0.01 (*) 0.05 ().

and the politically balanced dataset, respectively. For the two datasets, the impact of each
factor varies in scale, but their signs (positive or negative) do not, speaking for the validity
of the results.

To sum up, the credibility of a news outlet (trust & intimacy) and the informativeness
or the enjoyment of the articles themselves (gratification) are the two strongest factors
that motivate people to share news. Socialization plays a role in choosing news topics to
a certain extent - what a user shares depends on what his friends like. In sharing political
news, we see that people share political news less frequently than other types of news;
however, when they do so, the political stances of articles are likely to match those of the
users (selective exposure) or of their friends. As one might expect, one’s taste is a strong
motivation to encourage to share a news article. However the above results also suggest
that social relationships do affect media consumption in notable ways.

6.2 Political news sharing

Next, we focus on the specific question of whether users retweet articles differently de-
pending on the article’s political views. We consider two situations: one in which a news
article matches the retweeter’s political views - that incorporates 3,379 positive retweeting
cases, and the other in which it does not match (701 negative retweeting cases). We run
a logistic regression for these two cases separately, and report the results in Table 5. For
the two regressions, the likelihood ratio test were significant at the 5% level. In both cases,
the strongest predictor is numexposures, which is the number of times the retweeter has
been exposed to the article. If the article agrees with the retweeter’s political views, then
the article does not necessarily agree with the followers’ political views (-0.44) and is
likely to come from reciprocal friends (0.14), who might happen to have diverse political
views (-0.27).

In contrast, if the article disagrees with the retweeter’s political views, then the article is
likely to be of retweeter’s interest (1.23) but not necessarily of followers’ interest (—0.36),
match followers’ political preferences (1.54:6), come from friends who have different polit-
ical views (-1.60), and come from friends with whom one has a mutual relationship (0.52).
This means that, when people decide to retweet political articles, they do care about their
online social relationships (e.g., who shared, who is the audience). When it is an article
contrasting their views, then social context becomes more significant. As such, contextu-
alizing the news reading experience could offer ways of nudging people to accept a variety
of political views.
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7 Limitations and implications

7.1 Limitations

This work has some main limitations. First, our dataset shows biases, which might in-
herently come from the biases of the Twitter population. For example, we have an over-
representation of liberal users, but that is because the number of left-wing media outlets
is higher than that of right-wing ones. To check whether this would impact our results, we
have also considered a ‘balanced’ (sample) dataset that includes the same number of left
and right media outlets, and we found the results to be consistent in both.

The second limitation of our work is the method we used for classifying the topic of
news articles - Alchemy. We find that F2 topic-interesting-me factor is not strongly related
to news sharing behavior, which is counter-intuitive. Had only Alchemy been used, we
might have been unsure whether our results hold true in general, or whether they are the
product of classification artifacts. To validate Alchemy’s categorization of news articles,
we compared the classifications for the New York Times articles returned by Alchemy
and the official classifications offered on the New York Times site. For example, a url
http://www.nytimes.com/2009/04/13/us/politics can be categorized as ‘Culture Politics’
based on the URL itself. Showing 82% mcathing probability with New York Times’ cate-
gorization, we believe that is it acceptable to use Alchemy. However, there is still a room
to examine whether the lack of correlation of F2 and retweeting probability is produced
by the Alchemy or by its inherent absence of relationship.

Third, in building our PoNS model, we generate an artificial 50-50 positive-negative
retweeting cases by taking random negative retweeting cases. Given a large number of
tweets individuals receive, 50% of negative retweeting cases may not reflect the reality -
in fact, only a few news articles are shared. However, such sample creation helps us to
understand which of four factors in our PONS model is the strongest one in relating to news
sharing behavior. Yet, further investigation on the effect of samples can be conducted.
For example one could test the model by changing the proportion of negative cases in
generating samples.

Last but not least, we do not consider the sentiment of a user when he shares an article.
If a user shares a news article of an hostile media outlet, it does not necessarily mean that
he is vouching for it - he might simply make fun of it. Yet, what we observed from our
analysis is that when an individual shares news articles that conflict with his own political
view, it is about his friends’ interests rather than his own, and this stays valid even thought
we do not consider the sentiment of tweets. However, recent studies have emphasized the
role of the sentiment of a tweet in its virality, especially when it is news content. Negative
sentiment tends to be a strong promoter of news sharing [46, 47] and the stronger the
emotion of a tweet is, the higher the chance it is retweeted [48, 49]. Thus investigating
on how the sentiment of tweet come across with the factors we considered seems like an

interesting follow up work. We leave this as future work.

7.2 Theoretical implications

This work has important implications for theories on information consumption, infor-
mation sharing, and opinion diversity. Our results suggest that news sharing depends on
four factors: (1) gratification; (2) selective exposure; (3) socialization; and (4) trust and inti-
macy. These factors have been studied before [28—31], but only separately, mainly because
of lack of data. Here we have studied them together.
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In terms of opinion spreading, it is tempting to think that Twitter allows us to connect
to thousands of individuals who collectively hold diverse political views. The reality is that
homophily limits who connects to whom (who one follows or is followed by, in Twitter par-
lance) - users are likely to connect to and exchange news articles with other like-minded
users. As such, it is hard for ideas to pass between groups who are separated. Both online
and offline, one important dimension separating groups of people is politics [50]. When
people are separated by political views, they perceive each other as far apart and are un-
likely to share opinions and offer any kind of support. This results into the creation of
echo-chambers where like-minded individuals talk with each other and, as a result, rein-
force each other’s views. In our work, we found that Twitter users segregate themselves
into echo chambers by sharing like-minded opinions even though they are exposed to
different opinions.

In terms of opinion diversity, it is known that exposures to balanced information brings
positive social consequences; it helps people set common grounds on important issues
and improve group decision-making [51]. On the other hand, previous studies have also
shown that exposure to balanced information does not change people’s minds but, in con-
trast, increases commitment to original perceptions [52—-54]. This effect is called cognitive
dissonance [55], i.e., people tend to deny claims that contradict their beliefs. For example,
exposing people to balanced political news generally leads them to hold more intense be-
liefs than they held beforehand. So the simple approach of exposing people to diverse po-
litical opinions might not work, and more sophisticated approaches should be used. Our
study suggests that social context (e.g., one’s followers) is associated with low levels of cog-
nitive dissonance. Challenge-averse individuals were prepared to lose their reticence and
retweet some articles with views different from their own - these articles generally came
from friends.

In terms of information diffusion, there are a few studies on the relation of ‘impact of
number of exposures’ to different outputs (e.g., hashtag adoption of Twitter [33] and Face-
book fan page creation [56]). These studies all concluded that the more an individual is ex-
posed to some piece of information, the more likely the individual will be persuaded by it.
For example, [56] reports that ‘after controlling for News Feed exposure variables, neither
demographic characteristics nor number of Facebook friends seems to play an important
role in the prediction of maximum diffusion chain length’ Our study shows a similar trend
and also finds that, after controlling for numexposures, other variables become important,
and their importance changes across individuals: some users may like the popular stories
(hence larger numExposures), while others value stories coming from close friends (hence
mutualfriend).

7.3 Practical implications

We have found that users are more likely to retweet articles that are shared by their popu-
lar friends. This means that news aggregators might want to rank news depending on how
popular or socially central the individual sources are. In general, offering personalized
news articles on politics is more challenging than offering other types of articles. How-
ever, not all users find such exposure challenging. Support-seeking or diversity-seeking
users are expected to be open minded and be willing to receive political news that do not
necessarily reflect their own views. However, challenge-averse users may not appreciate
such exposure. Our findings suggest that offering news through social-networking friends
could be a reasonable way to ‘scratch’ challenge-averse users’ echo chambers.
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Figure 6 An example visualization of PONS model based news presenting application.

Our findings have practical implications for the design of news aggregators. Twitter
users strongly care about their followers’ interests, including their political views. Tra-
ditional news aggregators return news a user might like based on the user’s interest only.
Our findings suggest that aggregators might also return news that not only are of interest
to the user but also encourage interactions with friends.

Based on these findings, we introduce a new visualization for presenting news articles
that gives users control over the PoNS’ four dimensions (gratification, selective exposure,
socialization, and trust & intimacy). This visualization is based on the Dust & Magnet vi-
sualization technique [57] that uses a magnet metaphor in which the individual data cases
are represented as particles of iron dust, and magnets represent the different variables
of the dataset. Users can interactively manipulate the magnets and then the dust moves
appropriately.

One can develop an application that collects news articles a user receives in Twitter and
present them with PoNS’ four factors, providing more context to what they read. Figure 6
shows an example design of such application, which is run on a left-leaning user’ news
articles. The rectangles are magnets (i.e., PONS’ dimensions), and the circles are dust (i.e.,
news articles). The blue circles having solid line are news articles from left-wing media
and the red ones having dotted line are from right-wing media. The size of each circle
reflects the popularity of the news article based on the number of retweeted. By clicking
any dust object, a user can see the detailed pop-up of the corresponding tweet.

A user can also click on any magnet to adjust the magnitude of attraction of magnet.
When a magnet is clicked, dust particles are attracted to the magnet based on the value
of the dimension corresponding to the magnet. For example, if the magnet represents
socialization, a piece of dust with a higher value for socialization attracts more than a
piece of dust with a lower value for it. As a result, users receives a sorted list of news
articles. By allowing users to explore news articles along psychological dimensions, one

could encourage them to expand their normal news reading patterns.


http://www.epjdatascience.com/content/2014/1/12

An et al. EPJ Data Science 2014, 2014:12 Page 19 of 21
http://www.epjdatascience.com/content/2014/1/12

8 Conclusion
To counter information overload, people increasingly turn to their friends to receive fil-
tered information as a proxy for relevance. If one hears about a story from a friend, then
that story suddenly becomes relevant and salient even when its political orientation is dif-
ferent [58]. This established pattern of social behavior guides our actions not only offline
but also online.

In Twitter, some of those who tend to be diversity-averse in their consumption of polit-
ical news still promote stories they disagree with, and they do so because these stories are
relevant to their online friends. This finding suggests that social ties are a proxy for rele-
vance online. This striking resemblance with what happens offline happens likely because
human behavior, which took thousands of years to evolve, changes much more slowly than
the Web, which is only about 20 years old. As a result, it is easier for our online world to
align itself with our offline world [59].

The media landscape continues to evolve over time and how people use certain medium
also changes. This work has offered only one snapshot of the Twitter political landscape.
To extend this, we will conduct a longitudinal study using the same 4-factor model, and
see how the contributions of those factors changes over time and during large-scale events
(e.g., elections).
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