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Abstract

We address the question to what extent the success of scientific articles is due to
social influence. Analyzing a data set of over 100,000 publications from the field of
Computer Science, we study how centrality in the coauthorship network differs
between authors who have highly cited papers and those who do not. We further
show that a Machine Learning classifier, based only on coauthorship network
centrality metrics measured at the time of publication, is able to predict with high
precision whether an article will be highly cited five years after publication. By this we
provide quantitative insight into the social dimension of scientific publishing —
challenging the perception of citations as an objective, socially unbiased measure of
scientific success.
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1 Introduction

Quantitative measures are increasingly used to evaluate the performance of research in-
stitutions, departments, and individual scientists. Measures like the absolute or relative
number of published research articles are frequently applied to quantify the productivity
of scientists. To measure the impact of research, citation-based measures like the total
number of citations, the number of citations per published article or the /-index [1], have
been proposed. Proponents of such citation-based measures or rankings argue that they
allow to quantitatively and objectively assess the quality of research, thus encouraging
their use as simple proxies for the success of scientists, institutions or even whole research
fields. The intriguing idea that by means of citation metrics the task of assessing research
quality can be “outsourced” to the collective intelligence of the scientific community, has
resulted in citation-based measures becoming increasingly popular among research ad-
ministrations and governmental decision makers. As a result, such measures are used as
one criterion in the evaluation of grant proposals and research institutes or in hiring com-
mittees for faculty positions. Considering the potential impact for the careers of — espe-
cially young — scientists, it is reasonable to take a step back and ask a simple question: To
what extent do social factors influence the number of citations of their articles? Arguably,
this question challenges the perception of science as a systematic pursuit for objective
truth, which ideally should be free of personal beliefs, biases or social influence. On the
other hand, quoting Werner Heisenberg [2], “science is done by humans’, it would be sur-
prising if specifically scientific activities were free from the influences of social aspects.
© 2014 Sarigél et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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Whereas often the term “social influence” has a negative connotation, we don’t think that
social influence in science necessarily stems from malicious or unethical behavior, like e.g.
nepotism, prejudicial judgments, discrimination or in-group favoritism. We rather sus-
pect that, as a response to the increasing amount of published research articles and our
limited ability to keep track of potentially relevant works, a growing importance of social
factors in citation behavior is due to natural mechanisms of social cognition and social
information filtering.

In this paper we address this issue by studying the influence of social structures on schol-
arly citation behavior. Using a data set comprising more than 100,000 scholarly publica-
tions by more than 160,000 authors, we extract time-evolving coauthorship networks and
utilize them as a (simple) proxy for the evolving social (collaboration) network of the scien-
tific discipline computer science. Based on the assumption that the centrality of scientists
in the coauthorship network is indicative for the visibility of their work, we then study
to what extent the “success” of research articles in terms of citations can be predicted us-
ing only knowledge about the embedding of authors in the coauthorship network at the
time of publication. Our prediction method is based on a random forest classifier and uti-
lizes a set of complementary network centrality measures. We find strong evidence for our
hypothesis that authors whose papers are highly cited in the future have — on average —
a significantly higher centrality in the coauthorship network at the time of publication.
Remarkably, we are able to predict whether an article will belong to the 10% most cited
articles with a precision of 60%. We argue that this result quantifies the existence of a
social bias, manifesting itself in terms of visibility and attention, and influencing measur-
able citation “success” of researchers. The presence of such a social bias threatens the in-
terpretation of citations as objectively awarded esteem, which is the justification for using
citation-based measures as universal proxies of quality and success.

The remainder of this article is structured as follows: In Section 2 we review a number of
works that have studied scientific collaboration structures as well as their relation to cita-
tion behavior. In Section 3 we describe our data set and provide details of how we construct
time-evolving coauthorship networks. We further introduce a set of network-theoretical
measures which we utilize to quantitatively assess the centrality and embedding of authors
in the evolving coauthorship network. In Section 4 we introduce a number of hypotheses
about the relations between the position of authors in the coauthorship network and the
future success of their publications. We test these hypotheses and obtain a set of candi-
date measures which are the basis for our prediction method described in Section 5. We
summarize and interpret our findings in Section 6 and discuss their implications for the

application of citation-based measures in the quantitative assessment of research.

2 The complex character of citations

It is remarkable that, even though citation-based measures have been used to quantify re-
search impact since almost sixty years [3], a complete theory of citations is still missing. In
particular, researchers studying the social processes of science have long been arguing that
citations have different, complex functions that go well beyond a mere attribution of credit
[4]. For example, in [5] evidence was presented that papers, which have been publicly crit-
icized via formal, published comments, are often highly cited. Furthermore, at the level of
scientific articles, a citation can be interpreted as a “discursive relation’, while at the level of
authors citations have an additional meaning as expression of “professional relations” [4].
Additional interpretations have been identified at aggregate levels, like e.g. social groups,
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institutions, scientific communities or even countries citing each other. These findings
suggest that citations are indeed a complex phenomenon which have both cognitive and a
social dimension [4, 6]. The complex character of scholarly citations was further empha-
sized recently [7, 8]. Here, the authors argue that, apart from an attribution of scientific
merit, references in scientific literature often serve as a tool to guide and orient the reader,
to simplify scientific writing and to associate the work with a particular scientific commu-
nity. Furthermore, they highlight that citation numbers of articles are crucially influenced
not only by the popularity of a research topic and the size of the scientific community, but
also by the number of authors as well as their prominence and visibility. These findings
question an oversimplified interpretation of citation counts as objective quality indicator.

Facilitated by the wide-spread availability of scholarly citation databases, some advances
in the understanding of the dynamics of citations have been made in the last years. For an
interesting study of bibliometric indicators on the author level, see e.g. [9]. Generally, ci-
tation practices seem to differ significantly across different scientific disciplines, which
complicates the definition of universal citation-based impact measures. However, the re-
markable finding that — independent of discipline — citations follow a log-normal distri-
bution which can be rescaled in such a way that citation numbers become comparable
[10, 11], suggests that the mechanisms behind citation practices are universal across dis-
ciplines, and differences are mainly due to differing community sizes.

Additionally to investigations of the differences across scientific communities, the rela-
tions between citations and coauthorships were studied in recent works. Using data from a
number of scientific journals, it was shown that the citation count of an article is correlated
both with the number of authors and the number of institutions involved in its produc-
tion [12, 13]. Studying data from eight highly ranked scientific journals, it was shown [14]
that (a) single author publications consistently received the lowest number of citations
and (b) publications with less than five coauthors received less citations than the average
article. Studying citations between individuals rather than articles, in [15] it was observed
that coauthors tend to cite each other sooner after the publication of a paper (compared
to non-coauthors). Further, the authors showed that a strong tendency towards reciprocal
citation patterns exists. These findings already indicate that social aspects influence citing
behavior. In this work we are going to quantitatively reveal the extent of this influence.

Going beyond a mere study of direct coauthorship relations, first attempts to study both
citation and coauthorship structures from a network perspective have been made recently.
Aiming at a measure that captures both the amount as well as the reach of citations in a
scientific community, a citation index that incorporates the distance of citing authors in
the collaboration network was proposed [16]. Another recent study [17] used the topo-
logical distance between citing authors in the coauthorship network to extend the notion
of self-citations. Interestingly, apart from direct self-citations, this study could not find a
strong tendency to cite authors that are close in the coauthorship network.

Different from previous works, in this article we study correlations between the central-
ity of authors in collaboration networks and the citation success of their research articles.
By this we particularly extend previous works that use a network perspective on coau-
thorship structures and citation patterns. Stressing the fact that social relations of authors
play an important role for how much attention and recognition their research receives, we
further contribute a quantitative view on previously hypothesized relations between the
visibility of authors and citation patterns.
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3 Time-evolving collaboration and citation networks

In this work we analyze a data set of scholarly citations and collaborations obtained from
the Microsoft Academic Search (MSAS, http://academic.research.microsoft.com) service.
The MSAS is a scholarly database containing more than 35 Million publication records
from 15 scientific disciplines. Using the Application Programming Interface (API) of this
service, we extracted a subset of more than 100,000 computer science articles, published
between 1996 and 2008, in the following way: First, we retrieved unique numerical iden-
tifiers (IDs) of the 20,000 highest ranked authors in the field of computer science. This
ranking is the result of an MSAS internal “field rating’, taking into account several schol-
arly metrics of an author (number of publications, citations, 4-index) and comparing them
to the typical values of these metrics within a certain research field. In order to build coau-
thorship and citation networks of reasonable size, in a second step we chose 1,000 authors
i.i.d. uniformly from the set of these 20,000 authors. In the third step, we obtained infor-
mation on coauthors, publication date, as well as the list and publication date of citing
works for all the publications authored by these 1,000 authors between 1996 and 2008.
This results in a data set consisting of a total of 108,758 publications from the field of
computer science, coauthored by a total of 160,891 researchers. Each publication record
contains a list of author IDs, which, by means of disambiguation heuristics internally ap-
plied by the MSAS service, uniquely identify authors independent of name spelling vari-
ations. The absence of name ambiguities is one feature that sets this data set apart from
other data sets on scholarly publications that are used frequently. Based on this data set
we extracted a coauthorship network, where nodes represent authors and links represent
coauthorship relations between authors. In addition, using the information about citing
papers, we extracted citation dynamics, i.e. the time evolution of the number of citations
of all publications in our data set. Similar to earlier works, we argue that the coauthorship
network can be considered a first-order approximation of the complete scientific collab-
oration network [15]. Based on the publication date of an article, we additionally assign
time stamps to the extracted coauthor links — thus obtaining time-evolving coauthorship
networks.

We analyze the evolution of the coauthorship network using a sliding window of two
years in which we aggregate all coauthorships occurring within that time. Starting with
1996, we slide this window in one year increments and obtain a total of 11 time slices rep-
resenting the evolution of collaboration structures between 1996 and 2008. We use an
extended time-window of two years to account for the continuing effect of a coauthor-
ship in terms of awareness about the coauthors works. Although larger time windows are
certainly possible (and their effects interesting to investigate), in this work we are less con-
cerned with the optimal time-window size and consistently use the above described ap-
proach. However, consistency checks performed with varying time-window sizes suggest
that our results are robust.

Table 1 summarizes the number of nodes and links in the coauthorship network, the
number of publications in each time slice as well as the fractional size of the largest con-
nected component (LCC). Note that the time-aggregated network (nearly) forms one giant
connected component with only a minor fraction of isolated nodes. In contrast, some of
the time slices fall apart in several larger disconnected components. Note also that the
size of the largest connected component is increasing with time, which may indicate ei-
ther a possible bias in the coverage of the MSAS database to favor newer articles, or an
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Table 1 Number of papers and size of the collaboration network 2-year subgraphs between
1995-2008 used in our study.

Year LCC fraction Links Nodes Publications
1996-1997 0.18 61,046 2,845 1,160
1997-1998 037 130,938 6,381 3,070
1998-1999 045 153,412 8,470 4,054
1999-2000 0.50 186,318 10413 5320
2000-2001 0.60 358,188 13,451 6,561
2001-2002 063 413,846 15,309 7,026
2002-2003 0.74 542,912 20,238 9,193
2003-2004 0.77 653,224 23,624 10,608
2004-2005 0.79 745,352 26,258 11,430
2005-2006 0.83 889,996 29,886 12,919
2006-2007 0.84 914,614 32412 13,568
2007-2008 0.86 858,554 35,255 14,214
Overall 0.99 5,324,330 160,891 108,758

increase of “collaborativeness” in science. As we are going to perform a social network
analysis of the coauthorship time slices — and some measures (like eigenvector central-
ity) are not well-defined for unconnected graphs — we limit our following analysis on the
largest connected component. For each network corresponding to one two-year time slice,
we compute a number of node-level metrics that allow us to quantitatively monitor the
evolution of network positions for all authors. In particular, we compute degree centrality,
eigenvector centrality, betweenness centrality and k-core centrality of authors. For further
details on the centrality measures used in this study, we refer the reader to the Supplemen-
tary Material (Additional file 1) or a standard network analysis textbook, e.g. [18]. Here we
utilize implementations of these measures provided by the igraph package [19].

A major focus of our work is to assess the predictive power of an author’s position in the
coauthorship network for the citation success of her future articles. To do so we adopt a so-
called hindcasting approach: For each publication p published in year ¢, we extract the list
of coauthors as well as the LCC of the coauthorship network in the time slice [f -2, £], and
calculate the centrality measures. Based on the citation data, we furthermore calculate the
number of citations ¢, paper p gained within a time frame of five years after publication,
i.e. in the time slice [¢,¢ + 5].

In particular, we are interested in those publications that are among the most successful
ones. Defining success is generally an ambiguous endeavor. As justified in the Introduction,
here we take the (controversial) viewpoint that success is directly measurable in number of
citations. We specifically focus on a simple notion of success in terms of having kighly cited
papers and, similar to [20], assume that a paper is successful if five years after publication
it has more citations than 90% of all papers published in the same year. We refer to the
set of successful papers published in year ¢ as Py (¢). The set of remaining papers, i.e. those
published at time ¢ that are cited less frequently than the top 10%, is denoted as P ().

4 Statistical dependence of coauthorship structures and citations

Having a large social network and “knowing the right people” often is a prerequisite for
career success. However, science is often thought to be one of the few fields of human
endeavor where success depends on the quality of an authors’ work, rather than on her
social connectedness. Given the time evolving coauthorship network, as well as the ob-
served success (or lack thereof) of a publication, we investigate two research questions,
aiming to quantify the aspect of social influence on citation success. First, we examine
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whether there is a general tendency of central authors in the coauthorship network to
publish papers that are more successful than those of non-central authors. Second, we in-
vestigate the inverse effect and ask whether the success of a paper influences the future

coauthorship centrality of its authors.

4.1 Effects of author centrality on citation success

To answer the first research question we test the following hypothesis.

Hypothesis 1 At the time of publication, authors of papers in P4 (t) are more central in the

coauthorship network than authors of articles in P (t).

As papers often have more than one author, for each paper we only consider the coau-
thorship network centralities of the author with the highest coauthorship degree, and refer
to this as the coauthorship centrality of the paper. This choice is motivated by the intuition
that the centrality of the best connected coauthor should provide the major amount of
(socially triggered) visibility for the publication. One might argue that this procedure in-
troduces a centrality bias towards papers with a large number of authors. However, as the
number of coauthors in our dataset is rather narrow with a mean of 3.95, a median of 3 and
a standard deviation of 5.41 authors, a seizable bias cannot be expected. We test Hypoth-
esis 1 by comparing coauthorship centrality distributions of papers in P4(t) and P, (¢) for
each year t. In order to compare the centrality distributions, we apply a Wilcoxon-Mann-
Whitney two-sample rank-sum-test [21]. For each of the four centrality metrics we test the
null hypothesis that coauthorship centrality distributions of papers in P;(t) and P (t) are
the same against the alternative hypothesis that the centrality distribution of papers in
P4 (t) is stochastically larger than that of papers in P (t). The p-values of the tests as well
as the corresponding averages and variances of the four considered centrality metrics in
the two sets are shown in Table 2. Additionally, Figures 1, 2, 3 and 4 show kernel density
estimates of these distributions. For all considered centrality metrics p-values are well be-
low a significance level of 0.01. We can thus safely reject the null hypothesis, concluding
that coauthorship centrality metrics of papers in P4 (¢) are stochastically larger than those
of papers in P (¢). This result indicates that centrality metrics in the coauthorship net-
work, at the time of publication of a paper, are indicative for future paper success. Note
however, that this statistical dependency is more complicated than the linear Pearson or
the more general Spearman correlation. Indeed, all the considered social network metrics
are only weakly, if at all, correlated with citation numbers (see Supplementary Material
(Additional file 1)). Table 3 summarizes to what extent citation success and coauthor-

ship network centrality are statistically dependent. The left entry of each cell indicates

Table 2 p-values of one sided Wilcoxon-Mann-Whitney test. This quantifies whether the
centrality distributions of authors of articles in P; are (in a statistical sense) larger than those
of authors of articles in P, . Also shown are the medians M and variances var of the centrality
metrics in the two sets.

p-value M(P,) M(Py) varP) varP,
k-core 128%x10711° 16 26 120 x 10* 7.18 x 103
Eigenvector 252 % 10734 967 x 10718 208 x 107" 258 x 1073 540 x 107
Betweenness 119 % 10798 19.38 114 % 10* 419 x 10" 158 x 103

Degree 563%x1071% 28 57 1.02 x 10° 113 % 10°
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Figure 1 k-core centrality shift. Kernel density estimate of k-core coauthorship centrality of papersin P
(solid blue) and P4 (dashed red).
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Figure 2 Eigenvector centrality shift. Kernel density estimate of eigenvector coauthorship centrality of
papers in Py (solid blue) and P4 (dashed red).
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Figure 3 Betweenness centrality shift. Kernel density estimate of betweenness coauthorship centrality of
papers in P (solid blue) and P4 (dashed red).

P(toppaper|topmetric), i.e. the fraction of papers belonging to the top x% successful pa-
pers, given that their authors have top x% centrality metrics. The right entry of each cell
indicates P(topmetric|toppaper), i.e. the fraction of papers that have authors which are
within the set of authors with top x% centrality metrics, given that the papers are within
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Figure 4 Degree centrality shift. Kernel density estimate of degree coauthorship centrality of papers in P,
(solid blue) and P4 (dashed red).

Table 3 The left entry of each cell indicates P(toppaper|topmetric), i.e. the fraction of papers
belonging to the top x% successful papers, given that their authors have top x% centrality
metrics. The right entry of each cell indicates P(topmetric|toppaper), i.e. the fraction of
papers that have authors which are within the set of authors with top x% centrality metrics,
given that the papers are within the top x% successful papers. Row Intersection indicates the
intersection of all the above considered centrality metrics.

Top 10% Top 5% Top 2% Top 1%
k-core 0.22||0.21 0.17]|0.16 0.07]10.07 0.01]]0.01
Eigenvector 0.11710.11 0.06]10.06 0.01]]0.01 0.01]]0.01
Betweenness 0.20[10.20 0.13]10.13 0.11]]0.11 0.11710.11
Degree 0.20[]0.20 0.15]10.15 0.10]]0.09 0.071|0.07
Intersection 0.36]10.15 0.27]10.11 0.17]10.06 0.12]]0.04
# papers 3,700 1,844 730 362

the top x% successful papers. From these results, we conclude two observations: First, the
probabilities in each cell are well below 1, indicating the absence of a simple linear (Pear-
son) correlation. Second, especially considering k-core centrality, knowing a paper is top
10% successful, the conditional probability that it was written by an author with top 10% k-
core centrality, is P(topmetric|toppaper) = 0.21. Additionally, Table 3 shows that vice versa
P(toppaper|topmetric) = 0.22 of all papers that are published by authors with top 10% k-
core centrality, are among the most successful ones. In addition, we consider the intersec-
tion of all four centrality metrics. Here we even find that P(toppaper|topmetric) = 0.36 of
all papers published authors with top 10% centrality w.r.t. all four centrality metrics, are
among the top 10% most cited papers. We will use this observation as basis for a naive
Bayes classifier in Section 5.

4.2 Coevolution of coauthorship and citation success

In the previous section we studied the question whether the centrality of authors in the
coauthorship network is indicative for the success of publications in terms of citations.
Our results suggested that centrality in coauthorship networks is indeed indicative for
citation success. In the following we study the inverse relation and ask whether a shift
in citation success of authors is indicative for their future position in the coauthorship
network. To answer this question, we consider all authors who published an article both
at time ¢ and five years later at £ + 5. We then categorize them based on the citation success
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of their articles published at time ¢ and time ¢ + 5. We introduce two sets of authors: Set
A< (2) is the set of authors who at time ¢ had at least one publication in class P4(¢), but
who at time ¢ + 5 did not have an article in class P4(¢ + 5) anymore. Set A () contains all
authors who at time ¢ had no article in class P4 (¢) but who at time ¢ + 5 published at least
one article that falls in class P4 (¢ + 5). In addition, we record the coauthorship centralities
of authors in these two sets for two time windows [t — 2,2] and [t + 3,¢ + 5]. For authors
in set A » we test the following hypothesis:

Hypothesis 2 Authors that experience a positive shift in their citation success (i.e. authors
in A ») will become more central in the coauthorship network.

Complementary to Hypothesis 2, for authors in set A\ we hypothesize:

Hypothesis 3 Authors that experience a negative shift in their citation success (i.e. authors
in A\,) will become less central in the coauthorship network.

In order to test for Hypothesis 2 and Hypothesis 3, we apply a pairwise Wilcoxon-Mann-
Whitney test. To verify Hypothesis 2 we test if the centralities of authors have decreased in
the case of a decrease in publication success from time ¢ to ¢ + 5. To verify Hypothesis 3 we
test if the centralities of authors have increased in the case of an increase in publication
success from time ¢ to ¢ + 5. Results of these hypotheses tests are presented in Table 4.
Testing Hypothesis 2, for authors in A » we observe that p-values are much lower than
the 0.01 significance threshold. We hence find evidence that authors in A » experience
a significant increase in k-core, betweenness and degree centrality. Reversely, results for
authors in A\ suggest a significant decrease in k-core, eigenvector and degree centrality.
Based on these results we cannot reject Hypothesis 2 and Hypothesis 3, indicating that
citation success significantly influences the future centrality of authors in the coauthorship
network.

As an illustration of citation and coauthorship dynamics, Figures 5 and 6 show part of
the coauthorship network. Color intensity of the nodes is scaled to their degree centrality,
while node size is scaled to their betweenness centrality. A very strong community struc-
ture is clearly visible. Furthermore, we highlighted in red one particular author from the
set A ~(t) (2002), i.e. an author who did not have a paper in P; in 2002, but did so in 2007.
In the considered five year span the highlighted author moved from a position in the pe-
riphery of the coauthorship network to a position in the center. Not only did the authors’

Table 4 p-values of Wilcoxon-Mann-Whitney test for different centrality metrics and
alternative hypotheses. Column A\ presents p-values for authors in set A\ , column A »
presents p-values for authors in set A ».

Centrality measure & alternative A, A

k-core(t) > k-core(t + 5) 3.15%x 107" 1

k-core(t) < k-core(t + 5) 1 3.04 x 107°°
ev-centr(t) > ev-centr(t + 5) 518 x 10714 0.86
ev-centr(t) < ev-centr(t + 5) 1 0.14
bw-centr(t) > bw-centr(t + 5) 0.23 1
bw-centr(t) < bw-centr(t + 5) 0.77 7.29 x 10730
degree(t) > degree(t + 5) 669 x 107" 1

degree(t) < degree(t + 5) 1 772 x 1072

# authors 521 648
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Figure 5 Citation success 2002. |llustration of correlation between citation success and centrality in the
coauthorship network for year 2002. Color intensity of the nodes is scaled according to their degree centrality
and size of nodes is scaled according to their betweenness centrality. Red node highlights one and the same
author as in Figure 6.

degree centrality increase (see size of the node as well as joined red-colored links), but
also the author’s betweenness centrality largely increased.

Note that already in 2002 the author had comparatively high betweenness and degree
centrality, which — according to our previous discussion — provided an ideal starting point

for citation success in 2007.

5 Predicting successful publications
In the previous sections we presented evidence for the existence of statistical dependen-
cies between authors’ coauthorship centrality and the success of their publications. Results
suggest that several coauthorship centrality metrics are indicative for citation success.
However, we did not identify one single centrality metric whose magnitude is sufficient
to predict whether the paper will become highly cited. In particular, we did not find that
this would be true for the mere number of coauthors. Instead, we can guess that impor-
tance in the collaboration network is multi-faceted and thus influences by more than one
network measure. In this section we thus develop a Machine Learning classifier which —
taking into account several features of the authors position in the coauthorship network —
is able to predict whether a publication will be highly cited.

Previous works have already attempted to predict citation success. For example in [22],
the predictive power of the past s-index for the future s-index of a scientist was pre-
sented. Furthermore, in [23] additional indicators like, e.g. the length of the career or the


http://www.epjdatascience.com/content/2014/1/9

Sarigol et al. EPJ Data Science 2014, 2014:9 Page 11 of 16
http://www.epjdatascience.com/content/2014/1/9

Figure 6 Citation success 2007. lllustration of correlation between citation success and centrality in the
coauthorship network for year 2007. Color intensity of the nodes is scaled according to their degree centrality
and size of nodes is scaled according to their betweenness centrality. Red node highlights one and the same
author as in Figure 5.

number of articles in certain journals, have been integrated into a model to predict the fu-
ture si-index of scientists. The authors of [20] compare the number of citations an article
has received at a given point in time with the expected value in a preferential attachment
model for the citation network. Deriving a z-score, the authors present a prediction of
which papers will be highly cited in the future. Recently the authors reevaluate their earlier
predictions and confirm the predictive power of their approach [24]. Whereas these three
approaches attempt to predict success based on past citation dynamics, they do not inves-
tigate the underlying mechanisms that lead to citation success. Here we address this fun-
damental question and try to predict citation success merely based on centrality measures
of authors in the coauthorship network. Clearly, many different factors will contribute to
scientific success. In this work, however, we focus on the social component (based on the
coauthorship network) in order to highlight the influence of social, and not necessarily
merit-based, mechanisms on publication success.

In Section 4.1 we presented insights about the statistical dependency of citation success
and several social network centrality measures (see Table 3). These results suggest that a
naive Bayes predictor for citation success can already yield quite useful results, predicting
whether or not a paper will be toppaper, given ex ante knowledge about topmetric of the
authors. Using k-core centrality as a basis, we apply the following classification rule:

If a paper is authored by a top 10% k-core centrality author, then the paper will be
among the top 10% most cited papers five years after publication.
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To evaluate the goodness of this prediction, we consider the error measures precision
and recall (see Additional file 1 for a general definition of precision and recall). Observing
that for k-core centrality in a 10% success scenario it is P(topmetric|toppaper) = 0.21%
as well as P(toppaper|topmetric) = 0.22% and the fact that for a naive Bayes classifier
recall = P(topmetric|toppaper) and precision = P(toppaper|topmetric) holds, one sees
that a classifier with the above rule yields recall = 21% and precision = 22%. Similarly, in-
stead of k-core centrality other network measures presented in Table 3 can be used as basis
for the above classification rule. As earlier works have tried to predict the success of papers
based on the number of coauthors [14], using degree centrality as basis for the above clas-
sification rule directly extends these attempts, yielding a recall of 20% and a precision of
20%. Note, however, that degree centrality accumulates all coauthorships that have been
established within the two-year sliding window of our analysis, not just the coauthorships
of the paper under consideration.

We now ask whether a multi-dimensional naive Bayes classifier can improve this single
metric classification result. Taking into account the intersection of all considered central-

ity metrics, we consider the following classification rule:

If a paper is authored by an author with a top 10% betweenness centrality, degree
centrality, k-core centrality and eigenvector centrality, then the paper will be among
the top 10% most cited papers five years after publication.

Using this classifier, we achieve even better classification with a precision of 36%, how-
ever diminishing recall to 15%. Whereas these results already show that a naive Bayes clas-
sifier can yield interesting insights, in the following we will present a more sophisticated
Machine Learning approach, taking multiple network centrality features into account and
improving classification errors.

We first construct a feature vector for every publication as follows. For each publication
appearing in year £, we extract all coauthors and compute the maximum and minimum
of their centralities in the coauthorship network constructed based on the time window
[£ —2,1]. Then, for each publication we build a feature vector with ten features containing
the maximum and minimum of the centrality metrics considered earlier (degree, eigenvec-
tor, betweenness and k-core), as well as the number of coauthors and the cumulative num-
ber of authors a paper has referenced. We then classify all publications regarding whether
they fall in P; or P according to the aforementioned publication classes, with P; defined
as the set of the top 10% cited publications and P, as the remaining 90%.

The classification is done using a Random Forest classifier [25], extending the concept of
classification trees (we use the R package randomForest, available at http://cran.r-project.
org/web/packages/randomForest/). In general, the Random Forest classifier is known to
yield accurate classifications for data with a large number of features [25]. Furthermore, it
is a highly scalable classification algorithm, eliminating the need for separate cross valida-
tion and error estimation, as these procedures are part of the internal classification routine
(for details on the procedure and the error estimates we refer to Additional file 1).

Table 5 summarizes precision, recall, and F-score of the resulting classification (see Sup-
plementary Material (Additional file 1) for details on these measures). Comparing this re-
sult with the expectation from a random guess, which will correctly pick one of the top
10% publications only in 10% of the cases, the achieved precision of 60% is striking. In
particular, by only considering positional features of authors in the coauthorship network,
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Table 5 Error estimates of the Random Forest classifier to predict success of papers.

Nr. publications Precision Recall F-score
36,000 0.6 0.18 0.28

we are able to achieve an increase of factor six in predictive power compared to a random
guess. Also, we obtain a recall value of 18%, meaning that our classifier correctly identified
about one fifth of all of the top 10% papers in a given research field. As a random guess
would yield a recall of 10%, the Random Forest classifier improves recall by 80%.

This result allows for two conclusions: First, the fact that a high-dimensional random
forest classifier performs better than a naive Bayes classifier, makes clear that social influ-
ence on scientific success cannot be measured by a single network metric and is instead a
multi-faceted concept. Second, and most importantly, our result show that by solely con-
sidering metrics of social influence, such a classifier is able to predict scientific success with
high precision.

Let us note that here we focused on the social influence on success. However, one might
equally ask whether the complementary effect is true as well: can social factors predict
whether a paper will be in the bottom 10% of all papers? We tested this hypothesis as well
and found that, using the same procedure, with an achieved recall of 1.8% and a precision
of 22.8%, whether a paper will be in the bottom 10% of all papers is nearly unpredictable
using metrics of social influence only. Our interpretation of this finding is that even au-
thors that are socially well connected will have papers that are not highly cited, simply
because their content did not raise interest in the scientific community. This leads us to
conclude that social factors are necessary factors for success, but are not sufficient — which

is, in our opinion, a very easing result for the scientific community.

6 Discussion and conclusions

Using a data set on more than 100,000 scholarly publications authored by more than
160,000 authors in the field of computer science, in this article we studied the relation
between the centrality of authors in the coauthorship network and the future success of
their publications. Clearly, there are certain limitations to our approach, which we discuss
in the following.

First of all, any data-driven study of social behavior in general and citation behavior
in particular is limited by the completeness and correctness of the used data set. In our
data set name ambiguities are automatically resolved by the Microsoft Academic Search
(MSAS) database by sophisticated and validated disambiguation heuristics. This provides
a clear advantage over simpler heuristics that have been used in similar studies. Although
we did manual consistency checks of ambiguities for the top authors in our dataset, it
is nevertheless not possible to exclude that there are some name ambiguities. However,
since additionally author profiles in MSAS are to large parts manually edited by authors
themselves, we are confident that name ambiguities are nearly negligible.

In order to rule out effects that are due to different citation patterns in different dis-
ciplines, we limited our study to computer science, for which we expect the coverage of
MSAS to be particular good. While this limits the generalization of our results to other
fields, our work nevertheless represents — to the best of our knowledge — the first large-

scale case study of social factors in citation practices. As publication practices seem to
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vary widely across disciplines, it will be interesting to investigate whether our results hold
for other research communities as well.

Clearly, any study that tries to evaluate the importance or centrality of actors in a social
network needs to be concerned about the choice of suitable centrality measures. In order
to not overemphasize one particular — out of the many — dimensions of centrality in net-
works, we chose to use complementary centrality measures that capture different aspects
of importance at the same time. The results of our prediction highlight that the combi-
nation of different metrics is crucial — making clear that visibility and social influence are
more complicated to capture than by a single centrality metric.

Finally, one may argue that our observation that authors with high centrality are cited
more often is not a statement of a direct causal relation between centrality and citation
numbers. After all, both centrality and citations could be secondary effects of, for instance,
the scientific excellence of a particular researcher, which then translates into becoming
central and highly cited at the same time. Clearly, we neither can — nor do we want — to
rule out such possible explanations for our statistical findings. However, considering our
finding of strong statistical dependence between social centrality and citation success, one
could provocatively state the following: if citation-based measures were to be good proxies
for scientific success, so should be measures of centrality in the social network. We assume
that not many researchers would approve having the quality of their work be evaluated by
means of such measures.

In summary, the contributions of our work are threefold:

1. We provide the, to the best of our knowledge, first large-scale study that analyses
relations between the position of researchers in scientific collaboration networks and
citation dynamics, using a set of complementary network-based centrality measures.
A specific feature of our method is that we study time-evolving collaboration
networks and citation numbers, thus allowing us to investigate possible mechanisms
of social influence at a microscopic scale.

2. We show that — at least for the measures of centrality investigated in this paper —
there is no single notion of centrality in social networks that could accurately predict
the future citation success of an author. We expect this finding to be of interest for
any general attempt to predict the success of actors based on their centrality in social
networks.

3. Using modern Machine Learning techniques, we present a supervised classification
method based on a Random Forest classifier, using a multidimensional feature vector
of collaboration network centrality metrics. We show that this method allows for a
remarkably precise prediction of the future citation success of a paper, solely based
on the social embedding of its authors. With this, our method provides a clear
indication for a strong statistical dependence between author centrality and citation
success. Additionally, we show evidence that author centrality is more of a necessary
condition for success than a sufficient one.

In conclusion, we provided evidence for a strong relation between the position of au-
thors in scientific collaboration networks and their future success in terms of citations.
We would like to emphasize that by this we do not want to join in the line of — sometimes
remarkably uncritical — proponents of citation-based evaluation techniques. Instead, we
hope to contribute to the discussion about the manifold influencing factors of citation

measures and their explanatory power concerning scientific success. Especially, we do
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not see our contribution in the development of automated success prediction techniques,
whose widespread adoption could possibly have devastating effects on the general scien-
tific culture and attitude. Highlighting social influence mechanisms, we rather think that
our findings are an important contribution to the ongoing debate about the meaningful-
ness and use of citation-based measures. We further hope that our work contributes to
a better understanding of the multi-faceted, complex nature of citations and citation dy-
namics, which should be a prerequisite for any reasonable application of citation-based

measures.
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