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Abstract
Wikipedia is a prime example of today’s value production in a collaborative
environment. Using this example, we model the emergence, persistence and
resolution of severe conflicts during collaboration by coupling opinion formation
with article editing in a bounded confidence dynamics. The complex social behavior
involved in editing articles is implemented as a minimal model with two basic
elements; (i) individuals interact directly to share information and convince each
other, and (ii) they edit a common medium to establish their own opinions. Opinions
of the editors and that represented by the article are characterised by a scalar variable.
When the pool of editors is fixed, three regimes can be distinguished: (a) a stable
mainstream article opinion is continuously contested by editors with extremist views
and there is slow convergence towards consensus, (b) the article oscillates between
editors with extremist views, reaching consensus relatively fast at one of the
extremes, and (c) the extremist editors are converted very fast to the mainstream
opinion and the article has an erratic evolution. When editors are renewed with a
certain rate, a dynamical transition occurs between different kinds of edit wars, which
qualitatively reflect the dynamics of conflicts as observed in real Wikipedia data.

Keywords: social dynamics; mathematical modeling; peer-production; Wikipedia;
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1 Introduction
Cooperative societies are ubiquitous in nature [], yet the cooperation or the mutual as-
sistance between members of a society is also likely to generate conflicts []. Potential for
conflicts is commonplace even in insect species [] and so is conflictmanagement through
policing and negotiation in groups of primates [, ]. In human societies cooperation goes
further not only in its scale and range, but also in the available mechanisms to promote
conflict resolution [, ]. Collaborative and conflict-prone human endeavors are numer-
ous, including public policy-making in globalized societies [, ], open-source software
development [], teamwork in operating rooms [], and even long-term partnerships
[]. Moreover, information communication technology opens up entirely new ways of
collaboration. With such a diversity in system size and social interactions between indi-
viduals, it seems appropriate to study this phenomenon of social dynamics in the frame-
work of statistical physics [, ], an approach benefiting greatly from the availability of
large scale data on social interactions [, ].
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As a relevant example of conflicts in social cooperation we select Wikipedia (WP), an
intriguing example of value production in an online collaborative environment []. WP
is a free web-based encyclopedia project, where volunteering individuals collaboratively
write and edit articles about any topic they choose. The availability of virtually all data
concerning the visiting and editing of article pages provides a solid empirical basis for
investigating topics such as online content popularity [, ] and the role of opinion-
formation processes in a peer-production environment [].
The editing process in WP is usually peaceful and constructive, but some controversial

topics might give rise to extreme cases of disagreement over the contents of the articles,
with the editors repeatedly overriding each other’s contributions and making it harder
to reach consensus. These ‘edit wars’ (as they are commonly called) result from complex
online social dynamics, and recent studies [] have shown how to detect and classify
them, as well as how they are related to burstiness and what are their circadian patterns
in editing activity [].
Although collaborative behavior might appear without direct interactions between in-

dividuals, communication tends to have a positive effect on cooperation and trust [].
Indeed, more immediate forms of communication (voice as opposed to text, for example)
have been seen to increase the level of cooperation in online environments []. In WP,
direct communication is implemented via ‘talk pages’, open forumswhere editors may dis-
cuss improvements over the contents of articles and exchange their related opinions [].
Discussions among editors are not mandatory [], but there is a significant correlation
between talk page length and the likelihood of an edit war, indicating that many debates
happen in articles and talk pages, simultaneously [, ].
Overall, a minimal model aimed at reproducing the temporal evolution of a common

medium (i.e. a product collectively modified by a group of people, like an article in WP)
requires at least the following two ingredients:

(i) agent-agent dynamics: Individuals share their views and opinions about changes in
the article using an open channel accessible to all editors (the talk page or some
other means of communication), thus effectively participating in an
opinion-formation process through information sharing.

(ii) agent-medium dynamics: Individuals edit the article if it does not properly
summarize their views on the subject, thus controlling the temporal evolution of the
article and coupling it to the opinion-formation mechanism.

We describe the opinion-formation process taking place in the talk page by means of
the well-known bounded confidence mechanism first introduced by Deffuant et al. [],
where real discussions take place only if the opinions of the people involved are suffi-
ciently close to each other. Conversely, we model article editing by an ‘inverse’ bounded
confidence process, where individuals change the current state of the article only if it dif-
fers too much from their own opinions. Particularly, we focus our attention on how the
coupling between agent-agent and agent-medium interactions determines the nature of
the temporal evolution of an article. This we consider as a further step towards the theo-
retical characterization of conflict in social cooperative systems such as WP [].
The text is organized as follows: In Section  we introduce and discuss the model in

detail. In Section  we describe our results separately for the cases of a fixed editor pool
and a pool with editor renewal, and finallymake a comparisonwith empirical observations
on WP conflicts. In Section  we present concluding remarks.
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2 Model
Let us first assume that there is a system of N agents as potential editors for a collective
medium. The state of an individual i at time t is defined by its scalar, continuous opinion
xi(t) ∈ [, ], while the medium is characterized by a certain value A(t) in that same inter-
val. The variable x represents the view and/or inclination of an agent concerning the topic
described by the commonmedium, while A is the particular position actually represented
by the medium.
Although it may seem too reductive to describe people’s perceptions by a scalar variable

x, many topics can actually be projected to a one-dimensional struggle between two ex-
treme, opposite options. In the Liancourt Rocks territorial dispute between South Korea
and Japan [], for example, the values x = ,  represent the extreme position of favoring
sovereignty of the islets for a particular country. Other topics are of course multifaceted,
generating discussions that depend on the global affinity of individuals and multiple cul-
tural factors []. While this complexity could be tackled by the use of vectorial opinions
[, ], our intention here is not to describe extremism as realistically as possible, but to
study the rise of collaborative conflict even in the simplest case of binary extremism.
In the case of WP, the scalar variable A represents the opinion expressed by the written

contents of an article, which carries the assumption that all agents perceive themedium in
the sameway. Real scenarios of public opinionmight bemore complex, given the tendency
of individuals to attribute their own views to others and thus perceive false consensus
[], usually out of a social need to belong []. Even so, we consider A to be a sensible
description of a WP article, one that could initially be measured by human judgment in
the form of expert opinions, or in an automated way by quantifying lexical features and
the use of certain language constructs. We note, however, that the actual value of A is
not the main concern of our study. Instead, we are interested in how opinion differences
in collaborative groups may eventually lead to conflict, specifically when such opinion
differences are perceived with respect to a common medium that all individuals modify
collectively.

2.1 Agent-agent dynamics
For the agent-agent dynamics (AAD) we consider a generic bounded-confidence model
over a complete graph [, ], that is, a succession of randombinary encounters among all
agents in the system. We initialize every opinion xi() to a uniformly-distributed random
value in the interval [, ]. The initial medium value A() is chosen uniformly at random
from the same interval. This way, even an initially moderate medium A ∼ / may find
discord with extreme opinions at the boundaries. For each interaction we randomly select
two agents i, j and compare their opinions. If the difference in opinions exceeds a given
threshold εT nothing happens, but if |xi – xj| < εT we update as follows,

(xi,xj) �→
(
xi +μT [xj – xi],xj +μT [xi – xj]

)
. ()

The parameter εT ∈ [, ] is usually referred to as the confidence or tolerance for pairwise
interactions, whileμT ∈ [, /] is a convergenceparameter. AAD is then a symmetric com-
promise between similarly-minded individuals: people with very different opinions simply
do not pay attention to each other, but similar agents debate and converge their views by
the relative amount μT .
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The dynamics set by Eq. () has received a lot of attention in the past [], starting from
the mean-field description of two-body inelastic collisions in granular gases [, ]. Its
final, steady state is comprised by nc ∼ /(εT ) isolated opinion groups that arise due to
the instability of the initial opinion distribution near the boundaries. Furthermore, nc in-
creases as εT →  in a series of bifurcations []. In the limit μT →  corresponding to
a ‘stubborn’ society, the asymptotically final value of nc also depends on μT [, ]. The
bounded-confidence mechanism has been extended in many ways over the years, consid-
ering interactions between more than two agents [], vectorial opinions [, –], and
coupling with a constant external field [].

2.2 Agent-medium dynamics
For the agent-medium dynamics (AMD) we use what could be thought of as an asym-
metric, inverse version of the bounded-confidence mechanism described above. When
the opinion of a randomly chosen agent i is very different from the current state of the
medium, namely if |xi –A| > εA, we make the update,

A �→ A +μA[xi –A], ()

where εA,μA ∈ [, ] are the tolerance and convergence parameters for AMD. In other
words, individuals that come across a version of the medium portraying a radically dif-
ferent set of mind will modify it by the relative amount μA, where the threshold to define
similarity is given by εA. Conversely, if |xi –A| < εA we update,

xi �→ xi +μA[A – xi] ()

meaning that individuals edit the medium when it differs too much from their opinions,
but adopt the medium’s view when they already think similarly. Observe that the maxi-
mummeaningful value of μT is / (i.e. convergence to the average of opinions), while the
maximumμA =  implies changing themedium (opinion) so that it completely reflects the
agent’s (medium’s) point of view.
The previous rules comprise ourmodel for the dynamics of conflicts inWP given a fixed

agent pool, that is, without agents entering or leaving the editing process of the common
medium. In a numerical implementation of the model, every time step t consists of N up-
dates of AAD given by Eq. () and of AMD following Eqs. () and (), so that time is effec-
tively measured in number of edits and the broad inter-event time distribution between
successive edits (observed in empirical studies []) does not have to be considered di-
rectly. Given a fixed agent pool, AAD favors opinion homogenization in intervals of length
εT and can thus create several opinion groups for low tolerance, while AMD makes the
medium value follow themajority group. Then, for a finite system there is a nonzero prob-
ability that any agent outside themajority groupwill be drawn by themedium to it, and the
system will always reach consensus after a transient regime characterized by fluctuations
in the medium value [].
However, in realWP articles the pool of editors tends to change frequently. Some editors

leave (due to boredom, lack of interest or fading media coverage on the subject, or are
banned from editing by editors at a higher hierarchical level) and newly arrived agents
do not necessarily share the opinions of their predecessors. Such feature of agent renewal
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during the process or writing an article may destroy consensus and lead to a steady state
of alternating conflict and consensus phases, which we take into account by introducing
thermal noise in the model. Along with any update of AAD/AMD, one editor might leave
the pool with probability pnew and be substituted by a new agent with opinion chosen
uniformly at random from the interval [, ]. The quantity /(Npnew) then formally acts
as the inverse temperature of the system, signaling a dynamical phase transition between
different regimes of conflict [].

3 Results
3.1 Fixed agent pool
In the presence of a fixed agent pool (pnew = ) with finite size N , the dynamics always
reaches a peaceful state where all agents’ opinions lie within the tolerance of the medium.
To show this, let us calculate the probability that an unsatisfied editor i changes the
medium A for n consecutive times, such that afterwards |xi – A′| < εA and the agent can
finally stop its stream of edits. For fixed xi and following Eq. (), the final distance between
editor and medium is |xi – A′| = ( – μA)n|xi – A|, so the inequality |xi – A′| < εA is satis-
fied if n > ln εA/ ln( –μA). The probability of agent i not participating in AAD for n time
steps is ( – /N)n, while the probability of choosing it for AMD is /Nn. Then the total
probability of this stream of edits is (–/N)n/Nn, which for largeN and μA ∼  might be
very small, but always finite. After editor i gets into the tolerance interval of the medium,
it will not perform additional edits and will eventually adopt the majority opinion close
to the medium value. Similar events with other unsatisfied agents will finally result in full
consensus and put an end to the dynamics.
The existence of a finite relaxation time τ to consensus (for finite systems) contrasts

drastically with the behavior of the bounded confidence mechanism alone, where con-
sensus is never attained for εT < / []. In other words, the presence of agent-medium
interactions promotes an agreement of opinions that would otherwise not exist in the
agent-agent dynamics, even though it may happen after a very long time (i.e. τ � ). If we
think of the medium as an additional agent with maximum tolerance (in the sense that it
always interacts with the rest no matter what) and against which agents have a different
tolerance εA (as opposed to εT ), this result is reminiscent of previous observations for a
bounded-confidence model with heterogeneous thresholds [, ]. There, even a small
fraction of ‘open-minded’ agents with relatively high tolerance may bridge the opinion
difference between the rest of the agents and lead to consensus.
In order to analyze all possible typical behaviors of the fixed agent pool dynamics, we

perform extensive numerical simulations in systems of size ranging from N =  to ,
letting the dynamics evolve for a maximum time τmax = . We then characterize the
temporal evolution of medium and agent opinions as a function of εT , εA and μA, while
keeping pnew =  for all results in this section. Finally, since the value of μT has no major
effect other than regulating the convergence time of AAD [, ], from now on we fix it
to the maximum value μT = / in order to speed up the simulations as much as possible.
A sample time series ofmedium and agent opinions is shown in Figure . As a function of

the medium convergence μA the temporal evolution of the system shows three distinctive
behaviors. In regime IwhereμA is typically very small (Figure (A) and (D)), there is one or
more ‘mainstream’ opinion groups near x∼ / with amajority of the agents in the system,
and a number of smaller, ‘extremist’ opinion groups at positions closer to the boundaries
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Figure 1 Temporal evolution of opinions andmedium. (A, B, C) Time series of both the density
distribution P(x) of agents’ opinions x (color map) and the medium value A (line) for εT = 0.2 and several μA

values, signaling the three different regimes found in the dynamics. (D, E, F) The same but for εT = 0.04.
Simulations correspond to εA = 0.1 and N = 104.

x = , . The medium opinion stays on average at the center of the opinion space, close to
the mainstream group(s), and although continuously contested by editors with extremist
views, it remains stable and leads to a very slow convergence towards consensus. The
reason for a long relaxation time in regime I is intuitively clear: for low μA any change
in AMD is small and thus both medium and extremist opinions fail to converge quickly.
When the tolerance εT decreases the effect is evenmore striking; even though the number
of opinion groups is larger (according to the approximation nc ∼ /[εT ]), the article is
quite stable and remains close to the mainstream view.
In regime II identified with intermediate values of μA (Figure (B) and (E)), the fixed

pool dynamics produces quasi-periodic oscillations in the medium value A, which appear
after an initial stage of opinion group formation and end up very quickly in total consen-
sus. Quite surprisingly, the final consensual opinion is not x ∼ / (as in regime I) or that of
the initial mainstream group, but some intermediate value closer to the extremist groups
at the boundaries. This is indicative of a symmetry-breaking transition: as μA increases,
a symmetric stationary state at x ∼ / is replaced by a final state close to  or . The os-
cillations in regime II can initially be understood as a struggle over medium dominance
among the different opinion groups created by AAD. The AMD mechanism couples the
medium dynamics with these groups, exchanging agents between them and thus modify-
ing their positions, until the majority group wins over the rest and consensus is achieved.
For small εT oscillations are more well-defined and last for longer, while extremist groups
tend to diffuse towards the mainstream.
In regime III for large μA (Figure (C) and (F)), extremist agents directly converge to

a mainstream group and an article at the center. Since in this case μA is so large, after
any jump of the article extremist agents can enter its tolerance interval and start drift-
ing inwards. The limiting condition for this behavior is μA =  – εA/(/ – εA) [], a line
separating regime III from the rest. A smaller εT value produces a more erratic medium
evolution, with occasional jumps up and down.

http://www.epjdatascience.com/content/2014/1/7
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Figure 2 Distributions of relaxation time. (A, B, C) Cumulative distribution Pc(τ ) of the relaxation time τ

necessary to reach consensus and thus end the dynamics, for different values of the medium
convergence μA . Insets: Probability P(τ > τmax) that the relaxation time is larger than τmax = 104 (the
maximum time allowed in the numerical simulations), as a function of N for selected values of μA . The
symbols I, II and III denote the three different regimes found in the dynamics. Simulations correspond to
εT = 0.2, εA = 0.1 and N = 104, with averages over 104 realizations.

The regimes of the fixed agent pool dynamics can be quantified on average by taking a
look at the cumulative distribution Pc(τ ) of the relaxation time τ (Figure ). In regime I
the tail of Pc(τ ) is quite flat, getting flatter asμA decreases. In contrast, the distribution has
a power-law and an exponential tail in regimes II and III, respectively, signaling shorter
relaxation times. The only exception is the transition between II and III, where τ might be
as large as in I. Since Pc(τ ) tends to be broad, the average value of τ is not very meaningful
and we opt instead for the probability P(τ > τmax) that the relaxation time is larger than a
fixed maximum time. Numerically, we estimate P(τ > τmax) as the fraction of realizations
of the dynamics that have not reached consensus after τmax time steps, out of a large total of
 realizations. In regimes II and III, P(τ > τmax) remains small asN increases, indicating
that τ is roughly independent of system size. On the other hand, P(τ > τmax) scales with
N for I and for the boundary between II and III, even reaching  for appropriate values
of μA and N . A corollary is that even modestly-sized systems may only reach consensus
after an astronomical time, if the medium convergence value is appropriate.
The transition between regimes becomes even clearer when we consider the effect of

the medium tolerance εA, resulting in a phase diagram for P(τ > τmax) in (εA,μA) space
(Figure (A)). It turns out that regimes I and II cover most of the low εA values, while the
lineμA = –εA/(/–εA) roughly signals the transition to regime III, which covers a broad
area of large εA. As N increases, the transition to I from either II or III (Figure (B) and
(C)) becomes sharper: a consensual final state reached after a very short time gives way
to a stationary state that remains stable for really long times. Such features of the phase
diagram remain qualitatively unchanged if we substitute P(τ > τmax) with anothermeasure
giving robust statistics, such as the median relaxation time of the dynamics.
Finally, we can consider the symmetry-breaking transition between regimes I and II by

taking a look at the density distribution P(A) of the final medium value (Figure (A) and
(B)). After either τ or τmax has passed, the majority of opinions are in consensus with A,
making P(A) a good approximation for the final opinion distributionP(x) aswell. In regime
I the medium distribution is roughly unimodal and peaked at A ∼ /, signaling a stable
and moderate medium. Here the relaxation time is quite long and for most realizations

http://www.epjdatascience.com/content/2014/1/7
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Figure 3 Phase diagram for a fixed agent pool. (A) Phase diagram in (εA ,μA) space of the probability
P(τ > τmax) that the relaxation time is larger than τmax = 104, in a system of size N = 104. Points give the
(εA ,μA) values used in Figure 2, corresponding to regimes I, II and III. (B, C) Cross sections of the phase
diagram along the dashed lines in (A) for varying N. Simulations correspond to εT = 0.2, with averages over
104 realizations.

Figure 4 Symmetry-breaking transition. (A, B) Distribution P(A) of the final medium value A reached after
a time min(τ ,τmax) has elapsed, for varying N. The selected μA values represent regimes I (A) and II (B).
(C) Standard deviation σ (A) of the final medium value as a function of μA , for several values of N. This order
parameter signals a symmetry-breaking transition between regimes I and II. Simulations correspond to
εT = 0.2, εA = 0.0375 and τmax = 104, with averages over 104 realizations.

τ > τmax. In regime II, however, P(A) becomes bimodal, meaning that the medium is more
likely to end up close to the extremes rather than in the center. When N is large, the main
peaks in P(A) correspond to consensual final states with τ ≤ τmax, while the secondary
peaks are made up of long-lived realizations with long relaxation time. Larger values of
τmax, although computationally expensive, would therefore let us see a strictly bimodal
medium distribution for regime II. AsN increases the distribution peaks become sharper
and we can use the standard deviation σ (A) of the final medium value as an order parame-
ter for the transition (Figure (C)). In the thermodynamic limitN → ∞, a vanishing σ (A)
for I implies a stationary stable state with A∼ / and no consensus. As μA increases this
symmetry gets broken, σ (A) becomes nonzero and a true final state of consensus appears.
This symmetry-breaking mechanismmay be understood analytically via a rate equation

formalism []. The resulting rate equation can be solved numerically assuming three ed-

http://www.epjdatascience.com/content/2014/1/7
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itor groups: a mainstream at x ∼ / and two extremists with opinions close to the bound-
aries. The solution shows stability for the medium at the mainstream opinion when μA is
small, but becomes unstable and oscillating for μA 
 εA ±.. The bifurcation transition
is very sensitive on the position of the extremists, depending not only on (μA, εA) but also
on the initial conditions. This is in part the cause of the ‘noisy’ landscape of regime II in
Figure (A), which appears regardless of the measure used to draw the phase diagram.

3.2 Agent renewal
In real systems the pool of collaborators is usually not fixed: Editors come and go and very
often the number of editors fluctuates in time as external events may incite more or less
attention. To keep things simple we only focus on systems with a fixed number of editors
(N agents), but we allow agent replacement with probability pnew �= . In our numerical
simulations this happens prior to editing, and new agents have initially random opinions
coming from a uniform distribution.
If εA < / there is always an opinion range outside the article tolerance region [A – εA,

A+ εA] and new agents may enter such range and edit the article. FromWP data we know
that even peaceful articles have few disputes now and then so such a scenario is realistic.
This is thus in contrast with the case of a fixed opinion pool, where consensus is theoret-
ically always achieved.
A stronger statement can be shown [], namely that if

εA > ε∗
A =


 –μA

()

then consensus is always reached after a finite number of steps, but if εA < ε∗
A there are

realizations that do not reach consensus ever. We show here an example: if the medium
value is A = ε∗

A, then for εA = ε∗
A – ε an editor at x =  will disagree with the article and

change it by � = ε∗
AμA, so the new medium value would be A =  – ε∗

A. Afterwards an
agent at x =  can restore the article to its previous state and avoid consensus.
The lack of full consensus does not mean that the system is always in a conflict state.

There are periods when A remains unchanged and these peaceful times are ended by con-
flicts in which the opinion of the article is continuously disputed between agent groups of
different opinion. If the dispute is settled (i.e. all agents are satisfied by the article) a new
peaceful periodmay start. The ratio of these peaceful and conflicting periods changes with
the parameters and may be considered as a good candidate for an order parameter. Thus
we define the order parameter P as the relative length of the peaceful periods.
The order parameter is plotted for two different initial conditions in Figure . The top

figure shows the value of the order parameter P for a ‘peaceful’ initial condition when all
agents had the opinion xi = /. The bottom figure was instead obtained for a system with
‘conflict’ initial conditions, namely one with % of agents divided between two extremist
groups of opinions  and  (and the rest at xi = /) before the start of the dynamics.
It is clear that there are two distinct regimes in the phase diagram of Figure : one char-

acterized by P =  (‘peaceful’ regime), the other with P =  (‘conflict’ regime) and a sharp
transition in between. There is a region which is different in the two cases and will be dis-
cussed later. We then identify the transition point with the largest gradient of P by using
the lower plot in Figure . The resulting phase diagram is shown in Figure .

http://www.epjdatascience.com/content/2014/1/7
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Figure 5 Order parameter for the agent renewal
case. Order parameter P as a function of the
medium tolerance εA and the agent replacement
rate pnew for systems of size N = 80. The chosen
initial condition is consensus for the top diagram and
conflict for the bottom one.

Figure 6 Phase diagram for a systemwith agent
renewal. Largest gradient of P by using the lower
plot in Figure 5, for varying μA . Simulations
correspond to εT = 0.2 and system size ranging from
N = 10 to 640. The article convergence parameter
was μA = 0.1, 0.2, 0.45, 0.7 for red, green, blue and
magenta respectively. The curved black line is the
analytical result for μA = 0.1. The horizontal line
limiting the prepetual peace domain is at εA = 0.15.
The eternal peace is limited by ε∗

A (shown with
dashed lines for the same color) which depends
on μA .

Figure 7 Time evolution of opinions. Samples of medium/agent opinions as a function of time for
εA = 0.42, and for three different regimes represented by pnew = 0.001, 0.002, 0.003 (from left to right
respectively). Colour coding is as follows: Red points (opinion of the article), green dots (agents who are
satisfied with the article), blue points (agents whose opinion is outside the medium tolerance interval), and
light blue background (conflict regions).

This transition is further illustrated in Figure  where we display sample time evolutions
of the opinions of agents and medium. The left panel shows an example of a peaceful
regime.Asmentioned before, from time to timenewagents arrivewith incompatible views
with respect to the article but they are pacified very fast, i.e. the conflict periods are short.
In the transition regime (middle panel) the scenario of peaceful times interrupted by short
conflicts is still observable, but periods of continuous conflict occasionally appear. In the
conflict regime exemplified by the right panel, these conflict bursts become persistent and
the peaceful periods tend to disappear.

http://www.epjdatascience.com/content/2014/1/7


Iñiguez et al. EPJ Data Science 2014, 2014:7 Page 11 of 20
http://www.epjdatascience.com/content/2014/1/7

The above transition is the result of a competition between two timescales. New agents
arrive outside of the article’s tolerance interval with an ‘insertion’ timescale τins ∝ Npnew.
In order to have P >  the conflicts must be resolved before a new extremist agent arrives.
Let us note that the convergence is very fast if there is only one extremist group. The
problem is solved by displacing the article opinion by the required amount, which can be
done in few (N independent) steps. This is what happens in the left panel of Figure . On
the other hand, if we have two extremist groups on both sides of the opinion interval the
relaxation is much slower and this is manifested in a much longer relaxation time. Thus,
at the transition the insertion timescale is equal to the relaxation time of the case with two
extremist groups, which is analogous to the fixed agent pool version of the model.
The task here is to determine the relaxation time of the fixed pool version of the model

and relate it to τins. For large values of themedium tolerance (εA > /), the relaxation time
can by calculated analytically [],

τ (e) = c(μA)N
([
e + e(n – )

]
n – ee(n – )( + n)

)
, ()

where e = ε∗
A – εA, e = ε∗

A – /, n denotes the integer part of e/e (which is actually the
number of steps the medium can make in one direction) and c is a constant depending
on μA.
The above approach works well for εA > . and μA < . (regime III of the fixed pool

case). If themainstream group gets dissatisfied either by the large jump (μA is too large) or
by the small tolerance (εA too small) of the article, the reasoning presented in [] breaks
down and new effect comes into play, namely the relaxation times of the fixed pool system
becomes be enormous (regime I).
As we enter regime I of the fixed pool dynamics the relaxation time increases sharply

(see Figure (B) and (C)). This means that if the system gets into a conflict state it will
remain there for ever, which happens for,

εA,lim =


–

εT


. ()

This is why, starting from a conflict initial condition, the lower phase diagram in Figure 
shows P =  for εA < .. On the other hand, in order to initiate such a conflict one needs
to have a situation where two extremists appear on both ends of the opinion space outside
of the article tolerance interval. If we have a single extremist then the consensus will be
reached within a few time steps, independently of N . So the probability that we create a
long-lasting conflict state decreases proportionally to the agent replacement probability.
This is why we see only peace on the finite-time realizations leading to the upper phase
diagram in Figure . Had we waited long enough, a conflict would have been formed for
εA < / – εT / and would have persisted further on.
In summary, the typical behavior of our model in the presence of agent renewal may be

divided into four distinct regimes:
(i) Eternal peace (εA > ε∗

A): The system reaches consensus very fast and remains there
for ever.

(ii) Peace (εA > 
 –

εT
 and above the phase transition line): The system is mainly in a

consensual state and only interrupted by short disputes.

http://www.epjdatascience.com/content/2014/1/7
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(iii) War (εA > 
 –

εT
 and below the phase transition line): The system is mainly in a

state of disagreement.
(iv) Perpetual war (εA < 

 –
εT
 ): In this regime and in the thermodynamic limit

N → ∞ no consensus may exist.

3.3 The case of Wikipedia
Although themodel described and analyzed above is simplified enough to be extendable to
various cases of collaboration, we specially intend to use it to explain some of the empirical
observations regarding edit wars in WP.
Wikipedia is huge, not only in its number of articles and users but in the number of

times articles are edited. In most cases articles are not written in a collaborative way, i.e.,
they have single authors or a few authors who have written and edited different parts of
the article without any significant interaction []. In contrast, a few cases show signifi-
cant constructive and/or destructive interactions between editors. The latter situation has
been named ‘edit war’ by the WP community and defined as follows: “An edit war occurs
when editors who disagree about the content of a page repeatedly override each other’s
contributions, rather than trying to resolve the disagreement by discussion” [].
To start an empirical analysis of such opinion clashes and the way they are entangled

with collaboration, we need to be able to locate and quantify edit wars.

.. Controversy measure
An algorithm to quantify edit wars and measure the amount of social clashes forWP arti-
cles has been introduced and validated before [], and then used to study extensively the
dynamical aspects of WP conflicts []. An independent study [] has also shown that
this measure is among the most reliable in capturing very controversial articles.
We quantify the ‘controversiality’ of an article based on its edit history by focusing on

‘reverts’ (i.e. when an editor completely undoes another editor’s edit and brings the article
back to the state just before the last version). Reverts are detected by comparing all pairs
of revisions of an article throughout its history, namely by comparing the MD hash code
[] of the revisions. Specifically, a revert is detected when two versions in the history line
are exactly the same. In this case the latest edit (leading to the second identical revision)
is marked as a revert, and a pair of editors, referred to as reverting and reverted editors,
are recognized.
Very soon in our investigation we noticed that reverts can have different reasons and

not in all cases signalize a conflict of opinions. For example, an editor could revert per-
sonal edit mistakes or someone else’s. Reverts are also heavily used to suppress vandalism,
in itself a different type of destructive social behavior, but with no collaborative intention
and therefore out of our interest. Thus we narrowed down our analysis to ‘mutual reverts’.
A mutual revert is recognized if a pair of editors (x, y) is observed once with x as the re-
verter and once with y. We also noticed that mutual reverts between pairs of editors at
different levels of expertise and experience in WP editing could contribute differently to
an edit war. Two experienced editors getting involved in a series of mutual reverts is usu-
ally a sign of a more serious conflict, as opposed to the case when two newbies or a senior
editor and a newbie bite each other []. As a solution we introduced a ‘weight’ for each
editor, and to sum up all reverts within the history of an article we counted each revert
by using the smaller weight of the pair of editors involved in it. The weight of an editor x

http://www.epjdatascience.com/content/2014/1/7
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is defined as the number of edits performed by him or her, and the weight of a mutually
reverting pair is defined as the minimum of the weights of the two editors. The contro-
versialityM of an article is then defined by summing the weights of all mutually reverting
editor pairs, multiplying this number by the total number of editors E involved in the ar-
ticle. Overall,

M = E
∑

all mutual reverts

min
(
Nd,N r), ()

where N r, Nd are the number of edits for the article committed by the reverting/reverted
editor. This measure can be easily calculated for each article, irrespective of the language,
size, and length of its history.
Before starting our discussion about the empirical dynamics of conflict and its compar-

ison with theoretical results, a remark on the most controversial articles in WP. We have
calculatedM for all articles in  different languages, from the start of each language WP
up to March . In Table  we show the list of the top- most controversial articles.
A more complete and detailed analysis of the lists of the most controversialWP articles in
different languages and differences and similarities between them can be found elsewhere
[].

.. Dynamics of conflict and war scenarios
Measuring M can not only lead us to rank the articles based on their cumulative con-
troversy measure, but also enables us to follow edit wars in time as they emerge and get
resolved, by investigating the evolution of M as time passes and the article develops. In
the top row of Figure  we show the time evolution of M for three different sample arti-
cles.
Based on the wayM evolves in time, we may categorize almost all controversial articles

into three categories:
(i) Single war to consensus: In most cases controversial articles can be included in this

category. A single edit war emerges and reaches consensus after a while, stabilizing
quickly. If the topic of the article is not particularly dynamic, the reached consensus
holds for a long period of time (top left in Figure ).

(ii) Multiple war-peace cycles: In cases where the topic of the article is dynamic but the
rate of new events (or production of new information) is not higher than the pace
to reach consensus, multiple cycles of war and peace may appear (top center in
Figure ).

(iii) Never-ending wars: Finally, when the topic of the article is greatly contested in the
real world and there is a constant stream of new events associated with the subject,
the article tends not to reach a consensus andM increases monotonically and
without interruption (top right in Figure ).

The empirical war scenarios described previously are in qualitative agreement with the
theoretical regimes of ourmodel in the case of agent renewal, as seen fromboth the sample
time series in Figure  and the regimes of war and peace in the phase diagrams of Figure 
and Figure . Unfortunately, the theoretical order parameter P is quite difficult tomeasure
in real systems as editor opinions are not known.What we know instead is the controversy
measureM of Eq. (). As mentioned before,M counts conflict events (i.e. mutual reverts)

http://www.epjdatascience.com/content/2014/1/7
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Figure 8 War scenarios for WP and our model. Top: Empirical controversy measure M as a function of the
number of article edits in three different war scenarios. From left to right, sample articles are ‘Jyllands-Posten
Muhammad cartoons controversy’, ‘Iran’, and ‘Barack Obama’; and correspond to the regimes of ‘single war’,
‘war-peace cycles’, and ‘never-ending war’ respectively. Bottom: Theoretical conflict measure S in the case of
agent renewal, reproducing the qualitatively analogue evolution of WP articles with parameter values
N = 640, εT = 0.2 and μA = 0.1, as well as εA = 0.35, 0.42, 0.30 and pnew = 0.001, 0.001, 0.002 for the three war
scenarios, respectively. Continuous lines correspond to selected single runs of the model, while the shading
indicates the density of S over an ensemble of 104 realizations.

and weights them by the maturity of the editor. This process can actually be repeated for
the model: The editor maturity Ti is then defined as the number of time steps an agent
has been in the pool of editors (a quantity constantly reset by agent replacement), and a
conflict event is considered as the time an editor modifies the article, since this implies
the agent is not satisfied with the state of the medium.
Thus a theoretical counterpart S to the WP controversy measure M may be defined as

follows: Let S =  at the beginning of the dynamics. Then in each update t∗ (out of the N
that constitute a time step in the dynamics), when editor i changes the state of the article
by the amount � = |A(t∗ + ) –A(t∗)| we increment S by Ti�, where Ti measures the time
i has been in the editorial pool. Examples of the temporal evolution of S (lower row in
Figure ) closely reproduce the qualitative behavior of M for different war scenarios. To
further compare empirical observations in WP with our model predictions, we measure
the typical length of a constant ‘plateau’ in the M and S time series, i.e. the number of
edits between two successive increments. As seen in the distribution of plateau length
for WP and the model (Figure ), a statistical agreement for all three war scenarios is
clear.
A last word on WP banning statistics. A way of estimating the number of extremists is

to count the number of editors who have been ‘banned’ from editing. Explicitly, “a ban is a
formal prohibition from editing some or all WP pages, either temporarily or indefinitely”
[]. Usually banning is used against vandals and/or editors who violate WP policies, es-
pecially those related to edit wars. In Table  we give some statistics of editors at different
classes of editing activity, according to their number of edits. Interestingly, the relative
population of banned editors is larger among more experienced editors (i.e. editors with
more than  edits). In other words, up to almost % of experienced editors could have
been involved in edit wars. This is in complete accord with the choices we have made for
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Figure 9 Peace periods in WP and our model.
Distribution of plateau lengths for selected articles in
WP (squares) and tuned parameters in our model
(lines) for the three war scenarios shown in Figure 8.
The length of a plateau or peace period is defined as
the number of edits between two successive
increments in either M or S.

the modeling setup, namely having two active extremist groups with roughly % of the
total number of editors.

4 Discussion and conclusion
Here we have studied through modeling the emergence, persistence and resolution of
conflicts in a collaborative environment of humans such as WP. The value production
process takes place through interaction between peers (editors for WP) and through di-
rect modification of the product or medium (an article). While in most cases this pro-
cess is constructive and peaceful, from time to time severe conflicts emerge. We modeled
the dynamics of conflicts during collaboration by coupling opinion formation with article
editing in a generalized bounded-confidence dynamics. The simple addition of a common
value-production process leads to the replacement of frozen opinion groups (typical of the
bounded-confidence dynamics)with a global consensus and a tunable relaxation time. The
model with a fixed pool shows a rich phase diagram with several characteristic behaviors:
(a) an extremely long relaxation time, (b) fast relaxation preceded by oscillating behavior
of the medium opinion, and (c) an even faster relaxation with an erratic medium.We have
observed a symmetry-breaking, bifurcation transition between regimes (a) and (b), as well
as divergence of the relaxation time in the transition between regimes (b) and (c).
If the pool is not fixed and editors are exchanged with new ones at a given rate, we

obtain two different phases: conflict and peace. A conflict measure can be defined for the
modeled systemandbe directly compared to its empirical counterpart in realWPdata. It is
then possible to follow the temporal evolution of this measure of controversy and obtain
a good qualitative agreement with the empirical observations. These results lead us to
plausible explanations for the spontaneous emergence of currentWP policies, introduced
to moderate or resolve conflicts.
Two remarks are at place here. In this study we have used a particular collaboration

environment and compared our results with WP. The main reason behind is that for the
free encyclopedia we have a full documentation of actions; however, we should emphasize
that as web-based collaborative environments are abundant, we believe that our approach
and results are much more general. Second, we are aware of the fact that the model con-
tains a number of stringent simplifications: There are cultural differences between the
WPs (e.g., in the usage of the talk page), and as in all human-related features there are
large inhomogeneities in the opinions, in the tolerance level and in the activity of editors.
Some of these aspects are under current study and will be taken into account for future
research.
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