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Abstract
Understanding social dynamics that govern human phenomena, such as
communications and social relationships is a major problem in current computational
social sciences. In particular, given the unprecedented success of online social networks
(OSNs), in this paper we are concerned with the analysis of aggregation patterns and
social dynamics occurring among users of the largest OSN as the date: Facebook. In
detail, we discuss the mesoscopic features of the community structure of this
network, considering the perspective of the communities, which has not yet been
studied on such a large scale. To this purpose, we acquired a sample of this network
containing millions of users and their social relationships; then, we unveiled the
communities representing the aggregation units among which users gather and
interact; finally, we analyzed the statistical features of such a network of communities,
discovering and characterizing some specific organization patterns followed by
individuals interacting in online social networks, that emerge considering different
sampling techniques and clustering methodologies. This study provides some clues
of the tendency of individuals to establish social interactions in online social networks
that eventually contribute to building a well-connected social structure, and opens
space for further social studies.

Introduction
Social media and online social networks (OSNs) represent a revolution in Web users be-
havior that is spreading at an unprecedented rate during the latest years. Online users
aggregate on platforms such as Facebook andTwitter creating large social networks ofmil-
lions of persons that interact and group each other. People create social ties constituting
groups based on existing relationships in real life, such as on relatives, friends, colleagues,
or based on common interests, shared tastes, etc.
In the context of computational social sciences, the analysis of social dynamics, includ-

ing the description of those unique features that characterize online social networks, is
acquiring an increasing importance in current literature [–].
One of the challenges for network scientists is to provide techniques to collect [] and

process [] data from online social networks in an automatic fashion, and strategies to
unveil the features that characterize these types of complex networks []. In addition, these
methods should be capable of working in such large-scale scenarios [].
Amongst all the relevant problems in this area, the analysis of the so-called community

structure of online social networks acquired relevant attention during latest years [–].
Recently, several relevant quantitative works have been presented to this purpose [–].
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Studying the community structure of a network helps in explaining social dynamics of
interaction among groups of individuals [–], but also to quantitatively investigate
social theories such asMilgram’s small world [], Granovetter’s strength of weak ties [],
Borgatti’s and Everett’s core-periphery structure [, ], and so forth.
Furthermore, discovering and analyzing the community structure is a topic of great in-

terest for its economical andmarketing implications []. For example, it could be possible
to improve the advertising performance by identifying and targeting the most influential
users of each community, exploiting effects such as the word-of-mouth and the spread of
information within the community itself []. Similarly, exploiting the affiliations of users
to communities might be effective to provide them useful recommendations on the base
of common interests shared with their friends [].
Finally, the community detection problemhas plenty of challenges froma computational

perspective, since it is highly related to the problem of clustering large, possibly heteroge-
neous, datasets [–].
In this workwe are concernedwith the analysis of the community structure of the largest

online social network as to date: Facebook. In particular, we acquire a sample from the
Facebook social graph (i.e., the network of relationships among the users), and then we
apply two different state-of-the-art algorithms to unveil its underlying community struc-
ture (see the Appendix for technical details).
The further analysis of the mesoscopic features of this network puts into evidence the

organization patterns that describe the connectivity of users in large online social network.
To summarize, in the remainder of the paper we will discuss the following results:
(i) The emergence of a tendency of social network users at the formation of communities

of heterogeneous size (following a heavy-tailed distribution), whichmeans that there exist
several groups of small size and a decreasing number of groups or larger size.
(ii) The number of interconnections that exists among communities also follows a broad

distribution, that provides some clues in the direction of the assessment of the strength of
weak ties theory, foreseen by the early work of Granovetter [].
(iii) The community structure of the network is defined, independently of the method

adopted to unveil it. To this purpose, we take into account the possible bias introduced by
the sampling procedures [] and the resolution limit suffered by some types of commu-
nity detection algorithms [, ].
(iv) The emergence of the so-called small world phenomenon - whose existence in real-

world social networks has been assessed during the sixties by Milgram []: the commu-
nity structure of the network is highly clustered and tightly interconnected by means of
short paths, features which are exhibited by several small world networks [, ]. Ac-
cording to the model of small world network proposed by Watts and Strogatz [], not
only the diameter of the network grows as the logarithm of the size (a feature exhibited
also by random networks), but also the clustering coefficient is high - a discriminating
feature observed also in our case.

Methods
The aim of this work is to analyze the mesoscopic features of the community structure
of the Facebook social network. In the following we provide some information about the
process of data collection, briefly discussing the samplingmethodology and the techniques
adopted to collect data.
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This is the first step to study the community structure of real-world networks, that re-
flect unique characteristics which are impossible to replicate by using synthetic network
models [].
After that, we discuss the process of community detection that we adopted to unveil the

community structure of the network (and, to this regard, additional technical details are
discussed in the Appendix).
Finally, we describe the process of definition of the community meta-network - a net-

work whose nodes represent the communities identified in the social graph, to which it
follows its analysis and discussion of findings.

Sampling the Facebook network
Differently from other online social network platforms (for example Twitter), Facebook
does not provide a framework to automatically access information related to users with
public profiles.
This lack of data availability has been faced acquiring public information directly from

the platform, by means of a sampling process.
During this study we did not inspect, acquire or store personal information about users,

since we were interested only in reconstructing the social connections among a sample
of them - whose friend-lists were publicly accessible. To this purpose, we designed a Web
data mining platform with the only ability to visit the publicly accessible friend-list Web
pages of specific users, selected according to a sampling algorithm, and extract their con-
nections. Obtained data have been used only to reconstruct the network sample studied
in this work.
The architecture of the designed mining platform is briefly schematized as follows. We

devised a data mining agent (i.e., an autonomous software tool), which implements two
sampling methodologies (breadth-first search and uniform sampling). The agent queries
the Facebook server(s) in order to request the friend-list Web pages of specific users. In
detail, the agent visits thoseWeb pages containing the friend-list of a given user, following
the directives of the chosen sampling methodology, and extracts the friendship relation-
ships reported in the publicly accessible user profile.
The sampling procedure runs until any termination criterion/a is/are met (e.g., a maxi-

mum running time, a minimum size of the sample, etc.), concluding the sampling process.
Collected data are processed and stored in anonymized format,a post-processed, cleaned
and filtered according to further requirements.

The sampling methodologies
In the following, we briefly discuss the two statistical sampling methods adopted in this
work, namely the breadth-first-search and the uniform sampling.

The breadth-first-search sampling
The first adopted samplingmethodology is a snowball technique that exploits the breadth-
first-search (BFS), an uninformed graph traversal algorithm. Starting from a seed node,
the procedure explores its neighborhood; then, for each neighbor, it visits its unexplored
neighbors, and so on, until the whole network is visited (or, alternatively, a termination
criterion is met). This sampling technique has several advantages with respect to other
techniques (for example, randomwalks sampling, forest fire sampling, etc.) as discussed in
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recent literature [, ]. One of the main advantages is that it produces a coherent graph
whose topological features can be studied.
For this reason it has been adopted in a variety of OSNs mining studies [, –].

During our experimentation, we defined the termination criterion that themining process
did not exceed  days of running time. By observing a short time-limit, we ensured a
negligible effect of evolution of the network structure (less than % overall, according to a
heuristic calculation based on the growth rate of Facebook during the sampling process -
August ). The size of the obtained (partial) graph of the Facebook social network has
been adopted as yardstick for the uniform sampling process.

The uniform sampling
The second chosen samplingmethodology is a rejection-based sampling technique, called
uniform sampling. The main advantage of this technique is that it is proven unbiased, at
least in its formulation for Facebook. Details about its definition are provided by Gjoka
et al. []. The process consists of generating an arbitrary number of user-IDs, randomly
distributed in the domain of assignment of the Facebook user-ID system. In our case, it
is the space of the -bit numbers: the maximum amount of assignable user-IDs is ,
about  billions. As of August  (the period during which we carried out the sampling
process), the number of subscribed users on Facebook was about  millions, thus the
probability of randomly generating an existing user-ID was ≈ /.
The sampling process has been set up as follows: first we generated a number of ran-

dom user-IDs, lying in the interval [,  – ], equal to the dimension of the BFS-sample
multiplied by . Then, we queried Facebook for their existence. Our expectation was to
obtain a sample of comparable dimensions with respect to the BFS-sample. Actually, we
obtained a slightly smaller sample, due to the restrictive privacy settings imposed by some
users, who configured their profile preventing the public accessibility of their friend-lists.
The issue of the privacy has been investigated in our previous work [].

Description of the samples
All the user-IDs contained in the samples have been anonymized using a -bit hashing
functions [], in order to hide references to users and their connections. Data have been
post-processed for a cleansing step, during which all the duplicates have been removed,
and their integrity and congruency have been verified. The characteristics of the samples
are reported in Table . The size of both the samples is in the magnitude of few millions
of nodes and edges.
The anonymized datasets studied in this work may be examined by the scientific com-

munity.b

Some of the statistical and topological features of these networks have been discussed
in our previous work [], and our main previous findings can be summarized as follows:
• It emerges that the degree distribution of nodes in the samples is defined by a power
law P(x) ∝ x–λ identifying two different regimes. In detail, it is possible to divide the
domain into two intervals (tentatively  ≤ x ≤  and x > ), whose exponents are
λBFS
 = ., λBFS

 = . and λUNI
 = ., λUNI

 = . respectively for the BFS and the
uniform sample, in agreement with recent studies by Facebook [, ].

• Concerning the diameter of the networks, the BFS sample shows a small diameter, in
agreement with the six-degrees of separation theory [], given the snowball nature of
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Table 1 BFS and uniform samples description

Feature BFS Uniform

No. visited users 63.4K 48.1K
No. discovered neighbors 8.21M 7.69M
No. total edges 12.58M 7.84M
Size largest connected component 98.98% 94.96%
Avg. degree (visited users) 396.8 326.0
2nd largest eigenvalue 68.93 23.63
Effective diameter 8.69 14.72
Avg. clustering coefficient 1.88 · 10–2 1.40 · 10–3
Density 0.626% 0.678%

In this table we report some statistics regarding the two samples, BFS and uniform, which have been collected during August
2010 from the Facebook social network.

the sampling algorithm, which produces a plausible graph; differently, the diameter is
over-represented in the uniform sample, possibly because the largest connected
component does not cover the whole network.

• Regarding the clustering coefficient, we observed that the average values for both the
samples are very high, similarly as reported by other recent studies on OSNs [, ].
High clustering coefficient and small diameter provide a clue of the presence of the
so-called small world effect [, ] in the Facebook social graph.

Detecting communities
Given the large size of our Facebook samples,most of the community detection algorithms
existing in literature could not deal with it. In order to unveil the community structure of
these networks we adopted two computationally efficient techniques: (i) Label Propaga-
tion Algorithm (LPA) [], and (ii) Fast Network Community Algorithm (FNCA) [].
In the following we discuss the main advantages given from their choice and their per-

formance.

Advantages and performance of chosen methods
The problem of selecting a particular community detection algorithm is crucial if the aim
is to unveil the community structure of a network. In fact, the choice of a given methodol-
ogy could affect the outcome of the experiments. In particular, several algorithms depend
on tuning specific parameters, such as the size of the communities in the given networks,
and/or their number (for additional information see recent surveys on this wide topic
[–]).
In this study, the purpose was to unveil the unknown community structure of our Face-

book samples, and to do so we choose two different techniques which rely just on the
topology of the network itself as guide to discover the community structure.
LPA (Label Propagation Algorithm) is an algorithm for community detection based on

the paradigm of label propagation, a common strategy characterizing several machine
learning algorithms. Its computational cost is near liner with respect to the size of the
analyzed network. This computational efficiency makes it well suited for the discovery
of communities in large networks, such as in our case. LPA only exploits the network
structure as guide and does not follow any pre-defined objective function to maximize
(differently from FNCA); in addition, it does not require any prior information about the
communities, their number or their size.

http://www.epjdatascience.com/content/1/1/9
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Table 2 Results on Facebook network samples

Algorithm No. communities Network modularity Time (s)

BFS (8.21M vertices, 12.58M edges)
FNCA 50,156 0.6867 5.97 · 104
LPA 48,750 0.6963 2.27 · 104

Uniform (7.69M vertices, 7.84M edges)
FNCA 40,700 0.9650 3.77 · 104
LPA 48,022 0.9749 2.32 · 104

This table summarizes performance and results of the two chosen community detection algorithms (i.e., FNCA and LPA)
applied to the samples we collected from Facebook.

Table 3 Representation of a community structure

Community-ID List of members

community-ID1 {user-IDa ; user-IDb ; . . . ; user-IDc}
community-ID2 {user-IDi ; user-IDj ; . . . ; user-IDk }
· · · {· · · }
community-IDN {user-IDx ; user-IDy ; . . . ; user-IDz }

To represent the community structure discovered in each sample we adopted the format reported in this table.

FNCA (Fast Network Community Algorithm) is a computationally efficient method to
unveil the community structure of large networks. It is based on the maximization of an
objective function called networkmodularity [, ]. Similarly to LPA, it does not require
prior information on the structure of the network, the number of communities present in
the network and/or their size.
Even though the paradigms on which the algorithms rely are different, a common fea-

ture emerges: their functioning is agnostic with respect to the characteristics of the con-
sidered network. This aspect makes them an ideal choice, considering that we do not have
any prior information about the characteristics of the community structure of Facebook.
Further technical details regarding these methods are discussed in the Appendix of this
paper.
The performance of the LPA and FNCA on our Facebook samples is showed in Table .

Both the algorithms are able to unveil the community structure of the network in double
time. High values of network modularity have been obtained in both the samples. This
aspect suggests the presence of a well-defined community structure.
The community structure has been represented by using a list of vectors which are iden-

tified by a ‘community-ID’; each vector contains the list of user-IDs (in anonymized for-
mat) of the users belonging to the given community; an example is depicted inTable . This
representation was instrumental to carry out with efficiency the experiments discussed in
the remainder of the paper.

Assessing the quality of the community detection
Remarkably, one challenge arises in the context of the assessment of the quality of the
community detection process in real-world scenarios that is the lack of a ground truth
against which to compare the results provided by the adopted community detection strat-
egy - which might be biased by the strategy itself [, ]. For such a reason, some works
[–] estimate the quality of a community detection algorithm by measuring some in-
ternal measures of quality of detected communities, based on topological characteristics
(for example, the network modularity to establish the density of connections among and
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within communities, or the stability of eigenvalues of the Laplacian graph). Other ap-
proaches [] are based on the possibility of exploiting exogenous factors, such as semantic
information derived from additional knowledge on users (for example their affiliations to
particular groups, etc.). In the first case, indicators of internal quality of the communi-
ties are often not sufficient to ensure the quality of the results - think, for example, at the
resolution limit that arises in modularity maximization algorithms [, ]. On the other
hand, no additional information on users other than their interconnections was available
to us, for the purpose of assessing the quality of our communities.
Then, to establish the significance of the community structure obtained by using the

methods discussed above, we chose to evaluate the similarity of outcomes provided by
the two adopted algorithms, against each other, in a number of different ways which are
discussed in the next section. This might help in highlighting anomalies in our methodol-
ogy, in case of significant divergences between obtained results.

Building the community meta-network
To study the mesoscopic features of the community structure of Facebook, we abstracted
ameta-network consisting of the communities, as follows.We built a weighted undirected
graph G′ = (V ′,E′,ω), whose set of nodes is represented by the communities constituting
the given community structure. In G′ there exists an edge e′

uv ∈ E′ connecting a pair of
nodes u, v ∈ V ′ if and only if there exists in the social network graph G = (V ,E) at least
one edge eij ∈ E which connects a pairs of nodes i, j ∈ V , such that i ∈ u and j ∈ v (i.e.,
user i belongs to community u and user v belongs to community j). The weight function
is defined as

ωu,v =
∑

i∈u,j∈v
eij ()

(i.e., the sum of the total number of edges connecting all users belonging to u and v).
Table  summarizes some characteristics of the networks obtained for the uniform sam-

ple by using FNCA and LPA. Something which immediately emerges is that the overall
statistics obtained by using the two different community detection methods are very sim-
ilar. The number of nodes in themeta-networks is smaller than the total number of com-
munities discovered by the algorithms, because we excluded all those ‘communities’ con-
taining only one member (whose consideration would be in antithesis with the definition
of community in the common sense).

Table 4 Features of the meta-networks representing the community structure for the uniform
sample

Feature FNCA LPA

No. nodes/edges 36,248/836,130 35,276/785,751
Min./Max./Avg. weight 1/16,088/1.47 1/7,712/1.47
Size largest conn. comp. 99.76% 99.75%
Avg. degree 46.13 44.54
2nd largest eigenvalue 171.54 23.63
Effective diameter 4.85 4.45
Avg. clustering coefficient 0.1236 0.1318
Density 0.127% 0.126%

In this table we report some statistics regarding the community structuremeta-network obtained from the uniform sample,
by using the two chosen community detection algorithms (i.e., FNCA and LPA).
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We discuss results regarding the community structure and its mesoscopic features in
the following.

Results
The analysis of the community structure of Facebook will focus on the following aspects:
(i) first, we try to evaluate the quality of the communities identified by means of the com-
munity detection algorithms described above. This step includes assessing the similarity of
results obtained by using different sampling techniques and clustering methods. In detail,
we evaluate the possible bias introduced by well-known limitations of these techniques
(e.g., the resolution limit for modularity maximization methods [, ] or the sampling
bias due to the incompleteness of the sampling process []). (ii) Second, we investigate
the mesoscopic features of the community meta-network considering some characteris-
tics of the network (such as the diameter, the distribution of shortest-paths and weights
of links, the connectivity among communities, etc.), discussing how these features may
reflect organization patterns of individuals in the network.

Analysis of the community structure
In order to characterize the features of the community structure of Facebook, our first step
was to describe the distribution of the size of the communities discovered. This feature
has been investigated in current literature [, ], and it emerges that different complex
networks exhibit heavy-tailed distributions in the size of the communities. This implies
the existence of a large amount of communities whose size is very small and a very small
amount of large communities in this type of real-world networks. In detail, Lancichinetti
et al. [] put into evidence that this holds true for a large family of complex networks,
such as information, communication, biological, and social networks.

Distribution of the community size
Figures  and  represent the probability mass function of the distributions of the size of
discovered communities, respectively for uniform and BFS sample, by using the two cho-

Figure 1 This plot shows the probability mass function of the distribution of the size of the
communities discovered by the two adopted algorithms (i.e., FNCA and LPA) for the uniform sample.
Both the distributions are broad and heavy-tailed.

http://www.epjdatascience.com/content/1/1/9
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Figure 2 This figure depicts the probability mass function of the distribution of the size of the
communities discovered by FNCA and LPA for the BFS sample. The distributions are wide but not
heavy-tailed, due to the presence of a quasi-steady distribution of communities of size between 50 and 500.

sen community detection algorithms. From the analysis of these figures, it emerges that
in both cases the distributions produced by the two community detection algorithms are
very similar. Moreover, we can observe that these distributions are broad and resembles
other real-world complex networks (cf. []).
From a further analysis it emerges that, for the uniform sample (Figure ), both the dis-

tributions are broad and heavy-tailed. Differently, the distributions for the BFS sample are
wide but not heavy-tailed, due to the quasi-steady probability of finding communities of
size between  and .
The difference between BFS and uniform samples appears in agreement with the

adopted sampling techniques. In fact, it has been recently put into evidence [, ] that
a sampling algorithm such as the BFS may affect the degree distribution towards high de-
gree nodes, in case of incomplete visits. Interestingly, this reflects also in the presence of
communities, tentatively lying in the size interval ≥ x ≥ , that are in greater number
with respect to what it would be expected by a scale-free network.
To the best of our knowledge, this is the first time it is observed that the bias towards

high degree nodes introduced by the BFS sampling method reflects on the features of
the community structure of a network. To the purpose of sampling, we could indicate as
more appropriate those rejection-based methods, such as the uniform sampling, that do
not over-represent high degree nodes.
Indeed, the analytical results reported in Table  combined with the plots discussed

above, suggest that both the algorithms identified a similar amount of communities, re-
gardless the adopted sampling method. This is also reflected by the similar values of net-
workmodularity obtained for the two different sets.Moreover, the size of the communities
themselves seems to coincide for most of the times.
The following point we address is inspecting the quality of the community structure

obtained by using FNCA and LPA. The possibility that two different algorithms produce
different community structures is not to be excluded, thus in the following we investigate
to what extent the results we obtained share a high degree of similarity.

http://www.epjdatascience.com/content/1/1/9


Ferrara EPJ Data Science 2012, 1:9 Page 10 of 30
http://www.epjdatascience.com/content/1/1/9

Community structure similarity
In order to evaluate the similarity of two community structures we adopt three measures:
(i) a variant of the Jaccard coefficient, called binary Jaccard coefficient; (ii) the Kullback-
Leibler divergence; and, (iii) the normalized mutual information. In the following we dis-
cuss them separately, to explain their functioning, the motivations of their adoption and
the obtained results.
The first measure considered to our purpose is the binary Jaccard coefficient, defined as

Ĵ(v,w) =
M

M +M +M
, ()

whereM represents the total number of shared elements between two vectorsc v and w,
M represents the total number of elements belonging to w and not belonging to v, and,
finallyM the vice-versa. The outcome of this measure lies in [, ].
The adoption of the binary Jaccard coefficient is due to the following consideration: if

we would compute the simple intersection of two sets (i.e., the community structures) by
using the classic Jaccard coefficient, those communities differing even by only onemember
would be considered different, while a high degree of similarity among them could still be
envisaged. We avoid this issue adopting the binary Jaccard coefficient, by comparing each
vector of the former set against all the vectors in the latter set, in order tomatch the most
similar one. The mean degree of similarity is then computed as

N∑
i=

max(Ĵ(v,w)i)
N

, ()

where max(Ĵ(v,w)i) represents the highest value of similarity chosen among those calcu-
lated combining the vector i of the former set with all the vectors of the latter set. We
obtained the results as in Table , in which we show the mean, median and standard devi-
ations of the results obtained by comparing, both for the BFS and the uniform sample, the
outcome of the clustering processes according to the two different algorithms (i.e., FNCA
and LPA).
While the number of identical communities between the two sets obtained by using,

respectively, BFS and uniform sampling, is not high (i.e., respectively, ≈ % and ≈ %),
the overall mean degree of similarity is very high (i.e., ≈ % and ≈ %). This is due to
the high number of communities which differ only for a very small number of elements.
Moreover, the fact that the median is, respectively, ≈ % and ≈ %, and that the very
majority of results lie in one standard deviation, supports the similarity of the obtained
community structures.

Table 5 Similarity degree of community structures

Metric Sample Degree of similarity FNCA vs. LPA

Common Mean Median Std. D.

Ĵ BFS 2.45% 73.28% 74.24% 18.76%
uniform 35.57% 91.53% 98.63% 15.98%

In this table we report the results obtained computing the similarity between the community structure discovered by using
FNCA and LPA in the BFS and uniform samples, computed by means of the binary Jaccard coefficient.

http://www.epjdatascience.com/content/1/1/9
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Figure 3 This heat-map highlights the similarity of the communities discovered by means of the two
adopted algorithms (i.e., FNCA and LPA) applied to the uniform sample. Almost the totality of
communities discovered share a high fraction of members (in average the 91%), according the Jaccard
similarity computed pairwisely selecting the most similar communities in the partitions.

Figure 4 This heat-map shows the similarity of the communities discovered by FNCA and LPA in the
BFS sample. In this case, with respect to the uniform sample case, the pairwise similarity between
communities emerges slightly less obviously, but it is in average the 73%.

Figures  and  graphically highlight these findings. Their interpretation is as follows:
on the x-axis and on the y-axis there are represented the communities discovered for the
FNCA and the LPA methods, respectively. The higher the degree of similarity between
two compared communities, the higher the heat-map scores. The similarity is graphically
evident considering that the values of heat showed in the figures are very high (i.e., greater
than .) for the most of the heat-map.
Before introducing the second experiment, observe that it is desirable to assess, not only

if the two clustering solutions present a large amount of similar clusters, but also if they
exhibit a similar statistical distribution in the size of the obtained clusters. To this pur-
pose, a second method has been taken into consideration: the divergence measure called
Kullback-Leibler divergence, that is defined as

DKL(P ‖Q) =
∑
i

P(i) log
P(i)
Q(i)

, ()

where P and Q represent, respectively, the probability distributions that characterize the
size of communities discovered by LPA and FNCA, calculated on a given sample. Let i be a
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given size such that P(i) andQ(i) represent the probability that a community of size i exists
in the distributions P and Q. The KL divergence is helpful if one would like to calculate
how different are two distributions with respect to one another. In particular, being the KL
divergence defined in the interval  ≤ DKL ≤ ∞, the smaller the value of KL divergence
between two distributions, the more similar they are.
We calculated the pairwise KL divergences between the distributions discussed above,

finding the following results.
(i) on the uniform sample:

• DKL(PLPA ‖ PFNCA) = . · –
• DKL(PFNCA ‖ PLPA) = . · –

(ii) on the BFS sample:
• DKL(PLPA ‖ PFNCA) = . · –
• DKL(PFNCA ‖ PLPA) = . · –

The low values obtained by adopting the KL divergence put into evidence the correla-
tion between the distributions calculated by using the two different algorithms on the two
different samples.
Finally, to compute the quality of the results, we adopted a third measure, called nor-

malized mutual information (NMI) []. Such a measure assumes that, given a graph G,
a ground truth is available to verify what are the clusters (said real clusters) in G and what
are their features. Let us denote as A the true community structure of G and suppose that
G consists of cA clusters. Let us consider a clustering algorithm applied on G and assume
that it identifies a community structure B consisting of cB clusters. We define a cA × cB
matrix - said confusion matrix - CM such that each row of CM corresponds to a cluster in
A whereas each column of CM is associated with a cluster in B. The generic element CMij

is equal to the number of elements of the real ith cluster which are also present in the jth
cluster found by the algorithm. Starting from these assumptions, the normalized mutual
information is defined as

NMI(A,B) =
–

∑cA
i=

∑cB
j=Nij log(

NijN
Ni·N·j )∑cA

i=Ni· log(Ni·
N ) +

∑cB
j=N·j log(

N·j
N )

()

being Ni· (resp., N·j) the sum of the elements in the ith row (resp., jth column) of the
confusion matrix. If the considered clustering algorithm would work perfectly, then for
each discovered cluster j, it would exist a real cluster i exactly coinciding with j. In such
a case, it is possible to show that NMI(A,B) is exactly equal to  []. By contrast, if the
clusters detected by the algorithm are totally independent of the real communities then
it is possible to show that the NMI is equal to . The NMI, therefore, ranges from  to 
and the higher the value, the better the clustering algorithm performs with respect to the
ground truth.
Observe that, in our scenario, we do not have at disposal any ground truth, given the

fact that the community structure of the considered network is unknown and the purpose
of our study was, in fact, to discover it. Still, we can adopt the NMI to compare against
each other, the outcome of the clustering solutions obtained by means of two different
algorithms, taking the result of the former and using it as a ground truth to assess the
latter, or the vice-versa.
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Several variants of normalized mutual information exist: to our purposes, we adopted
two different versions of NMI, henceforth called NMILFK and NMIMGH - after the au-
thors initials - presented, respectively, by Lancichinetti, Fortunato and Kertesz [] and by
McDaid, Greene and Hurley []. These two variants adopt slightly different normaliza-
tion factors, thus they produce different (but comparable) results.
Applying these two versions of NMI according to the considerations presented above,

we obtained the following results:
(i) on the uniform sample:

• NMILFK(FNCAuniform, LPAuniform) = .
• NMIMGH(FNCAuniform, LPAuniform) = .

(ii) on the BFS sample:
• NMILFK(FNCABFS, LPABFS) = .
• NMIMGH(FNCABFS, LPABFS) = .

The high values obtained by using the normalized mutual information, which is able
to better capture nuances and facets of different clustering solutions with respect to the
much simpler binary Jaccard coefficient adopted above, still confirm the similarity of the
community structure discovered by the two different algorithms employed in our analysis.
Given the limitations imposed by the lack of a ground truth for real-world networks for

which the community structure is unknown, the approaches we adopted to assess the re-
sults are only a best-approximation of any robust evaluationmethod. Indeed, the problem
of evaluating the clustering quality of real-world networks lacking of a ground truth is an
open and urgent problem in current literature.
In addition, recently [], in the context of detecting communities by adopting the net-

work modularity as maximization function, a resolution limit has been put into evidence.
In [], the authors found that modularity optimization could, depending on the topology
of the network, cause the inability of the process of community detection to find commu-
nities whose size is smaller than

√
E/ (i.e., in our case ≈ , ). This reflects in another

effect, that is the creation of big communities that include a large part of the nodes of the
network, without affecting the global value of network modularity.
Being all the communities revealed smaller than that size and distributed in agreement

with what already observed for other complex networks [], we may hypothesize that the
community structure unveiled by the algorithm for our samples is unlikely to be affected
by the resolution limit.

Mesoscopic features of the community structure
In the following we consider the uniform sample and the community structure unveiled
by the LPA as yardstick for our investigation. The experiments discussed in the remainder
of this section focus in particular on three aspects: (i) assessment of the mesoscopic fea-
tures of the community structure of the network and their implications in terms of social
dynamics; (ii) study of the connectivity among communities and how it reflects on users
organization patterns on a large scale; (iii) ability of inferring additional insights by means
of visual observation of the community structure.
The purpose of investigating the mesoscopic features of the community structure of

Facebook includes finding patterns that emerge from the network structure, in particu-
lar those which are related not to individuals or to the overall networks, but with those
aggregation units that are the communities among which users gather.
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To this purpose, we first discuss the degree distribution of communities discovered by
means of our methods (i.e., FNCA and LPA) in the uniform sample. We report Figure ,
that shows the complementary cumulative degree probability distribution (ccdf ) as a func-
tion of the degree in the cases discussed above. Themeaning of the complementary cumu-
lative distribution function (ccdf ), defined as F(x) = Pr(X > x), is the probability that a ran-
domvariableX assumes values below a given x. Analyzing these distributionswe observe a
very peculiar feature: two different regimes, tentatively ≤ x <  and  ≤ x < , can
be identified, and a cut-off in proximity of x≈  aswell. This reveals a decreasing chance
of finding communities as their size grows, with a clear cut-off above a certain threshold.
Interestingly, a similar phenomenon has been previously observed in the Facebook social
graph [] and it has been put in correlation with the so-called self-organization principle
observed in social networks []. Self-organization is the ability of individual to coordi-
nate and organize in patterns or structures which are proven to be efficient, robust and
reliable. For example, efficiency could be expressed in terms of minimizing costs for dif-
fusing information [, ], robustness could be represented by the presence of redundant
connections that link the same groups and reliability by the ability of the network to well-
react to errors and malfunctioning [–].
In the light of this observations, we tried to relate how communities grow with respect

to their degree of connectivity. Our finding are reported in Figure . It emerges that, not
only the communities above a certain threshold size are much less likely to happen, but
also they are much less interconnected. In fact, we can observe that the average degree of
communities grows proportionally to their size up to a cut-off value still approximately x ≈
. Above this threshold, larger communities become less and less connected with the
others. This finding provides an argument in support to the idea that individuals in online
social networks are mostly aggregated in small- or medium-size communities. On the
other hand, large communities may suffer of a lack of external connectivity. The fact that

Figure 5 This plot shows the complementary cumulative distribution function of the degree
distribution of the meta-network of communities discovered by the FNCA and LPA algorithms, for the
uniform sample. In this kind of network, each node represents a community and each edge, whose weight is
computed according to Equation (1), links communities whose members are connected in the original
network. Results follow a heavy-tailed distribution and are very similar for both algorithms.
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Figure 6 In this plot we show the average degree of communities expressed as a function of their
size. It is possible to observe that the average degree grows proportionally to the size of the communities up
to a certain threshold, approximately x ≈ 300 above which the average degree of the communities quickly
falls off.

individuals mostly aggregate in communities well-connected among each other without a
coordinated effort is in line with the self-organization principle explained above.
Interestingly, self-organization is a phenomenon which is known to happen in small

world networks [, , , ] and in their community structure []. In the light of
this assumption, we investigated the presence of the small world effect in the community
structure of Facebook. To this purpose, a reliable indicator of the presence of this phe-
nomenon is the clustering coefficient - i.e., the tendency to the creation of closed triangles
among triads of communities. In our context, the clustering coefficient of a community
is the ratio of the number of existing links over the number of possible links between the
given community and its neighbors. Given our meta-network G = (V ,E), the clustering
coefficient Ci of community i ∈ V is

Ci = 
∣∣{(v,w)|(i, v), (i,w), (v,w) ∈ E

}∣∣/ki(ki – ),

where ki is the degree of community i.
It can be intuitively interpreted as the probability that, given two randomly chosen com-

munities that share a commonneighbor, there also exists a link between them.High values
of average clustering coefficient indicate that the communities are well connected among
each other. This result would be interesting since it would indicate a tendency to the small
world effect.
We plotted the average clustering coefficient probability distribution for the community

structure in Figure . From its analysis it emerges that the slope of this curve is smooth,
which allows for a the existence of a high probability of finding communities with large
clustering coefficient, irrespectively of the number of connections they have with other
communities.
This interesting fact reflects the existence of a tight and highly connected core in the

community structure [, ]. The small world effect is also related to the presence of
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Figure 7 This figure depicts the average clustering coefficient probability distribution for the
community meta-network computed according to FNCA and LPA in the uniform sample. Results
provided by the two methods are comparable and the distribution of the average clustering coefficient as a
function of the degree is broad.

Figure 8 This plot shows the cumulative distribution function of the hops separating communities of
the meta-network computed according to FNCA and LPA for the uniform sample. Almost the totality of
communities are connected within 4 hops.

short-paths connecting communities. In this context, it is reasonable to suppose that, ran-
domly selecting two disconnected communities, it is likely that a short path connecting
their members exists.
To investigate this aspect, in the following we analyze the effective diameter and the

shortest paths distribution in the community structure. To this purpose, Figure  reports
the cumulative distribution function of the probability that two arbitrary communities are
connected in a given number of hops. The cumulative distribution function (cdf ) defines
the probability that a random variable X assumes values below a given x. In that sense,
fromFigure  it emergesd that all communities are connected in a number of hops of , and
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most interestingly, that the highest advantage in terms of probability gain of connecting
two randomly chosen communities, is obtained considering hops of length .
This aspect is further investigated as follows: Figure  represents the probability distri-

bution for the shortest paths as a function of the path length. The interesting behavior
which emerges from its analysis is that the shortest path probability distribution reaches
a peak for paths of length  and . In correspondence with this peak, the number of con-
nected pairs of communities quickly grows, reaching the effective diameter of the net-
works (cf. Figure ). This findings has an important impact on the features of the overall
social graph. In fact, if we would suppose that all nodes belonging to a given commu-
nity are well connected each other, or even directly connected, this would result in a very
short diameter of the social graph itself. In fact, there will always exist a very short path
connecting the communities of any pair of randomly chosen members of the social net-
work. Interestingly, this hypothesis is substantiated by recent studies by Facebook, who
used heuristic techniques to measure the average diameter of the whole network [, ].
Their outcomes are very similar to our results: they estimated an average diameter of .
while the effective diameter of the community structure for our uniform sample is .
and ., respectively for LPA and FNCA.
Thus, we conclude the characterization of the mesoscopic features of the community

structure discussing the distribution of weights and strength of links among communi-
ties. The importance of this kind of analysis rises considering some social conjectures,
like the Granovetter’s strength of weak ties theory [], that rely on the assessment of the
strength of links in social networks. To this purpose, we resemble that the strength sω(v)
(or weighted degree) of a given node v is determined as the sum of the weights of all edges
incident on v, defined as

sω(v) =
∑
e∈I(v)

ω(e),

where ω(e) is the weight of a given edge e and I(v) the set of edges incident on v.

Figure 9 This figure displays the shortest paths probability distribution for the meta-network of
communities discovered by the FNCA and LPA algorithms in the uniform sample. In agreement to
Figure 8, the path length peak resides between 2 and 4.
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Figure 10 This plot shows the probability distributions of weight and strength of edges of the
meta-network of communities discovered by FNCA and LPA in the uniform sample. The distribution of
weights is scale-free and, regarding strength we can identify two different regimes.

In Figure , we plotted the probability distribution of both weight and strength on links
among communities. Interestingly, the distribution of weights is defined by a power law
P(x) = x–γ described by a coefficient γ = .. The strength distribution is still broad but it
is possible to observe two different regimes, in the intervals of tentatively ≤ x <  and
x ≥ .
Given the definition of weights for the communitymeta-network, as in Equation () (i.e.,

the sum of total number of edges connecting all users belonging to the two connected
communities), we can suggest the hypothesis that there exists a high probability of find-
ing a large number of pairs of communities whose members are not directly connected,
and a increasingly smaller number of pairs of communities whose members are highly
connected each other. These connections, which are usually referred as to weak ties, ac-
cording to the strength of weak ties theory [], are characterized by a smaller strength but
a hightened tendency to proficiently connect communities otherwise disconnected. This
aspect is further discussed in the following.

Connectivity among communities
The last experiment discussed in this paper is devoted to understanding the density of
links connecting communities in Facebook. In particular, we are interested in defining
to what extent links connect communities of comparable or different size. To do so, we
considered each edge in the community meta-network and we computed the size of the
community to which the source node of the edge belonged to. Similarly, we computed the
size of the target community.e

Figure  represents a probability density map of the distribution of edges among com-
munities. First, we highlight that the map is symmetric with respect to the diagonal, ac-
cording to the fact that the graph is undirected and each edge is counted twice, once for
each end-vertex. From the analysis of this figure, it emerges that edgesmainly connect two
types of communities: (i) communities of small size, each other - this is the most common

http://www.epjdatascience.com/content/1/1/9


Ferrara EPJ Data Science 2012, 1:9 Page 19 of 30
http://www.epjdatascience.com/content/1/1/9

Figure 11 This heat-map shows the probability distribution map of links between communities of
different size, computed by LPA in the uniform sample. It emerges the tendency of communities of
smaller size to be strongly interconnected among each other.

case; (ii) communities of small size with communities of large size - less likely to happen
but still significant.
This can be intuitively explained since the number of communities of small size is much

greater than the number of large communities. On the other hand, it is an important find-
ing since similar results have been recently described for Twitter [], in the context of the
evaluation of the Granovetter’s strength of weak ties theory [].f

In fact, according to this theory, weak links typically occur among communities that do
not share a large amount of neighbors, and are important to keep the network proficiently
connected.

Inter and intra-community links
For further analysis, we evaluated the amount of edges that fall in each given community
with respect to its size. The results of this assessment are reported in Figure . The inter-
pretation of this plot is the following: on the y-axis it is represented the fraction of edges
per community as a function of the size of the community itself, reported on the x-axis.
It emerges that also the distribution of the link fraction against the size of the communi-
ties follows a power law with an exponent equal to x = .. This result shows that small
communities are alsomore internally dense, while larger communities exhibit less internal
connectivity - decreasing according to their size. Indeed, this result is different from that
recently proved for Twitter [], inwhich aGaussian-like distribution has been discovered.
This is probably due to the intrinsic characteristics of the networks, that are topologically
dissimilar (i.e., Twitter is represented by a directed graph with multiple type of edges) and
also the interpretation itself of social tie is different. In fact, Twitter represents in a way
hierarchical connections - in the form of follower and followed users - while Facebook tries
to reflects a friendship social structure which better represents the community structure
of real social networks.
The emergence of this scaling law is interesting with regard to the organization patterns

that are reflected by individuals participating to large social networks. In fact, it seems that
users that constitute small communities are generally very well connected to other com-
munities and among each others, while large communities of individuals seem to be linked
in a less efficient way to other communities - and also less dense of links. This is reflected
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Figure 12 This figure depicts the probability distribution of the fraction of inter-community edges
(i.e., those edges that connects communities among each other) as a function of the size of the
communities, according to the LPA community detection algorithm applied on the uniform sample. In
agreement with Figure 11, a scale-free behavior emerges, highlighting that the majority of edges connects
among each other communities of small size.

by the small number of weak ties incident on communities of large size with respect to the
number of individuals they gather. These findings are relevant since they provide a clue
that individuals are able to self-organize even in large networks and without a coordinated
effort. This might improve their ability to efficiently get in touch and communicate with a
number of users larger than their friends or acquaintances.

Visual observation of the community meta-network
The visual analysis of large-scale networks is usually unfeasible when managing samples
whose size is in the order ofmillions of entities. Even though, by adopting our technique of
building a community meta-network, it is yet possible to study the mesoscopic features of
the Facebook social network from an unprecedented perspective. To this purpose, for ex-
ample, social network analysts may be able to infer additional insights about the structure
of the original network from the visual analysis of its community structure.
In Figure , obtained by using Cvisg - a hierarchical-based circular visualization algo-

rithm - we represent the community structure unveiled by LPA in the uniform sample.
From its analysis, it is possible to appreciate the existence of a tight core of communities
which occupy a central position into the meta-network [, ]. A further inspection of
the features of these communities revealed that their positioning is generally irrespective
of their size. This means that there are several different small communities which play a
dominant role in the network. This is in agreement with previous findings and highlight
the role of self-organization on such a scale. Similar considerations hold for the periphery
of the network, which is constituted both by small and larger communities.
Finally, we highlight the presence of so-called weak ties, that proficiently connect com-

munities that otherwise would be far each other. In particular, those that connect com-
munities in the core with communities in the periphery of the network, according to the
strength of weak ties theory [], might represent themost important patterns along which
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Figure 13 This figure displays the outcome of a hierarchical-based circular visualization algorithm
that represents the community structure unveiled by LPA in the uniform sample. It emerges the
existence of a tight core of communities which occupy a central position into the meta-network, generally
irrespectively of their size.

communications flow, enhancing users ability of getting in touch with each other, effi-
ciently spreading information, and so on.

Discussion
This work concludes putting into evidence implications, strength and limitations of our
study.
First of all, in this paper we put into evidence that the community structure of the Face-

book social network presents a broad distribution of the dimension of the communities,
similarly to other complex networks []. This result is independent with respect to the
algorithm adopted to discover the community structure, and even (but in a less evident
way) to the samplingmethodology adopted to collect the samples. On the other hand, this
is the first experimental work that proves the hypothesis, theoretically advanced by [], of
the possible bias towards high degree nodes introduced by the BFS samplingmethodology
for incomplete sampling of large networks.
Regarding the qualitative analysis of our results, it emerges that the communities share

a high degree of similarity among different samples.
The analysis of the community meta-network puts into evidence different mesoscopic

features. We discovered that the average degree of communities average degree of com-
munities and their size put into evidence the tendency to self-organization of users into
small- or medium-size communities well-connected among each other.
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Our further analysis highlights that there exists a tendency to the creation of short-
paths (whose length mainly consists of two or three hops), that proficiently connect the
majority of the communities existing in the network. This finally led us to the identification
of links connecting communities otherwise disconnected, that we called weak ties in the
Granovetter’s sense [].

Results in context with previous literature
Several recent studies focused on the analysis of the community structure of different so-
cial networks [, , , ]. An in-depth analysis of the Facebook collegiate networks
has been carried out in []. Authors considered data collected from  American colleges
and examined how the online social lives reflect the real social structure. They proved that
the analysis of the community structure of online social networks is fundamental to ob-
tain additional insights about the prominent motivations which underly the community
creation in the corresponding real world. Moreover, authors found that the Facebook so-
cial network shows a very tight community structure, and exhibits high values of network
modularity. Some of their findings are confirmed in this study on a large scale.
Recently [], it has been put into evidence that the community structure of social net-

works shares similarities with communication and biological networks. The authors in-
vestigated several mesoscopic features of different networks, such as community size dis-
tribution, density of communities and the average shortest path length, finding that these
features are very characteristic of the network nature. According to their findings, we as-
sessed that also Facebook is well-described by some specific characteristics on a meso-
scopic level.
Regarding the mesoscale structure analysis of social networks, [] provided a study

by comparing three state-of-the-art methods to detect the community structure on large
networks. An interesting aspect considered in that work is that two of the three consid-
ered methods can detect overlapping communities, so that a differential analysis has been
carried out by the authors. They focused on the analysis of several mesoscopic features
such as the community size and density distribution and the neighborhood overlapping.
In addition, they verified that results obtained by the analysis of synthetic networks are
profoundly different from those obtained by analyzing real-world datasets, in particular
regarding the community structure, putting into evidence the emergence of need of study-
ing online social networks acquiring data from the real platforms. Their findings are also
confirmed in this study, in which we acquired a sample of the social graph directly from
the Facebook platform.
An interesting work which is closely related to this study regards the assessment of the

strength of weak ties theory in the context of Twitter []. In that work, it emerges that one
of the roles of weak ties is to connect small communities of acquaintances which are not
that close to belong to the same community but, on the other hand, are somehow pro-
ficiently in contact. Clues in this direction come also from this study, although the two
networks exhibit different topological features (i.e., Twitter is represented by a directed
graph with multiple type of edges) and also carry a different interpretation of the social
connections themselves. In fact, social ties in Twitter represent hierarchical connections
(in the form of follower and followed users), while Facebook tries to reflects a friendship
social structure which better represents the community structure of real-world social net-
works.
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Concluding, recently [] the perspective of the study of the community structure has
been revisited considering the problem of the detecting communities of edges instead of
the classical communities of nodes. In this approachwe observe an interesting feature, i.e.,
that link communities intrinsically incorporate the concept of overlap. The authors find-
ings are applied to large social networks of mobile phone calls confirming the emergence
of scale free distributions also for link community structures. Similar studies could be ex-
tended to online social networks like Facebook, in order to investigating the existence of
particular communication patterns or motifs.

Strength and limitations of this study
In the following we discuss the main strengths and limitations of this study. To the best
of our knowledge, this is the first work that investigates the general mesoscopic structure
of a large online social network. This is particularly interesting since it is opposed to just
trying to identify dense clusters in large communities, which is the aim of different works
discussed above.
This work highlights the possibility of inferring characteristics describing the organiza-

tion patterns of users of large social networks, analyzing some mesoscopic features that
arise from a statistical and topological investigation. This kind of analysis has been re-
cently carried out for some types of social media platforms (such as Twitter []) which
capture different nuances of relations (for example, hierarchical follower-followed user
relations), but there was a lack in literature regarding online social network platforms re-
flecting friendship relations, such as Facebook. This work, that tries to fill this gap, pro-
vides results that well relate with those presented in recent literature, and describes novel
insights on the problem of characterizing social network structure on the large scale.
We can already envision two limitations of this work, which leave space for further in-

vestigation. First, our sample purely relies on binary friendship relations, which represent
the simplest way to capture the concept of friendship on Facebook. On the other hand,
there could be more refined representations of the Facebook social graph, such as tak-
ing into consideration the frequency of interaction among individuals of the network, to
weight the importance of each tie. To this purpose, the feasibility of this study is compli-
cated by the privacy issues deriving from accessing private information about users habits
(such as the frequency of interaction with their friends), which limit our range of study.
Depending on this aspect, the second shortcoming of this study rises. In detail, the

fact that we were concerned with the analysis of publicly accessible profiles implies that
our sample only reproduces a partial picture of the Facebook social network which could
slightly vary with respect to the overall social graph. To this purpose, another aspect which
deserves more investigation is understanding how the incompleteness of the sampling af-
fects the characteristics of the community structure.

Conclusions
The aim of this work was to investigate the emergence of social dynamics, organization
patterns and mesoscopic features in the community structure of a large online social net-
work such as Facebook. This task was quite thrilling and not trivial, since a number of
theoretical and computational challenges raised.
First of all, we collected real-world data directly from the online network. In fact, as

recently put into evidence in literature [], the differences between synthetic and real-
world data have profound implications on results.
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After we reconstructed a sample of the structure of the social graph of Facebook, we
unveiled its community structure. The main findings that emerged from the mesoscopic
analysis of the community structure of this network can be summarized as follows:
(i) We assessed the tendency of online social network users to constitute communities

of small size, proving the presence of a decreasing number of communities of larger size.
This behavior explains the tendency of users to self-organization even in absence of a
coordinated effort.
(ii) We investigated the occurrence of connections among communities, finding that

some kind of links, commonly referred as to weak ties, are more relevant than others be-
cause they connect communities each other, according to the Granovetter’s strength of
weak ties theory [] and in agreement with recent studies on other online social networks
such as Twitter [].
(iii) The community structure is highly clusterized and the diameter of the community

structure meta-network is small (approximately around  and ). These aspects indicate
the presence of the small world phenomenon, which characterizes real-world social net-
works, according to sociological studies envisioned by Milgram [] and in agreement
with some heuristic evaluations recently provided by Facebook [, ].
The achieved results open space for further studies in different directions. As far as it

concerns our long-term future research directions, we plan to investigate, amongst others,
the following issues:
(i) Devising a model to identify the most representative users inside each given commu-

nity. This would leave space for further interesting applications, such as the maximization
of advertising on online social networks, the analysis of communication dynamics, spread
of influence and information and so on.
(ii) Exploiting geographical data regarding the physical location of users of Facebook, to

study the effect of strong and weak ties in the society []. In fact, is it known that a rel-
evant additional source of information is represented by the geographical distribution of
individuals [–]. For example, we suppose that strong ties could reflect relations char-
acterized by physical closeness, while weak ties could be more appropriate to represent
connections among physically distant individuals.
(iii) Concluding, we devised a strategy to estimate the strength of ties between social

network users [] and we want to study its application to online social networks on a
large scale. In the case of social ties, this is equivalent to estimate the friendship degree
between a pair of users by considering their interactions and their attitude to exchange
information.

Appendix
In this appendix we shortly discuss the background in community detection algorithms
and explain the functioning of the two community detectionmethods adopted during our
experimentation, namely LPA and FNCA.

Community detection in complex networks
The problemof discovering the community structure of a network has been approached in
several different ways. A common formulation of this problem is to find a partitioningV =
(V ∪V ∪ · · · ∪Vn) of disjoint subsets of vertices of the graph G = (V ,E) representing the
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network (in which the vertices represent the users of the network and the edges represent
their social ties) in a meaningful manner.
The most popular quantitative measure to prove the existence of an emergent com-

munity structure in a network, called network modularity, has been proposed by Girvan
and Newman [, ]. It is defined as the sum of the difference between the fraction of
edges falling in each given community and the expected fraction if they were randomly
distributed. Let consider a network which has been partitioned into m communities; its
value of network modularity is

Q =
m∑
s=

[
ls
|E| –

(
ds
|E|

)]
()

assuming ls the number of edges between vertices belonging to the sth community and ds
the sum of the degrees of the vertices in the sth community. High values of Q imply high
values of ls for each discovered community. In that case, detected communities are dense
within their structure and weakly coupled among each other.
Partitioning a network in disjoint subsets may arise some difficulties. In fact, each user

in the network possibly belongs to several different communities; the problem of overlap-
ping community detection has recently received a lot of attention (see []). Moreover,
may exist networks in which a certain individual may not belong to any group, remaining
isolated, as recently put into evidence byHunter et al. []. Such a case commonly happens
in real and online social networks, as reported by recent social studies [].

Community detection techniques
In its general formulation, the problem of finding communities in a network is solvable
assigning each vertex of the network to a cluster, in ameaningful way. There exist different
paradigms to solve this problem, such as the spectral clustering [, ] which relies on
optimizing the process of cutting the graph, and the network modularity maximization
methods.
Regarding spectral clustering techniques, they have an important limitation. They re-

quire a prior knowledge on the network, to define the number of communities present in
the network and their size. Thismakes them unsuitable if the aim is to unveil the unknown
community structure of a given network.
As for network modularity maximization techniques, the task of maximizing the objec-

tive functionQ has been provedNP-hard [], thus several heuristic techniques have been
presented during the last years. The Girvan-Newman algorithm [, , ] is an exam-
ple. It exploits the assumption that it is possible to maximize the value ofQ deleting edges
with a high value of betweenness, starting from the intuition that they connect vertices
belonging to different communities. Unfortunately, the cost of this algorithm isO(n), be-
ing n the number of vertices in the network; it is unsuitable for large-scale networks. A
tremendous amount of improved versions of this approach have been provided in the last
years and are extensively discussed in [, ].
From a computational perspective, some of the state-of-the-art algorithms are Louvain

method [, ], LPA [, ], FNCA [] and a voltage-based divisive method []. All
these algorithms provide with near linear computational costs.
Recently, the problem of discovering the community structure in a network including

the possibility of finding overlapping nodes belonging to different communities at the
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same time, has acquired a lot of attention by the scientists because of the seminal pa-
per presented by Palla et al. []. A lot of efforts have been spent in order to advance novel
possible strategies. For example, an interesting approach has been proposed by Gregory
[], that is based on an extension of the Label Propagation Algorithm adopted in this
work. On the other hand, an approach in which the hierarchical clustering is instrumental
to find the overlapping community structure has been proposed by Lancichinetti et al.
[, ].

Label Propagation Algorithm (LPA)
The LPA (Label Propagation Algorithm) [] is a near linear time algorithm for commu-
nity detection. Its functioning is very simple, considered its computational efficiency. LPA
uses only the network structure as its guide, is optimized for large-scale networks, does
not follow any pre-defined objective function and does not require any prior information
about the communities. Labels represent unique identifiers, assigned to each vertex of the
network.
Its functioning is reported as described in []:
Step  To initialize, each vertex is given a unique label;
Step  Repeatedly, each vertex updates its label with the one used by the greatest

number of neighbors. If more than one label is used by the same maximum
number of neighbors, one is chosen randomly. After several iterations, the same
label tends to become associated with all the members of a community;

Step  Vertices labeled alike are added to one community.
Authors themselves proved that this process, under specific conditions, could not con-

verge. In order to avoid deadlocks and to guarantee an efficient network clustering, we
accept their suggestion to adopt an asynchronous update of the labels, considering the
values of some neighbors at the previous iteration and some at the current one. This pre-
caution ensures the convergence of the process, usually in few steps. Raghavan et al. []
ensure that five iterations are sufficient to correctly classify % of vertices of the network.
After some experimentation, we found that this forecast is too optimistic, thus we elevated
the maximum number of iterations to , finding a good compromise between quality of
results and amount of time required for computation.
A characteristic of this approach is that it produces groups that are not necessarily con-

tiguous, thus it could exist a path connecting a pair of vertices in a group passing through
vertices belonging to different groups. Although in our case this condition would be ac-
ceptable, we adopted the suggestion of the authors to devise a final step to split the groups
into one or more contiguous communities.
The authors proved its near linear computational cost [].

Fast Network Community Algorithm (FNCA)
FNCA (Fast Network Community Algorithm) [] is a modularity maximization algo-
rithm for community detection, optimized for large-scale social networks.
Given an unweighted and undirected network G = (V ,E), suppose the vertices are di-

vided into communities such that vertex i belongs to community r(i) denoted by cr(i); the
function Q is defined as Equation (), where A = (Aij)n×n is the adjacency matrix of net-
work G. Aij =  if node i and node j connect each other, Aij =  otherwise. The δ function
δ(u, v) is equal to  if u = v and  otherwise. The degree ki of any vertex i is defined to be
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ki =
∑

j Aij andm = 

∑

ij Aij is the number of edges in the network

Q =

m

∑
ij

((
Aij –

kikj
m

)
× δ

(
r(i), r(j)

))
. ()

We convert Equation () to Equation (), which takes the functionQ as the sum of func-
tions f of all nodes. The function f can be regarded as the difference between the number
of edges that fall within communities and the expected number of edges that fall within
communities, from the local angle of any node in the network. The function f of each node
can measure whether a network division indicates a strong community structure from its
local point of view

Q =

m

∑
i

fi, fi =
∑
j∈cr(i)

(
Aij –

kikj
m

)
. ()

The authors [] proved that: (i) any node in a network can evaluate its function f only
by using local information (the information of its community); (ii) if the variety of some
nodes label results in the increase of its function f and the labels of the other nodes do
not change, the functionQ of the whole network will increase too. The community detec-
tion algorithm used is based on these assumptions. It makes each node maximize its own
function f by using local information in the sight of local view, which will then achieve the
goal that optimize the function Q.
Moreover, in complex networks with a community structure, holds true the intuition

that any node should have the same label with one of its neighbors or it is itself a cluster.
Therefore, each node does not need to compute its function f for all the labels at each
iteration, but just for the labels of its neighbors. This improvement not only decreases the
time complexity of the algorithm, but also makes it able to optimize the function Q by
using only local information of the network community structure.
It has been proved that this algorithm, under certain conditions, could not quickly con-

verge, thus we introduced an iteration number limitation T as additional termination con-
dition. Experimental results show that, the clustering solution of FNCA is good enough
before  iterations for most large-scale networks. Therefore, iteration number limitation
T is set at  in all the experiments in this paper. Authors proved the near linear cost of
this algorithm [].
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Endnotes
a Data are represented in a compact format in order to save I/O operations and then are anonymized, in order not to

store any kind of private data (such as the user-IDs).
b http://www.emilio.ferrara.name/datasets/.
c Remind that the vectors taken into account represent the communities of the network.
d To this regard, we put into evidence that the x-axis is reversed and we recall that the diameter of the considered

community structures is 4.45 and 4.85, respectively for LPA and FNCA.
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e We recall that, being the network model adopted undirected, the meaning of source and target node is only
instrumental to identify the end-vertex of each given edge.

f The roles of weak ties is to connect small communities of acquaintances which are not that close to belong to the
same community but, on the other hand, are somehow proficiently in contact.

g https://sites.google.com/site/andrealancichinetti/cvis.
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