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Abstract
Languages are grouped into families that share common linguistic traits. While this
approach has been successful in understanding genetic relations between diverse
languages, more analyses are needed to accurately quantify their relatedness,
especially in less studied linguistic levels such as syntax. Here, we explore linguistic
distances using series of parts of speech (POS) extracted from the Universal
Dependencies dataset. Within an information-theoretic framework, we show that
employing POS trigrams maximizes the possibility of capturing syntactic variations
while being at the same time compatible with the amount of available data.
Linguistic connections are then established by assessing pairwise distances based on
the POS distributions. Intriguingly, our analysis reveals definite clusters that
correspond to well known language families and groups, with exceptions explained
by distinct morphological typologies. Furthermore, we obtain a significant correlation
between language similarity and geographic distance, which underscores the
influence of spatial proximity on language kinships.
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1 Introduction
The number of languages in the world is estimated to be around 7,000 [1]. This leads to a
broad diversity at all linguistic levels: phonetic, morphosyntactic, semantic and pragmatic.
The task to comprehend this immense variation is overwhelming. However, researchers
have managed to pinpoint linguistic relationships that allow them to cluster languages in
groups and families. Such classification was first based on comparative studies [2, 3] and
now has increasingly been supported with quantitative approaches [4, 5].

A fertile approximation in historical linguistics describes languages as species in a phy-
logenetic tree that shows the evolutionary history from proto-languages to today’s de-
scents [6]. In this diachronic view, languages change through linguistic innovations that
cause two languages with the same ancestor to become mutually unintelligible. There is
also the complementary view, followed in this work, that searches for relations among lan-
guages in a given moment of time, in a synchronic manner [7], with the goal of quantifying
the distance between languages using an appropriate metric [8, 9].
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Language distances are encoded in matrices whose entries measure the similarity among
certain linguistic features. The same method has been successfully applied in dialectom-
etry, which aims at quantifying the regional differences among varieties of a given lan-
guage [10]. Quantitative measures of linguistic distances are useful not only for fundamen-
tal reasons but also in applied linguistics with the aim of analyzing the learning difficulties
of minorities and immigrants [11]. Another application of language distances is for lan-
guages in contact since languages that are more congruent to each other are more likely to
coexist [12]. An assessment of linguistic similarities is therefore helpful for evidence-based
policies and planning that seek to revitalize endangered languages [13].

Now, whilst most of the studies that compute distances either in synchronic linguistics
or in dialectometry focus on orthographic, phonetic or lexical variations [14–19], less at-
tention has been paid to morphosyntactic features, other than a few exceptions [20–22].
The latter are interesting because syntax is more robust to change than phonetics or se-
mantics. Therefore, the resulting picture would show a larger time depth, and unique cases
of accelerated change would hence stand out.

A particularly simple but elucidating approach to analyze syntactic variations is by
means of parts of speech (POS). These denote word classes with well defined grammatical
functions that share common morphological properties [23]. For instance, almost all lan-
guages distinguish between verbs and nouns, i.e., roughly between actions and entities. As
a consequence, one can categorize words or lexical items as members of any of the pro-
posed POS, typically around 15. This classification has its own limitations (e.g., certain
languages do not distinguish between verbs and adjectives) but it has the advantage of
simplicity while capturing at the same time a large amount of morphosyntactic informa-
tion. The POS approach has been proven especially useful in natural language processing
tasks. The reason is that POS reveal much not only about the syntactic category of a word
but also about that of its neighboring words, due to semantic restrictions. For example, if
a word is a noun it will most likely be surrounded by determiners and adjectives, forming
a noun phrase. Therefore, we can gain insight about the phrasal structure of a language
by examining POS sequences. This is precisely the main objective of this work: to model
these sequences as stochastic processes, analyze their correlations and compute syntactic
distances between languages using POS sequence distributions taken from a multilingual
corpus.

Statistics of POS sequences, specifically the analysis of POS r-grams, defined as se-
quences of r successive POS, has served for diverse research goals. One may hypothesize
that genres are characterized by different syntactic structures, which would then allow for
reliable genre classification. As demonstrated in Ref. [24], a careful study of POS trigram
histograms provides a high-performance genre classifier. Strikingly, series of POS trigrams
can be employed for building phylogenetic language trees solely from translations [25].
The premise here is that syntactic features are retained in the translation process. Fur-
thermore, assuming that POS tags can be predicted for historically close languages it is
possible to train a language model to measure proximity among languages [26]. However,
these previous works set the POS block length in a somewhat heuristic manner. Below,
we demonstrate using information-theoretic methods that trigrams suffice to account for
the correlations present in POS sequences. In other words, it is not necessary to consider
r-grams with r ≥ 4 to gain more information, a result that considerably simplifies analyses
that involve POS series.
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The mapping between a corpus and its corresponding POS series can be performed
with human or automatic parsers. For the purposes of our investigation, we consider the
Universal Dependencies library dataset [27], which includes manually annotated tree-
banks across many languages [28]. This dataset consists of texts and speech transcripts
originated from various sources: news, online social media, legal documents, parliament
speeches, literature, etc. The 17 universal parts of speech used in this particular dataset are
grouped into three classes: open, which includes the tags adjective (ADJ), adverb (ADV),
interjection (INTJ), noun (NOUN), proper noun (PROPN) and verb (VERB); closed, with
the tags adposition (ADP), auxiliar (AUX), coordinating conjuntion (CCONJ), determiner
(DET), numeral (NUM), particle (PART), pronoun (PRON) and subordinating conjunc-
tion (SCONJ); and others, which comprise punctuation (PUNCT), symbol (SYM) and
other (X).

We then build a corpus of 67 contemporary languages expressed by means of these tags.
Since the number of possible POS r-grams grows exponentially with r, it is thus natural
to ask what value of r conveys the maximum information about a language. As aforemen-
tioned, we find that r = 3 suffices to correctly characterize any of the studied languages.
Then, we depict the connections between languages assessing the pairwise distance be-
tween POS trigram distributions. Interestingly, our found clusters can be identified with
well known families and groups. Exceptions can be understood due to distinct linguistic
typologies. This is natural since morphology constrains the possible POS combinations
that can form and, consequently, this is reflected in the POS distributions and the dis-
tances calculated thereof.

Interestingly, we find a correlation between the obtained linguistic distance and the ge-
ographic distance spanned between locations assigned to each language. These are WALS
locations, which generally correspond to the geographic coordinates associated to the
centre of the region where the analyzed languages are spoken. However, for some lan-
guages, the regions where they are spoken are discontinuous. In such cases, the locations
are placed within the larger region in which the language is spoken [29]. Despite the fact
that the centres are obviously only approximate and that our calculation of the linguistic
distances has its own limitations, we clearly find that most of the syntactically close lan-
guages are also geographically close. This is expected since similar language usually lie in
a continuum but there exist conspicuous exceptions, as we shall discuss below.

2 Methods
2.1 Data
The data utilized in this work is taken directly from the Universal Dependencies li-
brary [27], where each language is depicted with one or several corpora that are manu-
ally tagged. Thus, each word is classified into one of the possible POS categories as stated
above. These tags are deemed universal because they provide a common and consistent
way to represent the grammatical categories of words across different languages. For ex-
ample, the English sentence

Launching this way will hopefully avoid future disasters,

giving more support towards NASA revisiting the stars. (1)
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is converted into the POS sequence

S = VERB, DET, NOUN, AUX, ADV, VERB, ADJ, NOUN, PUNCT, VERB, ADJ,

NOUN, SCONJ, PROPN, VERB, DET, NOUN, PUNCT (2)

Since we are interested in lexical classes that are either open or closed, we combine
the 3 categories in the others class in a single tag. Hence, we will only consider L = 15
distinct categories. As a consequence, in alphabetical order, the possible tags are {zi}14

i=0 =
{ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN,
PUNCT, SCONJ, VERB}, where the categories in the others class are included in the tag
PUNCT. We can then count the occurrences of each tag in S, excluding the period at the
end of the sentence. For example, the number of times the tag z0 = ADJ occurs in Eq. (2) is
2. This way we gain access to unigram statistics. Similarly, we can group S in overlapping
blocks of 2 consecutive tags and count the number of times each block is observed. For
example, the block (z5, z7) = (DET, NOUN) occurs in Eq. (2) 2 times, thus opening the
path to bigram statistics, etc.

In general, the set of all Lr possible r-grams, or blocks of size r ≥ 1, is given by {b(r)
j :

b(r)
(i0,...,ir–1)L

= (zi0 , . . . , zir–1 ), i0, . . . , ir–1 = 0, . . . L – 1}Lr–1
j=0 , where (i0, . . . , ir–1)L is a base L

number. Given the dataset of language L, formed by R tagged sentences, we count the
number of appearances for each block of size r, with 1 ≤ r ≤ rmax, with rmax to be speci-
fied below. First, we arrange each of the R sequences in overlapping blocks of size r and
calculate the occurrences n̂(r)

j of block b(r)
j . With this information we build for each value

of r the set of observations {n̂(r)
j }Lr–1

j=0 for every language L.
L can be any of the 67 contemporary European and Asian languages that fulfill the cri-

terion of having datasets of at least 10 thousand tokens in the Universal Dependencies
library. The comprehensive list is included in App. A, along with their respective language
family and group, as well as their corresponding morphological type (agglutinative, fu-
sional, isolating). The latter is a useful information about word formation. We emphasize
that these three types are just approximate categories since most of the languages have
morphological traits of the three types with variable relevance [30].

Importantly, we select languages within a contiguous region (except for Afrikaans which
is included since it belongs to the Indo-European family) because we shall later explore
possible correlations between linguistic and geographic distances. Specifically, we focus
on Eurasia since this is a single continent with both a rich linguistic diversity and abundant
data availability.

Subsequently, we apply the previously discussed procedure of counting POS r-grams
occurrences for every language within our dataset. Following an information-theoretic
approach, we now argue in the next section that the r-gram probability distribution of each
language for r = 3 is sufficient to capture the correlations observed in POS sequences and,
consequently, it can serve as a reliable basis for calculating distances between languages.

2.2 Predictability gain and memory
The dynamics of many stochastic processes can be described by considering that the tran-
sition probabilities to future outcomes depend on previous states. Consider a random vari-
able X with L possible outcomes z0, . . . , zL–1 and probability distribution P(X) = {P(X =
zi), i = 0, . . . , L – 1}, where P(X = zi) is the probability that X takes the value zi. In our
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case, X are the POS tags taking values specified above, and P(X = zi) is the probability
for occurrence of tag zi in language L. Given k + 1 repetitions of X, X0, . . . , Xk , the accu-
racy of predicting the next outcome of the process, Xk+1, generally grows as the number
of past states considered increases. For example, the information contained in the sta-
tionary probability (or zeroth-order transition probability) P(Xk+1 = zj) for outcome zj is
always less or equally accurate than the information provided by the first-order transition
probability P(Xk+1 = zj|Xk = zl).

The predictability gain Gu [31] quantifies the amount of information that one gains when
performing predictions taking into account u+1 past states instead of u. For completeness,
we prove in App. B that, for homogeneous systems in which the transition probabilities
are independent of time, the predictability gain takes the form

Gu = –(Hu+2 – 2Hu+1 + Hu), u ≥ 0, (3)

where Hr is the block Shannon entropy [32] of size r ≥ 1 (H0 ≡ 0). Hr for r ≥ 1 can be
straightforwardly calculated from the joint probability distribution Pr(X) of r consecutive
repetitions of the variable X,

Pr(X) ≡ {P(X0 = zi0 , . . . , Xr–1 = zir–1 ), ik = 0, . . . , L – 1}, (4)

as

Hr = –
Lr–1∑

j=0

p(b(r)
j ) log(p(b(r)

j )), (5)

where

p(b(r)
(i0,...,ir–1)L

) = P(X0 = zi0 , . . . , Xr–1 = zir–1 ), 0 ≤ i0, . . . , ir–1 ≤ L – 1, (6)

is the probability for occurrence of block b(r)
(i0,...,ir–1)L

= (zi0 , . . . , zir–1 ) with size r, and log is
hereafter understood as log2.

A stochastic process generated from consecutive repetitions of the variable X has order
or memory m ≥ 1 if the transition probabilities satisfy

P(Xk+1 = zj|X0 = zv, . . . , Xk = zl) = P(Xk+1 = zj|Xk–(m–1) = zo, . . . , Xk = zl). (7)

These are usually referred to as m-th order Markovian processes [33]. For the case m = 0
the probabilities P(Xs = zj) are independent for all s.

In Ref. [34] it was shown that a system has memory m if and only if Hu is a linear function
of u for u ≥ m. This result amounts to stating that a system has memory m if and only
if Gu = 0 for all u ≥ m. This can be proven directly from Eq. (3). Hence, an analogous
definition for the memory m of a stochastic system follows:

m = min({μ : Gu = 0, for all u ≥ μ}). (8)

Therefore, m is the minimum number of past states that we need to consider in order to
achieve maximum predictability of the random process. We can use Eq. (8) as a benchmark
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to determine the memory of a system. Moreover, if a stochastic process described with the
random variable X has memory m, knowing the joint probability distribution Pm+1(X) of
m+1 consecutive repetitions of X is sufficient to capture all relevant information about the
process since Pm+1 can be used to compute the probabilities of larger and smaller blocks.
Hence, the m + 1 block size is optimal for accurate predictions and understanding the
process dynamics, without adding redundant information.

2.3 Estimation from finite data
Given the counts {n̂(r)} ≡ {n̂(r)

j }Lr–1
j=0 of language L obtained following the procedure out-

lined in Sect. 2.1 for a value of r, we estimate the probability to observe block b(r)
j of r

consecutive POS tags in language L as

p̂L(b(r)
j ) =

n̂(r)
j

N (r)
, (9)

where N (r) =
∑Lr–1

j=0 n̂(r)
j . It is well known that Eq. (9) is an unbiased estimator for the prob-

ability pL(b(r)
j ). Similarly, from our observations we can estimate the (r – 1)th-order tran-

sition probabilities as

p̂L(zir |zi1 , . . . , zir–1 ) ≡ P̂(Xr = zir |X1 = zi1 , . . . , Xr–1 = zir–1 ) =
n̂(r)

(i1,...,ir–1,ir)L
L–1∑
v=0

n̂(r)
(i1,...,ir–1,v)L

, (10)

with ik = 0, . . . , L – 1.
Our next step involves calculating the predictability gain in order to determine the mem-

ory of the POS sequences by means of Eq. (8). Motivated by Eq. (3) we can perform this
task by estimating the block entropies.

Entropy estimation is a largely analyzed problem and, even though there is not known
unbiased estimator for the entropy [35], numerous useful estimators can be found in the
literature [36]. Usually, all entropy estimators fail when the number of possible outcomes
is larger than the available data. Considering that the number of possible blocks grows ex-
ponentially with increasing block size, there exists a certain rmax for which entropy estima-
tion is unreliable for r > rmax. The value of rmax depends on the chosen entropy estimator,
but it is usual to take rmax � log(N (1))/ log(L) [34].

Hereafter we use the NSB entropy estimator [37, 38], which has shown to give good
results for correlated sequences [39]. Estimation of the block entropy of size r using this
method only requires knowledge of the data observations {n̂(r)}. The result of applying the
estimator Ĥ to this set is denoted with Ĥ

[{n̂(r)}], for 1 ≤ r ≤ rmax. Therefore, for finite data
Eq. (3) becomes

Ĝu[{n̂}] = –
(

Ĥ
[{n̂(u+2)}] – 2Ĥ

[{n̂(u+1)}] + Ĥ
[{n̂(u)}]

)
, 1 ≤ u ≤ rmax – 2, (11)

and

Ĝ0[{n̂}] = –
(

Ĥ
[{n̂(2)}] – 2Ĥ

[{n̂(1)}]
)

. (12)

Due to the limitations of entropy estimation, the condition imposed in Eq. (8) to de-
termine the value of m is too strict. Rather than attempting to ascertain the minimum



De Gregorio et al. EPJ Data Science           (2024) 13:61 Page 7 of 27

Figure 1 Estimated predictability gain when considering (u + 1)th-order instead of uth-order transition
probabilities in POS sequences of (a) German, (b) Icelandic, (c) Portuguese and (d) Czech, as extracted from
the Universal Dependencies library

block size at which the predictability gain is 0, a more sensible approach is to compare the
values of Ĝu[{n̂}] with those obtained from a scenario where we know that the estimated
predictability gain should be 0.

2.4 POS trigrams
In this section we provide evidence supporting our claim that in order to capture the corre-
lations in POS sequences it is enough to consider their trigram probability distribution. We
show this in two ways: in Sect. 2.4.1, calculating the predictability gain, and in Sect. 2.4.2,
analyzing the accuracy in language detection as the order of Markovian models increases.

2.4.1 Predictability gain
Our first objective is to quantify the information gained in POS sequences of varios lan-
guages when performing predictions considering (u + 1)th-order transition probabilities
rather than uth-order.

In Fig. 1 we show Ĝu for two representative languages of the same group, namely, Ger-
man (panel a) and Icelandic (panel b) from the Germanic group, and two representative
languages of different groups that also differ from the previous one, namely, Portuguese
(panel c) from the Romance group and Czech (panel d) from the Slavic group. This way
we can test intragroup and intergroup variations, if they exist. Further, these three groups
constitute the most extensive clusters, characterized by a wealth of available data, which
make the results more trustworthy. We set rmax = 5 for the four languages; hence we ensure
that the estimation of their predictabilities is reliable up to u = 3.

The values of Ĝu at u = 0 for the four languages demonstrate a significant predictability
gain when transitioning from zeroth-order predictions to first-order predictions, suggest-
ing that the POS state of the sequence at a given step k is highly informative about the
next POS outcome at step k + 1. We observe that the values of Ĝ0 significantly vary for



De Gregorio et al. EPJ Data Science           (2024) 13:61 Page 8 of 27

each language, even for German and Icelandic which belong to the same group. Then, the
Ĝu values at u = 1 indicate that the information provided by the preceding POS outcome at
step k – 1 is also substantial in terms of predictability. In contrast, the predictability gain at

u = 2 drops to Ĝ2 � Ĝ1

2
and remains relatively constant at u = 3. We obtain this decreasing

pattern in the curves of Ĝu as a function of u for all languages considered in this work. Even
though this does not prove that POS sequences have memory 2 (see App. C for further
details), our results indeed show that considering transition probabilities beyond order 2
does not yield substantially more information about the correlations present in our POS
sequences.

2.4.2 Markov models
We now provide more evidence that POS trigrams (or equivalently, POS sequences of
memory 2) describe most of the statistical information contained in the represented lan-
guages.

From the corpus of language L we extract a tagged sentence S = x1, . . . , xN of length N
and compute the probability P(S|L′) of observing S in a certain language L′. This proba-
bility can be computed either by considering the estimated stationary distribution of lan-
guage L′,

P̂(0)(S|L′) =
N∏

k=1

p̂L′ (xk), (13)

or by incorporating uth-order transition probabilities for u ≥ 1 (u-order Markov model).
For example, the probability of observing the sequence S given the languageL′ considering
first-order transition probabilities reads

P̂(1)(S|L′) = p̂L′ (x1)
N–1∏

k=1

p̂L′ (xk+1|xk). (14)

Similarly, we can compute P̂(u)(S|L′) for u > 1. This procedure is repeated for various lan-
guages, and the language that yields the highest probability is assigned to the one from
which S is generated. Ideally, the obtained language would correspond to L for all values
of u.

For each of the four previously considered languages (German, Icelandic, Portuguese,
and Czech) we randomly select from their respective corpora K sentences S1, . . . , SK , each
comprising 5 to 20 word tokens. Subsequently, for every sentence we compute P̂(u)(Sl|L′)
for the four languages and for values of u ranging from 0 to 3. The accuracy Au of cor-
rectly identifying the language associated with each case is then assessed as the fraction
of correct sentence classifications:

Au(L) =
#{l : P̂(u)(Sl|L) > P̂(u)(Sl|L′) for all L′ �= L}K

l=1
K

. (15)

We compute the estimated stationary and transition probabilities, as specified in Eq. (9)
and (10) respectively, without considering the influence of the K sentences utilized for
testing purposes. We then repeat this procedure 10 times to find the mean and standard
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Figure 2 Accuracy in language identification, determined by computing and comparing the probabilities of
observing a given tagged sentence within each considered language, based on an uth-order Markov model

deviation of the accuracy for each language, as a function of u. We consider K = 1000. The
results are displayed in Fig. 2.

We observe that the accuracy for all languages significantly increases when first-order
transition probabilities are considered (u = 1). Subsequently, there is a slight increase at
u = 2, and afterwards the accuracy remains relatively constant for u = 3. These findings
agree with the analysis performed for the predictability gain, overall indicating that con-
sidering memory values higher than 2 does not provide significant additional information.
Conversely, choosing a low memory value proves advantageous as it enhances the prob-
ability estimation accuracy. Consequently, this enables us to incorporate a broader set of
languages into our analysis.

2.5 Language distances
As explained in Sect. 2.2, if a stochastic process generated from repetitions of the variable
X has memory m, the probability distribution Pm+1(X) is adequate for capturing all rel-
evant information about the process. We previously showed that sequences of POS tags
can be modeled as processes with memory 2 with high accuracy. Therefore, we can de-
fine a distance metric between languages L and L′ from the statistical distance between
their corresponding trigram distributions. To this end, we consider the Jensen-Shannon
(JS) distance [40]. Defining {bj}L3–1

j=0 as the set of all possible POS trigrams, the JS distance
between languages L and L′ is determined by

dJS(L,L′)

=

√√√√√1
2

L3–1∑

j=0

(
pL(bj) log

(
2pL(bj)

pL(bj) + pL′ (bj)

)
+ pL′ (bj) log

(
2pL′ (bj)

pL(bj) + pL′ (bj)

))
. (16)

It is worth noting that the dJS measure satisfies all the essential properties expected for a
metric and that dJS ranges between 0 and 1.

We estimate the JS distance by replacing the exact probabilities p(bj) in Eq. (16) with the
maximum likelihood estimators given by Eq. (9). As an illustration, we present in Fig. 3 the
trigram probability distributions for English (panel a) and Japanese (panel b). The numbers
that designate the trigrams correspond to their index. For example, trigram 0 refers to the
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Figure 3 Probability distribution of POS trigrams for (a) English and (b) Japanese

block b0 = (z0, z0, z0) = (ADJ, ADJ, ADJ); trigram 1 is b1 = (z0, z0, z1) = (ADJ, ADJ, ADP);
and so on until the last trigram 3374, which corresponds to the block b3374 = (z14, z14, z14) =
(VERB, VERB, VERB).

From a simple inspection of Fig. 3 it is clear that the trigram probability distri-
butions of English (E ) and Japanese (J ) show substantial differences. For example,
in English the three most probable trigrams are b307 = (ADP, DET, NOUN), b1231 =
(DET, NOUN, ADP) and b1132 = (DET, ADJ, NOUN) whereas for Japanese we have b1597 =
(NOUN, ADP, NOUN), b1604 = (NOUN, ADP, VERB) and b331 = (ADP, NOUN, ADP).
These trigrams differ because determiners are generally absent from Japanese, unlike En-
glish, and adpositions follow the Japanese nouns whereas in English adpositions can also
appear before the noun. These differences between the two languages can be quantified
using Eq. (16). We find dJS(E ,J ) = 0.79, which is a high value due to the strong mor-
phosyntactic differences between Japanese and English.

Following a similar methodology, for each language pair within our dataset we compute
their corresponding JS distances using Eqs. (16), yielding a distance matrix of dimension
67×67, on which our subsequent clustering analysis is based. This methodology considers
all available data for each language. An alternative approach is presented in App. D, where
we calculate distances among text samples extracted from the same language group. We
now present the results obtained with the JS distance. Importantly, we also obtain similar
results employing a different metric (the Hellinger distance, see App. E), which reinforces
the validity of our findings.

3 Results
We first discuss the general results obtained from calculating distances between languages
based on their POS distributions. Then, we inquire a possible correlation between linguis-
tic and physical (i. e., geographical) distances.

3.1 Language distances and cluster analysis
3.1.1 Distance matrix
The distance matrix generated from the data with the aid of Eq. (16) can be better visu-
alized through a clustermap (see Fig. 4). This representation employs hierarchical clus-
tering [41] and heatmap visualization. We use the complete linkage method [42] for clus-
tering, organizing rows and columns based on similarity, depicted as dendrograms in the
same figure. The heatmap, which represents distance values by a color spectrum as indi-
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Figure 4 Heatmap visualization of the Jensen-Shannon distance matrix, calculated from POS trigram
distributions. Rows and columns are organized based on hierarchical clustering. The colour spectrum in the
heatmap illustrates data matrix values

cated in Fig. 4, enables a comprehensive exploration of our data relationships and struc-
ture.

First, since darker colours indicate shorter distance (i.e, greater morphosyntactic simi-
larity) one can clearly distinguish large-scale cluster formation. In the vicinity of the left
upper corner we observe the most extensive cluster, corresponding to Slavic languages.
Within this language group, we discern smaller clusters, the most clear being among Be-
larusian, Russian and Ukrainian (the East branch of the Slavic family), as well as between
Serbian and Croatian (the South branch). Interestingly, our results point to a close rela-
tionship between this group and two members of the Baltic group (Latvian and Lithua-
nian). This suggests that spatial proximity might be correlated with our POS distances, as
we discuss below.

Germanic languages exhibit a more dispersed pattern, manifested itself in two distinct
clusters. The first cluster encompasses Afrikaans, Dutch, and German (the West branch),
while the second is primarily composed of North Germanic languages along with English,
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which highlights its mixed character via a close connection with Romance languages. The
latter, in turn, exhibit the most compact clustering, as evidenced by their tight proximity
to one another in the heatmap. An exception is Romanian, which falls outside this group,
probably because it is the only major Romance language with noun declension and article
enclitics. Also, its spatial distance from the West may play a role. This interpretration is
supported by the fact that Romanian is clustered with Pomak, a Bulgarian variety spoken
in the geographically close region of Thrace.

We next find a small cluster that encompasses Maltese and Hebrew. Surprisingly, Ara-
bic, classified as a Semitic language as well, appears closer to Austronesian languages, such
as Indonesian and Javanese, as well as Persian. The reason lies in the different typology of
Arabic and its strong dialect diversity. Further visible clusters correspond to Celtic lan-
guages, Hindi and Urdu (both belonging to the Indic language group), the Turkic family
(Turkish, Kazakh and Uyghur), adjacent to Buryat (a Mongolic language), followed by a
larger cluster primarily comprising Uralic, Tungusic, and Sino-Tibetan families. This is
the most diverse cluster partly because the Universal Dependencies library contains data
of a few languages only as compared with the previous families. However, there exist in-
teresting connections that we explore in the next sections.

3.1.2 Language tree and k-medoids clustering
In order to gain further insight on the relations among the distinct languages, we perform
a k-medoids clustering upon the distance matrix. Hence, we utilize the Partition Around
Medoids (PAM) algorithm [43], for which the optimal number of clusters is determined
through a silhouette analysis [44]. The corresponding figure and a list of languages con-
stituting each cluster are presented in App. F. For the moment, we will make use of these
results to build a single picture of the main interlinguistic connections.

First, we construct a network whose nodes represent languages whereas the edges’
weight are given by their pairwise distances. Only the edges that generate a minimum
spanning tree are considered as part of our analysis. The minimum spanning tree is a struc-
ture that connects all the data points in our dataset results with the minimum possible total
edge weight [45]. We depict the tree in Fig. 5, employing the Kamada-Kawai layout [46].
This is a force-directed layout, implying that, for weighted graphs as in our case, the length
of the edges tends to be larger for heavier weights. This visualization provides an intuitive
representation of the relationships encoded in the minimum spanning tree, offering in-
sights into the overall structure and connectivity patterns, not only among closely related
languages, but also between distinct language families. To enhance our interpretability,
we assign consistent colors to items within the same cluster, obtained from the k-medoids
analysis mentioned earlier. Nodes from the same language group are linked with a full
line; nodes from the same family but different group are linked with a dashed line; finally,
nodes belonging to distinct families are connected with dotted lines. The shape of the
nodes represents the language type: circles are assigned to fusional languages, squares to
the agglutinative type and diamonds to isolating languages. The languages plotted with
half nodes are both isolating and another type. For example, English is plotted with a half
diamond node because it is considered to be a fusional-isolating language [47].

Interestingly, the same cluster formations observed with our previous analysis of Fig. 4
naturally emerge in the constructed tree, as well as connections between language fam-
ilies hidden within the distance matrix, which are easier to identify in this simpler visu-
alization. We can find most of the Celtic languages (clusters 6, 28) close to a few Semitic
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Figure 5 Minimum spanning tree generated from the Jensen-Shannon distance matrix, with node colors
representing clusters identified through k-medoids analysis. The shape of the nodes represents the language
typology. Full lines are assigned to links between languages belonging to the same group; dashed lines for
languages of the same family but different group; finally, dotted lines connect languages from distinct families

languages (cluster 25), specially Hebrew, whereas Maltese can be found in close proxim-
ity to Romance languages, which are once again forming a compact cluster (1), with the
exception of Romanian which is clustered with Icelandic and Faroese (cluster 21). The
Germanic group is subdivided into three groups (clusters 3, 20 and 21) that are relatively
close to one another, and similarly with the Slavic group (clusters 0, 8, 26, 30). The Baltic
languages are clustered together with the Slavic sub-group mostly consisting in East Slavic
languages (cluster 0). The proximity of these two groups was also observed in Fig. 4.

The Baltic languages are connected with the Uralic languages (clusters 5, 22) and with
the Armenian family (cluster 10). An exception is Hungarian, considered an Uralic lan-
guage, but here appearing separately (cluster 23) near the Turkic languages, which are
grouped together as expected, alongside Buryat (cluster 2). Around this cluster several
isolated languages such as Korean (cluster 19), Tamil (cluster 16) and Xibe (cluster 18)
can be found.

Arabic is clustered with Austronesian languages (cluster 7), in close proximity to the Ira-
nian cluster (cluster 9). The Indic languages (cluster 4) are noticeably distant from the rest,
and even further is Japanese (cluster 13). The remaining clusters are formed by only one
language, namely: Gheg (12), Thai (14), Basque (24), Greek (30), Cantonese (11) and Chi-
nese (15). With the exception on the latter two, which belong to the Sino-Tibetan family,
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all others are the sole representatives of their respective language groups being considered
in this analysis.

It is important to note that, even though this form of visualization can be helpful to
recognize clusters and connection among languages, some of these connections are spu-
rious and mainly arise from the inherent nature of the minimum spanning tree, which
is designed to avoid leaving isolated nodes. Nevertheless, it is remarkable that most of
the connections observed in Fig. 5, represented both by the cluster identification of the
nodes and the edges linking them, are between languages belonging to the same group.
Moreover, most of the languages displayed in the upper part of the figure belong to the
Indo-European family, and they all have fusional features. On the other hand, the lower
part of the chart mostly consists of agglutinative and isolating languages.

Less known connections, such as among Hebrew and Celtic languages, or between
Basque and Armenian are also displayed in the tree. These similarities have been already
pointed out in Refs. [48] and [49] respectively, with the proper observation that this does
not imply a common origin of the languages. A similar case is that of Altaic languages [50],
a putative family relationship between Turkic, Mongolic, Tungusic, Korean and Japanese
languages, a subject characterized by ongoing debate within linguistic research [51]. In
Fig. 5 this group is represented in the lower part of the tree by the connections among
Turkish, Kazakh, Uyghur, Xibe, Buryat and Korean. Despite the controversy surrounding
the existence of a genetic relationship, it is generally acknowledged that there exist lin-
guistic similarities among these languages, as evidenced by our analysis.

Romanian language, which is considered to be a Romance language, can be found in
Figs. 4 and 5 closer to Germanic languages than to other Romance languages. Interest-
ingly, this fact has been observed in Ref. [26], also using Universal Dependencies data but
considering a machine learning approach to calculate linguistic distances. In Ref. [25], a
similar cluster analysis based on the analysis of POS trigrams of translations locates Ro-
manian language away from the Romance group.

Another interesting case is that of Arabic, a Semitic language which, in the dendro-
gram in Fig. 4 is clustered alongside Persian and Kurmanji, both Iranian languages. In
the tree presented in Fig. 5, Arabic and Persian are linked but the former is clustered by
the k-medoids algorithm with Indonesian and Javanese, which belong to the Austrone-
sian family. In this figure, Arabic appears in the lowest part of the tree, very distant from
the other Semitic languages, Hebrew and Maltese. However, this is misleading because
their linguistic distance in Fig. 4 is not high, specially between Arabic and Hebrew. Fur-
ther, the linguistic proximity observed between Arabic and Persian is influenced by their
geographic closeness.

Overall, our cluster results are consistent with well established families and linguistic
groups. We indeed observe departures that could be attributed to methodology inaccu-
racies. However, another interpretation is possible. Very recently, a family tree based on
the phylogenetic signal of syntactic data has been inferred [52], pointing to salient de-
viations with respect to the trees derived from the comparative method, which typically
did not take into account syntactic data. Therefore, language groups formed upon syntac-
tic analyses need not fully agree with those groups that emerge from phonetic or lexical
similarities.

In App. G, we present the results of a similar analysis to the one conducted in this sec-
tion using tetragrams instead of trigrams. The findings from both methods are consistent,
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Figure 6 Linguistic versus geographic distances between a selected language and all other languages
considered: (a) German, (b) Portuguese, (c) Czech and (d) Basque. Rp denotes the Pearson correlation
coefficient

providing strong evidence for our claim that the probability distribution of POS trigrams
is sufficient to capture syntactic information in the analyzed languages.

Strikingly, our results also suggest correlations between syntactic distances and spatial
proximity. In the following section, we explore the connection between these two vari-
ables, which can account for the relationship observed in Fig. 5 between, e.g., Semitic and
Romance languages, Indonesian with Vietnamese or Uralic with Slavic languages.

3.2 Relation between linguistic and geographic distances
We calculate the geographic (geodesic) distances between all language pairs by assign-
ing an spatial coordinate to each language considered. This geolocation information is
obtained from the World Atlas of Language Structures Online (WALS) [29]. For this anal-
ysis we exclude Afrikaans since it is geographically isolated from the rest of the languages
considered.

First, for a single language we compute its linguistic and geographic distances with
the rest of considered languages. The plots obtained for German (panel a), Portuguese
(panel b), Czech (panel c) and Basque (panel d) are presented in Fig. 6, applying loga-
rithmic scale to the geographic distances. The obtained Pearson correlation coefficients
(Rp = 0.721, 0.700, 0.600, and –0.510, respectively) point to a logarithmic relation be-
tween the two distances (all p-values are < 0.001). Surprisingly, out of the 66 languages
analyzed, only Basque [Fig. 6(d)] shows a significant negative correlation between linguis-
tic and geographic distances. This is because Basque is categorized as an agglutinative
language and while the majority of Western European languages lean towards fusional
characteristics, agglutinative languages are predominantly found in Eastern Europe and
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Figure 7 Linguistic and geographic distances between all language pairs considered. The distance
correlation coefficient is Rd = 0.447

Asia. Consequently, Basque shares more linguistic similarities with languages spoken at
greater distances than with those geographically closer.

Finally, we compute the linguistic and geographic distances for all language pairs in order
to globally explore the relation between these two variables. We show the resulting plot
in Fig. 7. Quite generally, there is a positive correlation between the syntactic and spatial
variables. We can quantify this dependence with the distance correlation coefficient Rd

[53]. This coefficient is more general than Pearson’s Rp since it does not only measures
linear dependence between variables. We find Rd = 0.447, with a p-value < 0.001 calculated
from a permutation test. Even though Rd is not high due to the uncertainties associated
to the noisy data and the geographical locations, the value is significantly greater than 0
which indicates that geographical and linguistic distances are indeed correlated.

4 Conclusions
In this work we have collected and analyzed parts of speech tagged sentences available
in the Universal Dependencies library for 67 contemporary languages located in a ge-
ographically contiguous region. Following an information-theoretic approach, we have
provided evidence showing the effectiveness of utilizing the trigram probability distribu-
tion of parts-of-speech for characterizing the syntax statistics of languages. Through this
method, we have computed distances between languages by calculating statistical diver-
gences between trigram distributions, revealing both well established language groupings
and less familiar but already documented linguistic connections. Whereas most analy-
ses of language families are conducted at the phonetic level, our syntactic approach, while
yielding similar results, points to a robustness of linguistic family classifications across dif-
ferent linguistic levels. This opens up new avenues for linguistic research where syntactic
data can complement phonetic data, providing a more comprehensive understanding of
language evolution, classification and geographic relationships. We also stress that our ap-
proach is synchronic and thus complements the diachronic views more often encountered
in historical linguistics.

A potential impact of our work is in the field of language documentation and revital-
ization. By quantifying syntactic similarities, our method can help identify which lan-
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guages are most similar to endangered languages, therefore guiding efforts to develop ed-
ucational materials and resources. For instance, if an endangered language has not been
extensively documented, educational content from syntactically similar languages can be
adapted more efficiently, preserving linguistic heritage more effectively. Furthermore, our
approach can be instrumental in computational linguistics, particularly in the develop-
ment of multilingual natural language processing systems. Understanding syntactic simi-
larities between languages can improve the performance of machine translation systems,
especially for low-resource languages. Our results suggest that POS trigrams capture es-
sential syntactic structures, which can be easily integrated into algorithms to enhance
cross-linguistic transfer learning. As another potential application, we mention that know-
ing the language distances across different levels can be useful in language teaching, as it
may help focus on the aspects that differ most between the student’s native language and
the target language.

Furthermore, our analysis has delved into the correlation between linguistic and geo-
graphic distances. We have found that spatially proximate languages tend to exhibit more
similar morphosyntactic characteristics compared to those located farther apart. Our re-
sults suggest a logarithmic relation between these distances. This finding is in fact in good
agreement with results reported in Refs. [54, 55], where different measures of linguis-
tic distances are defined. Due to the limitations of selecting a single point to represent
the coordinates of an entire language, the results obtained can potentially be improved
by considering more accurate methods to assign these locations, such as systematically
selecting the regions where the languages are predominantly spoken, or by considering
regional varieties that take into account the spatial variation of languages.

We emphasize that the methodology detailed in Sect. 2 for analyzing correlations within
discrete sequences is versatile and applicable across numerous disciplines. These tech-
niques hold relevance beyond the realm of linguistics and can be effectively employed in
various fields, including but not limited to statistical physics, biology and data science, es-
pecially for systems that can be modeled as short-memory stochastic processes with few
states.

A limitation of our research is that the UD dataset predominantly covers well docu-
mented languages. Therefore, less studied languages and dialects are underrepresented,
which may limit the generalizability of our findings to the entire spectrum of global lan-
guages, since our results might not fully capture the syntactic diversity present in linguis-
tic minorities. However, the UD library is frequently updated, regularly expanding existing
corpora and incorporating new languages. It would be straightforward to extend our anal-
ysis to include more languages in future works.

Additionally, the use of POS tags, while effective for our analysis, might oversimplify
the complexities of syntactic structures across different languages. POS tagging neglects
many linguistic nuances and syntactic intricacies, which may lead to a loss of detailed in-
formation. This simplification can potentially affect the accuracy of our distance measure-
ments, as some syntactic phenomena unique to specific languages may not be adequately
represented. For example, languages with rich morphological systems or unique syntactic
constructions may have their complexities reduced to basic categories that do not fully re-
flect their syntactic richness. Future work should consider integrating more detailed mor-
phosyntactic annotations, such as dependency and constituency parses, which are already
included in the UD library, to capture a broader range of syntactic features.
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Appendix A: List of languages
We present in Table A.1 a list of the 67 languages included in our study, categorized by
language family, group, and morphological type. The latter is a simplified approximation
that is included here for completeness. An exhaustive morphological analysis of the ex-
plored languages is beyond the scope of the present work.

Table A.1 List of languages included in this work, classified by language family, group and type

Family Group Language Type

Afro-Asiatic Semitic Arabic Isolating-Fusional
Hebrew Fusional
Maltese Fusional

Austro-Asiatic Viet-Muong Vietnamese Isolating
Austronesian Javanese Javanese Agglutinative

Malayo-Sumbawan Indonesian Agglutinative
Basque Basque Agglutinative
Dravidian Tamil Agglutinative
Indo-European Albanian Gheg Fusional

Armenian Armenian Agglutinative
Western Armenian Agglutinative

Baltic Latvian Fusional
Lithuanian Fusional

Celtic Breton Fusional
Irish Fusional
Manx Fusional
Scottish Gaelic Fusional
Welsh Fusional

Germanic Afrikaans Isolating-Fusional
Danish Fusional
Dutch Fusional
English Isolating-Fusional
Faroese Fusional
German Fusional
Icelandic Fusional
Norwegian Fusional
Swedish Fusional

Greek Greek Fusional
Indic Hindi Fusional

Urdu Fusional
Iranian Kurmanji Fusional-Agglutinative

Persian Agglutinative
Romance Catalan Fusional

French Fusional
Galician Fusional
Italian Fusional
Portuguese Fusional
Romanian Fusional
Spanish Fusional
Belarusian Fusional
Bulgarian Isolating-Fusional
Croatian Fusional
Czech Fusional
Polish Fusional
Pomak Fusional

Slavic Russian Fusional
Serbian Fusional
Slovak Fusional
Slovenian Fusional
Ukrianian Fusional
Upper Sorbian Fusional
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Table A.1 (Continued)

Family Group Language Type

Japanese Japanese Agglutinative
Korean Korean Agglutinative
Mongolic Buryat Agglutinative
Sino-Tibetan Cantonese Isolating

Chinese Isolating
Tai-Kadai Thai Isolating
Tungusic Xibe Agglutinative
Turkic Northwestern Kazakh Agglutinative

Southeastern Uyghur Agglutinative
Southwestern Turkish Agglutinative

Uralic Finnic Estonian Agglutinative
Finnish Agglutinative

Mordvin Erzya Agglutinative
Permic Komi Zyrian Agglutinative
Sami North Sami Agglutinative
Ugric Hungarian Agglutinative

Appendix B: Predictability gain and block entropy
The predictability gain of going from uth-order to (u + 1)th-order transition probabilities,
for u ≥ 1, can be defined in terms of a conditional relative entropy [56] as

Gu =
∑

x0,...,xu+1

p(x0, x1, . . . , xu, xu+1) log

(
p(xu+1|x0, . . . , xu)

p(xu+1|x1, . . . , xu)

)
, (B1)

where we adopt the notation that p(x0, . . . , xs) ≡ P(X0 = x0, . . . , Xs = xs), with xi ∈ {zj}L–1
j=0 ,

and similarly for the transition probabilities.
We will use the following general result for the difference between the block entropies

Hr+1 – Hr , demonstrated in the appendix of Ref. [34]:

Hr+1 – Hr = –
∑

x1,...,xr+1

p(x1, . . . , xr+1) log(p(xr+1|x1, . . . , xr)). (B2)

By the properties of the logarithm function, we can write Eq. (B1) as

Gu =
∑

x0,...,xu+1

p(x0, . . . , xu+1) log(p(xu+1|x0, . . . , xu))

–
∑

x0,...,xu+1

p(x0, . . . , xu+1) log(p(xu+1|x1, . . . , xu)). (B3)

Adding 1 to all indices in the first sum in Eq. (B3), which is allowed given that we are
considering homogeneous sequences, and using

∑
x0

p(x0, x1, . . . , xu+1) = p(x1, . . . , xu+1), we

write Eq. (B3) as

Gu =
∑

x1,...,xu+2

p(x1, . . . , xu+2) log(p(xu+2|x1, . . . , xu+1))

–
∑

x1,...,xu+1

p(x1, . . . , xu+1) log(p(xu+1|x1, . . . , xu)). (B4)



De Gregorio et al. EPJ Data Science           (2024) 13:61 Page 20 of 27

Figure C.1 Estimated predictability gain when considering (u + 1)th-order instead of uth-order transition
probabilities in sequences of POS for (a) German, (b) Icelandic, (c) Portuguese and (d) Czech, shown in red. The
mean and standard deviation of the predictability gain estimated on numerically generated sequences of
memory 2, generated from the estimated transition probabilities of each language, are represented in black

Using Eq. (B2) we express Eq. (B4) as

Gu = –(Hu+2 – Hu+1) + (Hu+1 – Hu) = –(Hu+2 – 2Hu+1 + Hu), (B5)

which is exactly the result we wanted to prove. The case u = 0 can be demonstrated simi-
larly, considering that

G0 =
∑

x0,x1

p(x0, x1) log

(
p(x1|x0)

p(x1)

)
. (B6)

Appendix C: Memory effects in POS sequences
In Sect. 2.4, we have shown that POS sequences can be approximated as stochastic pro-
cesses with memory 2 and that this approximation is good. However, this does not neces-
sarily imply that the process has a memory m exactly equal to 2. To see this, we compare
the obtained value of Ĝ2 with the ones calculated under the null hypothesis. From the
original dataset of language L, composed of R tagged sentences, we compute its second-
order transition probabilities by means of Eq. (10). We then generate R sequences, each
of equal length as the original sentences, from which we build the set {n̂}1. We repeat
this procedure K times. By construction, the sets of observations {n̂}1, . . . , {n̂}K , built from
the generated groups of sequences, have the same size as the original set {n̂} of language
L to ensure equal amount of data for comparison. Moreover, these numerical sequences
have memory m = 2 and consequently we expect the values Ĝ2[{n̂}k] to be close to 0, for
k = 1, . . . , K . Therefore, we can estimate the p-value p as

p̂ =
#{k : Ĝ2[{n̂}k] ≥ Ĝ2[{n̂}]}

K
. (C1)
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We apply this method to each of the four languages considered in Sect. 2.4, setting K =
1000. We obtain p̂ < 0.001 for all cases, which leads us to reject the hypothesis that the POS
sequences have memory exactly equal to 2. For comparison, we plot in Fig. C.1 with black
color the curves corresponding to the mean Ḡu and standard deviation su of the estimated
predictability gain for the generated sequences of memory 2, calculated as follows:

Ḡu =
1
K

K∑

k=1

Ĝu[{n̂}k], (C2)

and

su =

√√√√ 1
K – 1

K∑

k=1

(
Ĝu[{n̂}k] – Ḡu

)2
. (C3)

We repeat the analysis with the hypothesis that m = 3 and obtain similar results, indi-
cating that the POS sequences for these languages possess a memory of at least 4. This is
a possible hint of the observed long-range correlations in texts [57]. However, we stress
that for the purposes of our work the m = 2 approximation works rather well.

Appendix D: Distance between texts belonging to a single language group
We consider a single linguistic group. For each language in this group we randomly select
tagged sentences from our database until we reach approximately 104 tokens. We iterate
this procedure a maximum of 20 times, without replacement (for a few languages there is
not enough data to perform this procedure 20 times). Then, for each text portion of each
language inside the given group we calculate its probability distribution of POS trigrams
and compute the pairwise distances among texts with the JS metric. In Fig. D.1 we present
heatmaps corresponding to the distance matrices obtained for Germanic (panel a) and
Slavic (panel b) texts. We can observe that, in general, the distance between texts of the
same language is smaller when compared to texts coming from distinct languages. This
holds even for languages that are considered to be closely related, such as Croatian and
Serbian, and Belarusian, Russian and Ukrainian.

Figure D.1 Heatmap representation of the pairwise Jensen-Shannon distances between portions of text of
(a) Germanic and (b) Slavic languages



De Gregorio et al. EPJ Data Science           (2024) 13:61 Page 22 of 27

Table F.1 Clusters formed with k-medoids algorithm from the Jensen-Shannon distance matrix

Cluster Languages

0 Belarusian, Polish, Russia, Ukrainian, Latvian, Lithuanian
1 Catalan, French, Galician, Italian, Portuguese, Spanish
2 Buryat, Kazakh, Turkish, Uyghur
3 Danish, English, Norwegian, Swedish
4 Hindi, Urdu
5 Estonian, Finnish, North Sami
6 Irish, Scottish Gaelic, Welsh
7 Arabic, Indonesian, Javanese
8 Bulgarian, Czech, Slovak, Slovenian, Upper Sorbian
9 Kurmanji, Persian
10 Armenian, Wester Armenian
11 Cantonese
12 Gheg
13 Japanese
14 Thai
15 Chinese
16 Tamil
17 Manx
18 Xibe
19 Korean
20 Afrikaans, Dutch, German
21 Faroese, Icelandic, Romanian
22 Erzya, Komi Zyrian
23 Hungarian
24 Basque
25 Hebrew, Maltese
26 Croatian, Serbian
27 Vietnamese
28 Breton
29 Pomak
30 Greek

This analysis demonstrates the reliability of our proposed metric to discern texts origi-
nated from the same language, which is generally a desirable result.

Appendix E: Clustermap obtained from the Hellinger distance matrix
Following the same procedure outlined in Sect. 3.1.1 of the main text, a clustermap was
built from the Hellinger (H) distance matrix. The metric in this case is given by

dH(L,L′) =

√√√√√1
2

L3–1∑

j=0

(√
pL(bj) –

√
pL′ (bj)

)2
. (E1)

Similarly to the JS divergence, dH fulfills the requirements of a distance and lies in the [0, 1]

interval.
Figure E.1 shows that the constructed representation resembles the one obtained from

the JS matrix. Not only the distributions of the colors match, but also the ordering of
the rows and columns obtained with the hierarchichal clustering is similar. Only minor
differences can be observed in the lower half of the colormaps but, nevertheless, one can
identify the same cluster formations.
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Figure E.1 Clustermap constructed from the Hellinger distance matrix

Appendix F: Silhouette analysis and clusters obtained with k-medoids
algorithm

In order to determine the optimal number of clusters for the k-medoids analysis from
the JS distance matrix, we compute the silhouette score [44] for various cluster numbers.
The clusterization is then performed using the cluster number that yields the maximum
silhouette score. We show the resulting plot in Fig. F.1. As seen, the maximum occurs for
31 clusters.

The clusters obtained using this method are presented in Table F.1.

Appendix G: Minimum spanning tree with tetragrams
In order to validate the results obtained in Sect. 3.1.2 using trigrams, we perform a similar
analysis using higher order r-grams for the 67 selected languages.

Specifically, in Fig. G.1 we depict the minimum spanning tree obtained using tetragrams,
which can be compared with the tree shown in Fig. 5. For tetragrams, we find that the
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Figure F.1 Silhouette score for various cluster numbers in a k-medoids clustering. The highest score is
achieved with a cluster number of 31

Figure G.1 Minimum spanning tree generated from the Jensen-Shannon distance matrix, obtained from the
probability distribution of POS tetragrams, with node colors representing clusters identified through
k-medoids analysis. The shape of the nodes represents the language typology. Full lines are assigned to links
between languages belonging to the same group; dashed lines for languages of the same family but different
group; finally, dotted lines connect languages from distinct families

optimal number of clusters is 32 (instead of 31 for trigrams). We observe that the obtained
clusters and connections in the tree are very similar in both cases.

One noticeable difference is that in Fig. G.1 there is a connection between Arabic and
Hebrew that was missing in the tree of Fig. 5. This is a nice finding since both languages
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are Semitic, although the 3 languages of this family appear in 3 different clusters. This
and other discrepancies can be attributed to small data samples, which can contain low
values of tokens (of the order of ten thousand for certain languages), whereas the number
of possible tetragrams is 154 = 50625.

Choosing the size of the r-grams requires a compromise between the complexity of syn-
tactic structures considered and the accuracy of the parameters estimation. In Sect. 2.4 we
have provided evidence that the choice of trigrams offers a good solution to this compro-
mise and the analysis performed with tetragrams supports this claim, since there exist no
significant differences with the results based on trigrams.
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