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Abstract
The Ego Network Model (ENM) is a model for the structural organisation of
relationships, rooted in evolutionary anthropology, that is found ubiquitously in social
contexts. It takes the perspective of a single user (Ego) and organises their contacts
(Alters) into a series of (typically 5) concentric circles of decreasing intimacy and
increasing size. Alters are sorted based on their tie strength to the Ego, however, this
is difficult to measure directly. Traditionally, the interaction frequency has been used
as a proxy but this misses the qualitative aspects of connections, such as signs (i.e.
polarity), which have been shown to provide extremely useful information. However,
the sign of an online social relationship is usually an implicit piece of information,
which needs to be estimated by interaction data from Online Social Networks (OSNs),
making sign prediction in OSNs a research challenge in and of itself. This work aims to
bring the ENM into the signed networks domain by investigating the interplay of
signed connections with the ENM. This paper delivers 2 main contributions. Firstly, a
new and data-efficient method of signing relationships between individuals using
sentiment analysis and, secondly, we provide an in-depth look at the properties of
Signed Ego Networks (SENs), using 9 Twitter datasets of various categories of users.
We find that negative connections are generally over-represented in the active part of
the Ego Networks, suggesting that Twitter greatly over-emphasises negative
relationships with respect to “offline” social networks. Further, users who use social
networks for professional reasons have an even greater share of negative
connections. Despite this, we also found weak signs that less negative users tend to
allocate more cognitive effort to individual relationships and thus have smaller ego
networks on average. All in all, even though structurally ENMs are known to be similar
in both offline and online social networks, our results indicate that relationships on
Twitter tend to nurture more negativity than offline contexts.

Keywords: Online Social Networks; Ego Network Model; Signed networks; Signed
Ego Network Model; Twitter

1 Introduction
Online social networks (OSN) can be seen as a social microscope to investigate the prop-
erties of our social interactions in the online world. The increasing global connectivity
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Figure 1 The Ego Network Model, with the names
and expected sizes of each subgroup for social
networks of humans

underscores the significance of understanding social networks and the interactions that
occur within them. Social network analysis has extensively employed graph-based models
to study the structural characteristics of relationships. One such representation, the Ego
Network Model (ENM), is rooted in evolutionary anthropology research on how humans
structure their social networks [1]. The ENM model is centred around a single user, the
Ego, and portrays all their immediate connections, named Alters, based on their relation-
ship strength to the Ego. This results in a series of concentric circles with increasing size
but decreasing intimacy, as illustrated in Fig. 1. The number and sizes of the circles are
generally consistent, with an average of around 5, 15, 50, and 150 Alters [2]. The size ratio
between them is also quite consistent, with a value close to 3 [3]. Note that an ENM only
contains meaningful relationships, i.e. those the Ego spends some time nurturing regu-
larly.

The importance of the ENM is due in large part to its omnipresence in social networks.
Indeed, its structure is prevalent across an extremely diverse range of social communities;
including traditional hunter-gatherer groups, small-scale horticultural societies, ancient
Roman armies and modern-day military units [4]. The ENM is so prevalent that it can
even be observed in many non-human primate species, although with smaller group sizes
[5]. The Social Brain Hypothesis proposed by Dunbar explains this pervasiveness, positing
that primates have a cognitive limit that restricts the size and complexity of social groups
they can maintain. For humans, this limit is approximately 150, also known as Dunbar’s
number. When the limit is exceeded, social groups tend to become unstable and fragment
into smaller, more manageable groups [6]. Although one might assume that the ease of
online communication would require less cognitive effort and therefore allow for larger
social networks to be maintained, the ENM structure remains largely consistent in online
contexts. The only notable difference is the occasional presence of an additional innermost
circle, with an average size of around 1.5 Alters [7]. While this has been postulated for
offline networks as well, quantities of data sufficient enough to confirm its existence in
offline contexts have never been available.

Furthermore, because each individual in a social network can be viewed as an Ego, the
entire network itself can be thought of as a collection of interconnected Ego Networks.
Thus, observing a network from the perspectives of the individual Egos can reveal insights
that are only visible at a microscopic scale, yet have far-reaching consequences across the
entire network. Indeed, the structural properties of the ENM have been shown to influence
a number of social behaviours, such as collaboration and information diffusion [8].

Despite its ability to provide many insights, the ENM does have some notable limita-
tions. One such drawback is how the tie strength between Egos and Alters is measured,
which has traditionally been done by measuring their frequency of interactions. While this
has been shown to be a good proxy measure for the strength of a relationship [9], not all re-
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lationships can be differentiated merely by their strength. For example, an individual with
a supportive coworker and an angry neighbour will have two very different relationships:
even though the interaction frequencies may be very similar, the former relationship will
be far more positive than the latter. One way to include some of the important qualitative
information that is being lost is to use a signed representation of the network, known as a
signed network. Each connection in a signed network has a polarity (+/–) indicating either
a positive or negative link. The former denotes friendship, trust, and similarity, whilst the
latter is associated with hatred and distrust. Positive and negative relationships play dif-
ferent roles in a network and can be leveraged to improve network-related tasks, such as
community detection [10] and opinion dynamics [11]. Negative links are more informa-
tive than positive ones because, among other things, they are usually located along social
divisions in a network, such as between two communities, and they can therefore reveal
important information about the structure of the overall network [12]. Thus, the inclu-
sion of signs may improve our understanding of the ENM and social networks in general.
However, the sign of an OSN relationship is an implicit piece of information, which typi-
cally needs to be estimated by interaction data, making sign prediction in OSNs a research
challenge in and of itself.

1.1 Contributions
In this work, we set out to extend the Ego Network Model with information about the signs
of relationships. To this aim, we propose a novel method, grounded in quantitative results
from psychology [13], of inferring signed relationships in unsigned network data (which
are typically used to build ego networks), allowing an unsigned network to be converted
into a signed one. This method (i) requires only text-based interactions to sign a relation-
ship (hence, it can be applied to any network in which users interact principally via text, i.e.
in the vast majority of popular OSNs), (ii) is designed for the short texts typical of OSNs
interactions, (iii) requires only data about the interactions over the links we want to sign
(hence scales linearly with them). Note that, while signing individual interactions between
users simply boils down to attaching a sentiment to the interaction (typically with a senti-
ment classifier), signing relationships is more nuanced, as it implies deciding on an overall
sentiment that captures the whole relation, and, for this sign to reflect human perception,
we decided to ground our approach in psychology. This methodology is then shown to be
robust to the chosen sentiment classifier for individual interactions and produces results
that are consistent with Structural Balance Theory [14].

The second original contribution is the analysis of Signed Ego Networks (SENs), i.e.
Ego Networks where edges have a polarity. This was done by obtaining unsigned Ego Net-
works, for 9 Twitter datasets, and applying the aforementioned method of generating signs
to them. The unsigned and signed versions of the networks are analysed, including the
distribution of signed links across the various circles of the SEN. The main findings are
that: (i) Twitter users engage in much more negative relationships than expected in the
Active Networks (illustrated in Fig. 1), (ii) specialised users (e.g. journalists) do so to an
even higher extent, (iii) negative relationships are particularly present in the intimate Ego
Network layers of specialised users, and (iv) there is evidence for a potential weak effect
of negativity leading to a slightly higher-than-average number of distinct connections, but
fewer interactions in each relationship. All in all, the results confirm the popular notion
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that higher engagement in online social interactions results in being exposed to increas-
ingly negative relationships and sentiments. They also extend beyond this with the sur-
prising revelation that negative relationships tend to be proportionally more present in
the social circles of the Ego Networks closer to the Ego.

Some preliminary results on the Signed Ego Network Model (SENM) were first pre-
sented in [15]. These were then expanded on in [16], where the generalisability of the
SENM was observed across several cultures and types of communities. The main exten-
sions of this current work are the following. First, the robustness of the method of signing
relationships is tested using 4 different sentiment analysis models for labelling individual
interactions (Sect. 5.1). The results show that the proportions of positive and negative re-
lationships were similar for all 4 of the models. Furthermore, the models agreed on the
signs of around 70-80% of the relationships and when the models did disagree, the dis-
agreements tended to be very close to the threshold used for signing the relationships (i.e.
when the models disagreed, they tended to only disagree slightly). Next, the method of
signing relationships is further validated via triad analysis (Sect. 5.2). Specifically, repeated
analysis of the signed triads produced by each of the 4 models shows that the distribution
of signs produced by this method fitted expectations of known psychological effects in so-
cial networks (i.e. Structural Balance Theory). These distributions are also extremely and
significantly different from what would be obtained by chance. Finally, we have included
an analysis of the impact of negative social relationships on the cognitive effort of the Ego
(Sect. 5.7).

2 Background
2.1 Ego Network Model
As previously mentioned, the ENM is centred around an individual Ego, who is sur-
rounded by their Alters, organised in a series of concentric circles. The ENM stems from
the anthropological Social Brain Hypothesis [5], which posits that the social capabilities
of primates are constrained by the sizes of their neocortices. Based on the size of our own
neocortex, the maximum social group size that can be maintained by a human is estimated
to be around 150 (the famous Dunbar’s number). Note that these 150 contacts with whom
a person engages do not include acquaintances, rather they are exclusively relationships
that are regularly nurtured. Traditionally, this has been defined as a minimum interaction
frequency of at least once a year; for example, exchanging annual holiday wishes. These
relationships constitute the so-called active part of the Ego Network.

Of course, the frequency and importance of the interactions generated by each rela-
tionship varies significantly from Alter to Alter. Indeed, by arranging the Alters based on
their tie strength to the Ego, the aforementioned concentric structure will typically emerge
[2, 3], with each subsequent circle containing the Alters of the previous ones (thus, the size
of the active part of the Ego Network is equivalent to its outermost circle). Both the num-
ber of circles (approximately 4 or 5) and their sizes – 1.5, 5, 15, 50, 150 – are fairly regular,
in offline and online social networks [7].

As the tie strength between Ego and Alter directly determines which circle the Alters
are placed into, this is obviously a core concept of the ENM. Tie strength was defined by
Granovetter as the equally weighted combination of 4 elements in a relationship: the time
spent maintaining it, its emotional intensity, its level of intimacy and the reciprocal ser-
vices it generates [17]. This definition can be a crucial consideration for understanding
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how various users interact socially. For example, individuals who engage in OSNs for pro-
fessional purposes may devote more time to social platforms, thereby generating more
reciprocal services and investing greater amounts of time in maintaining relationships.
Indeed, it has previously been suggested that journalists are likely to be more cognitively
engaged with Twitter than other types of users [18]. While the time spent maintaining
a relationship is just one of the tie strength dimensions described by Granovetter, it has
largely been the sole focus of the related literature on Ego Networks due to its widespread
availability and ease of computation (using the number of interactions as its proxy). There-
fore, the objective of this work is to advance the state of the art by exploring the hitherto
underrepresented qualitative aspects of tie strength, in addition to the traditional metric
of the time spent maintaining them.

2.2 Signed networks
In contrast to unsigned networks, whose connections are either binary (i.e. a connection
between two users either exists or doesn’t) or weighted connections (usually based on tie
strength), signed networks feature connections that can be further distinguished as ei-
ther positive or negative (sometimes referred to as the polarity of edges [19]). Positive
links indicate positive relationships and are used to infer trust and homogeneity [20]. On
the other hand, negative links indicate negative relationships, distrust, and dissimilarities.
Therefore, signed networks contain additional information that can be leveraged to en-
hance the performance of many tasks, such as community detection [21] and information
diffusion [22].

Previous research on networks with publicly available signed connections has revealed
that negative connections are significantly less prevalent than positive connections, ac-
counting for approximately 15.0% to 22.6% of the total connections within a network [14].
In these networks, the users’ awareness of link polarity may intensify social pressure and
effects such as social capital [23], whereby relationships between individuals who have
many relationships in common are more likely to be positive due to social pressure from
the surrounding community to get along. Conversely, even if an unsigned network con-
tains implicit positive and negative relationships, the lack of explicitly visible negative links
results in lower social pressure. Therefore, we can anticipate that networks without ex-
plicit signed relationships will have a higher proportion of negative relations than those
with explicitly signed ones. We will investigate this hypothesis further in Sect. 5.

Despite the added advantages of signed networks, they are rarely the focus of research
because the vast majority of popular social platforms do not allow users to create explic-
itly negative links. This makes it very difficult to obtain signed network data in sufficient
enough quantities for in-depth analysis. Nevertheless, some exceptions do exist, most no-
tably Slashdot and Epinions, which have provided two of the most widely used benchmark
datasets for signed networks [19]. Unfortunately, these datasets do not provide informa-
tion on interaction frequencies and therefore cannot be used for Ego Network analysis.
ENM studies typically use Twitter data (due to their public nature and easy access via
the Twitter API) but Twitter does not provide explicit relationship signs between users.
However, just as with real-world relationships, relationships that take place online usually
contain implicit information about their polarity, which can potentially be gleaned from
the interactions they produce [20].

Several approaches have been developed to predict the signs of unsigned networks.
However, most of these focus on the structural aspects of the surrounding network in
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order to deduce the sign of a connection (e.g. by leveraging topological notions like the
clustering coefficient [24]), which is an indirect way of extracting signs, without looking
directly at how people communicate with each other. Classification algorithms, trained on
preexisting datasets with known signs, have also been used to compute the signs of novel
networks [25]. All these techniques have taken a top-down perspective, viewing the net-
work’s features as a whole and inferring signs based on the structure of the connections.
However, if the inverse approach is taken, viewing the problem from the bottom up, then
it is possible to take into consideration the more tacit aspects of connections that have
largely gone uninvestigated, as we discuss below.

The basic building blocks that form a relationship are the interactions and exchanges
between users and their corresponding sentiments. Sentiment analysis for individual ex-
changes is extremely well established [26]. This allows signs to be obtained for these sin-
gular interactions with an extremely high degree of confidence. However, methods for
extending the signs of these bottom-level interactions to whole series of interactions, or
relationships, have not received anywhere near the same level of scientific interest. One
study [27] that has previously examined this problem trained a Support Vector Machine
(SVM) on a manually-annotated dataset of relationships in discussion forums. The SVM
took in 4 user features and 3 interaction features and achieved an accuracy of 0.835 on a
subset of annotated data. Unfortunately, this approach cannot be directly replicated for
Twitter interactions due to their very short and unstructured nature compared to discus-
sion forums. In addition, there is a lack of publicly available ground truth data for Twitter
relationships. In response to these problems, we propose an alternative approach that is
specifically designed for dealing with short texts and can leverage models that have been
established within the previous literature in order to obtain the sentiment of individual
interaction.

2.3 Structural balance theory
Signed networks are known to conform to certain properties and configurations. A theory
that lays out such a set of informative expectations is Structural Balance Theory [28, 29];
a psychological theory, which postulates that certain configurations of signed triads (i.e.
groups of three individuals who are all interconnected by signed edges) should be more
common than others when observed across a social network.1 This is because connec-
tions are not independent but rather influenced by the other connections in the surround-
ing network. With regards to signed triads, those with odd numbers of positive connec-
tions, i.e. one and three, are considered plausible, or “balanced” (see T3 and T1 in Fig. 2),

Figure 2 All four possible signed triads, as per Structural Balance Theory. The subscript number following the
“T” corresponds to the number of positive connections for that triad

1The standard nomenclature for these triads is a capital letter “T” followed by the number of positive connections in the
triad in subscript: T3, T2, T1 and T0.
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while those with even numbers of positive connections, i.e. two or zero, are considered
implausible, or “unbalanced” (see T2 and T0 in Fig. 2). This is because these latter con-
figurations correspond to socially problematic situations: the first, where one individual
has two friends who are enemies, and the second, where all three individuals are hostile to
one another and none of them decide to pair up against the third. However, a more lenient
variant of this theory, commonly known as Weak Structural Balance Theory, argues that
it should not be unexpected to have a situation in which three enemies refuse to team up
(T0) or for two friends to have a common enemy (T1). Therefore, one should only expect
triads with exactly two positive connections (T2) to be underrepresented and only triads
with three positive connections (T3) to be overrepresented, with no expectations for T1

or T0 [30].
Given the expectations of Structural Balance Theory, it is possible to validate the pre-

dicted signs of a network by analysing the resulting triads [27] and comparing them to the
expected numbers of each triad if the signs were distributed at random. This is indeed the
approach we use to validate our method for signing relationships. Previously, it has been
found that the expectations of the weaker version of Structural Balance Theory tend to fit
online datasets better than those of the original theory [14], so this is the version we use in
our analysis. While, ideally, the results would also have been validated using a manually-
annotated ground truth or a known model, as discussed at the end of the previous section,
validation via Structural Balance Theory has been shown to perform more than adequately
in the literature [27]. The exact methodology used for this is given in Sect. 3.3.

3 Methodology
This section outlines the methodology for obtaining Signed Ego Networks, assuming that
the input data is taken from Twitter (Twitter being the de-facto standard for data in the
relevant literature [7, 18, 31, 32]). Our methodology comprises three steps: first, we attach
a sign to each relationship based on the signs of individual interactions (Sects. 3.1 and
3.2); then, we validate the obtained relationship signs against Structural Balance Theory
(Sect. 3.3); finally, we enrich the standard Ego Network Model by transposing the sign
information onto it (Sect. 3.4). Afterwards, in Sect. 3.5, we discuss how to measure the
burden of negative relationships on overall social cognitive capacity.

In order to construct Ego Networks, it is necessary to acquire Tweets that involve di-
rect communications between Twitter users. These communications occur when users
explicitly reply to another’s post (Replies), mention another user using the “@” symbol
(Mentions) or share another user’s Tweet (Retweets). This latter case is sometimes accom-
panied by an additional piece of text made by the sharing user (Quote Retweets). Each of
these directed Tweets corresponds to an interaction between an Ego and an Alter. While
some of these interactions may involve the wider network beyond the specific Alter, they
nonetheless reflect a cognitive involvement of the Ego towards the Alter, which is the most
critical characteristic for mapping an interaction to a specific social relationship [5].

3.1 Signing relationships
As anticipated in the introduction, in this work we take a bottom-up approach to sign ex-
traction, inferring signs from the sentiment of individual interactions. Indeed, the effects
of positive and negative exchanges have been studied in a variety of contexts. One such
observation that is particularly relevant here is that a ratio of around 1 negative interaction
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for every 5 positive interactions, or roughly 17%, appears to be an important tipping point
for numerous different types of relationships. Once this threshold is crossed, marriages
become significantly less likely to last [13] and, for parent-child relationships, children are
more likely to underperform at school and have developmental problems [33].

This ratio, which we will refer to as the golden interaction threshold, is leveraged for our
proposed method for signing relationships, which culminates in a binary classification
(positive or negative) for each Ego-Alter pair. More precisely, our method consists of 2
main steps:

Step 1: label single interactions– First, sentiment analysis is carried out to obtain a pos-
itive, neutral or negative label for each text-based communication Tweet made by an Ego
towards one of their Alters.2 The models used for the sentiment analysis of single interac-
tions are discussed in Sect. 3.2.

The sentiment analysis was done for Replies, Mentions and Quote Retweets. Regular
Retweets are instead always classified as neutral because they were not originally written
by the Ego and, therefore, do not reflect the same level of cognitive effort. Returning to
Granovetter’s definition, these regular Retweets can be regarded instead as a reciprocal
service generated by a relationship because they correspond to an Ego’s desire to share
the content of an Alter. In addition, automatically assigning a neutral sentiment to regular
Retweets reduces their relative impact on the overall sign of a relationship without com-
pletely ignoring it. This is also consistent with the lower relative cognitive and temporal
costs required for clicking the Retweet button compared to composing a Quote Retweet,
Reply or Mention. Neutral interactions are treated the same as positive interactions at the
moment of signing the relationships. This is because the time spent on a relationship is
directly correlated to its strength, as per Granovetter’s definition. Therefore, any active ef-
fort made by an individual to communicate with another should, intuitively, be considered
positively unless there is reason to think otherwise.

Step 2: label relationships– Next, a sign is computed for each relationship based on the
ratio of negative interactions produced by the relationship. Specifically, by applying the
golden interaction ratio [13] as a threshold, we determine relationships exhibiting greater
than 17% negative interactions as negative, otherwise, the relationship is classified as pos-
itive. According to the psychological literature, the former scenario would indicate an un-
stable relationship, while the latter corresponds to a stable one.

The use of a threshold for determining the relationship signs in the described manner
may be inappropriate for relationships that have very few interactions; namely, fewer than
6, given the 1:5 interaction ratio. This point is addressed in Sect. 5.5, where we observe
the numbers of interactions at each level of the ENM.

3.2 Choice of sentiment classifier for individual interactions
To check how susceptible the relationship signs are to the choice of model used to label
the individual interactions, 4 sentiment analysis models were selected to be compared.
Recently, there has been a strong shift towards the use of transformer-based methods
for Natural Language Processing (NLP). This is largely due to transformers’ robustness
and improved ability to process the sequential aspects of language. Reflecting this shift

2Thus, the labels are directional, meaning that if two users in a given dataset are both Egos and have each other as Alters,
the signs of their relationship are not guaranteed to be the same in both directions.
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in focus, and in order to include a variety of high-performing and diverse models, rep-
resentative of the various approaches proposed in the literature, the models chosen for
this study consist of a more traditional, lexicon- and rule-based model and 3 transformer-
based models. Indeed, models from these two approaches (VADER and BERT) have previ-
ously been compared using Twitter data and were found to have similar F1 performances
(0.88 and 0.92 respectively) [34].

All the models were used to obtain relationship signs for the largest of the datasets used
in this paper (that being the Snowball dataset, see Sect. 4). The numbers of each label
predicted by the 4 models, as well as how often they agreed with each other can be seen
in Sect. 5.1.

3.2.1 VADER
The first model, VADER (Valence Aware Dictionary and sEntiment Reasoner), is a well-
established sentiment analysis tool developed specifically for use with social media data
[35]. VADER provides a compound sentiment score between –1 and 1 for a given text. This
score can be converted into a positive label if it is above 0.05, negative if it is below –0.05
or neutral if it is between these values [35]. VADER was compared to 7 state-of-practice
alternatives, as well as individual human annotators, using a test set of 4200 Tweets. It
obtained an F1 score of 0.99, outperforming all other models and humans [35].

3.2.2 BERTweet
The first BERT-based model used in this paper is BERTweet [36], a version of BERT [37]
that has been purposefully optimised for Twitter data. Specifically, it was fine-tuned for
the task of sentiment classification using a corpus of 850 million English Tweets collected
between January 2012 and March 2020. BERTweet was tested using the SemEval 2017
(Task 4) corpus [38], a common benchmark dataset for sentiment classification, which
contains around 50,000 English Tweets; BERTweet achieved an F1 score of 0.73 [36].

3.2.3 XLM-T
The next model is XLM-T [39], a fine-tuned version of XLM-RoBERTa [40]. This latter
model is a general NLP model that was trained on 2.5TB of CommonCrawl data, contain-
ing 100 languages, which had been filtered following pre-established guidelines based on
perplexity [41]. The former was then further trained specifically for sentiment classifica-
tion using 198 million Tweets from over 60 languages. XLM-T’s performance varies from
language to language, but attained a mean F1 score of 0.69 when tested across monolin-
gual datasets for 8 languages (Arabic, English, French, German, Hindi, Italian, Portuguese
and Spanish). The F1 scores for 7 of these languages were between 0.69 and 0.78, how-
ever, Hindi only reached 0.56, highlighting the model’s difficulty when dealing with certain
languages. The English F1 score, 0.71, was obtained using a subset of 3033 Tweets from
the SemEval 2017 dataset, thus, this model’s performance seems to be similar to that of
BERTweet.

3.2.4 BERT-C
The final model is a downstream version of BERTweet, also fine-tuned for sentiment clas-
sification, this time on a classified dataset. This model was released by HuggingFace [42]
and it is referred to here as the BERT Classified (BERT-C) model. Although we have no
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prior metrics for estimating the performance of this model, it is assumed that it will have
a performance comparable to that of the original BERTweet model.

3.3 Triad analysis
As previously mentioned (in Sect. 2.3), signed connections in a social network are known
to follow certain patterns, predicted by Structural Balance Theory. Thus, in this work,
we leverage these expected patterns to validate the relationship signs obtained with our
method. In order to form the triads, an interconnected network of users is required.

This is different from the standard data used for computing Ego Networks, where only
the interactions between the Ego and the Alters are of interest. For triad analysis, we also
need Alter-Alter interactions. The Snowball dataset described in Sect. 4 satisfies this re-
quirement. Thus, each edge of the graph is assigned a sign with the methodology described
in Sect. 3.1. The final step entails counting the triad types in the resulting signed graph.
This makes it possible to obtain an idea of how under- or overrepresented each triad is
and, thus, whether or not the predictions match the expectations of Structural Balance
Theory.

In order to rule out that the same sign distribution could have been produced at ran-
dom from the same background distribution of positive and negatives, we compare the
triad counts in the signed graph above with those obtained after shuffling the signs [14].
For statistical reliability, the random shuffling was repeated 10 times and the final results
use the mean values. The further away the quantities observed in the real signed graph
are from the random ones, the more “surprise” there is and the lower the likelihood of
the predictions occurring due to random chance. Here, surprise is defined as the number
of standard deviations by which the observed number of Triad i differs from that of the
randomly shuffled network with the same proportion of positive and negative signs.

The precise formula (taken from [14]) used for calculating the level of surprise s(Ti) for
the observed number of Triad i is given in Equation (1).

s(Ti) =
Ti – E[Ti]√

�p0(Ti)(1 – p0(Ti))
(1)

Here, � is the total number of triads in the dataset, p0(Ti) is the fraction of Ti triads to
be expected in the network given a random distribution of signs, and E[Ti] is the ex-
pected number of triads Ti in the randomly shuffled model. s(Ti) effectively measures
the number of standard deviations by which the actual quantity of Ti triads differs from
the expected number under the randomly shuffled model. The denominator in Equation
(1) corresponds to the standard deviation of a binomial distribution where the success
probability is p0(Ti) and the number of trials are �.

3.4 Computation of Signed Ego Networks
The computation of the Ego Networks is achieved by first computing the frequency of
interaction between each Ego-Alter pair and then clustering the Alters based on these
frequencies. This method is well-established and has previously been done using a vari-
ety of different clustering algorithms; including k-means [43], DBSCAN [44] and Mean-
Shift [45]. MeanShift is used for this paper as it is one of the most commonly used algo-
rithms and it also automatically finds the optimum number of clusters (corresponding to
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the number of circles in the Ego Network, into which the Alters are organised). The signs
of the Ego Network relationships are computed separately, in the manner previously de-
scribed. These signs are then matched to each Ego-Alter relationship in the Ego Networks,
resulting in Signed Ego Networks.

3.5 Negativity metrics
Given the obvious differences in the effects that positive and negative interactions can have
on a relationship, an additional investigation was conducted to examine whether interac-
tions and relationships of differing sentiments exert different amounts of cognitive effort.
Given that negative information is generally harder and more time-consuming for humans
to process [46], one would expect negative relationships to be more cognitively demand-
ing than positive ones. Therefore, the hypothesis we tested is whether greater numbers of
negative relationships are associated with smaller active Ego Networks. For this analysis,
the mean active Ego Network sizes of users with an optimum number of circles equal to
5 were compared. Note that it is standard practice in ENM research [32, 47, 48] to focus
analyses on nodes with 5 circles. This choice is justified by its frequent occurrence as the
optimum number of circles, ensuring a robust sample size for statistical reliability, as seen
in related studies. This was also done for this paper because the analysis of the optimal
number of layers across the users in the datasets (see Fig. 8 in Sect. 5.5) shows that the
5-circle case is the most common. The users’ levels of negativity were measured using 3
different metrics. Before introducing their formal definitions, let us denote with Ai the
set of Alters in the active Ego network of Ego i. Considering the signs of the relationships
with the Alters, we can also split Ai into A+

i and A–
i , for Alters whose relationship with the

Ego i is positive and negative, respectively. Further, we denote with n+
ij and n–

ij the number
of positive and negative interactions between Ego i and Alter j. We denote their sum as
nij. Leveraging this notation, the first negativity metric l1 corresponds to the proportion of
negative relationships, i.e. the number of negative relationships that each Ego had, divided
by their total number of relationships:

l1(i) =
|A–

i |
|Ai| . (2)

The second negativity metric measures the proportion of negative interactions, even if
they belong to positive relationships, i.e. the number of negative interactions for each Ego
divided by their total number of interactions:

l2(i) =
∑

j∈Ai
n–

i,j∑
j∈Ai

ni,j
. (3)

Finally, the third negativity metric follows the proportion of interactions that belong to
negative relationships, even if the interaction itself is positive, i.e. the number of each Ego’s
interactions that correspond to a negative relationship divided by their total number of
interactions:

l3(i) =

∑
j∈A–

i
ni,j

∑
j∈Ai

ni,j
. (4)
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When compared against the Ego Network size, the first of these metrics directly investi-
gates the cognitive effects of maintaining negative relationships regardless of how often
we interact with said negative contacts. The latter two metrics take a more fine-grained
look at the role of interactions. Indeed, the second metric gauges whether negative inter-
actions, rather than relationships, have a different impact on cognitive effort, even if the
negative interaction is with someone we have a positive relationship with. The third metric
checks whether interacting with negative relationships elicits a different level of cognitive
effort, even if some of the interactions are positive.

The values of the metrics are defined between 0 and 1 (inclusive) and the Egos in each
dataset were grouped into bins based on their negativity values for each of the 3 negativity
metrics. This ensures that all the bins of a given dataset contain similar numbers of Egos,
although it does mean that the bin boundaries change between dataset and metric. The
Egos’ negativities were then compared to the sizes of their Ego Networks (the results are
discussed in Sect. 5.7).

4 Datasets
All of the data used in this paper were collected from Twitter using the official Twitter
Developer API. Twitter has long been a reliable source of Ego Network data due to its vast
and active userbase as well as providing mostly public data. At the time of collection, the
standard Twitter API allowed the most recent 3200 public Tweets created by a given user
to be collected. These Tweets are referred to collectively as the user’s Timeline. Although
this may not correspond to all the Tweets a user has created, this has been shown to be a
significant quantity of information to generate meaningful Ego Networks (e.g. [7, 31, 49]).

In total, 9 datasets were used. These were collected from previous works and represent a
mixture of specialised users, who use Twitter mainly for professional reasons, and generic
users, who use the platform primarily for social reasons. The distinction between these
two types of users is important as they have been observed to exhibit differing behaviours
in certain online contexts [18]. Information describing these datasets in terms of the num-
bers of Egos, Alters, relationships and interactions they contain can be seen in Table 1 and
Table 2, the former containing all collected users and the latter containing only the users
that remained after the preprocessing steps detailed in Sect. 4.3.

4.1 Specialised users
Journalists The first set of specialised users contains data from journalists. This set con-
sists of 3 datasets that were originally collected during a previous study, which observed

Table 1 Number of Egos, Alters, relationships and interactions in the full Ego Networks, before
removing unengaged users (as described in Sect. 4.3)

Dataset Egos Alters Relationships Interactions

American Journalists 1714 505,023 1,479,764 4,677,736
Australian Journalists 957 185,245 709,764 2,466,111
British Journalists 512 209,402 469,863 1,397,996
NYT Journalists 678 173,620 521,917 1,493,199
Science Writers 497 182,240 463,624 1,350,799
British MPs 584 157,053 343,366 1,277,010

Monday Motivation 6946 1,151,899 2,291,692 9,449,775
UK Users 3512 12,088,975 2,507,634 9,931,908
Snowball 12,200 4,065,930 9,636,070 77,088,560



Tacchi et al. EPJ Data Science           (2024) 13:55 Page 13 of 47

Table 2 Number of Egos, Alters, relationships and interactions in the active networks of each
dataset, after removing unengaged users (as described in Sect. 4.3)

Dataset Egos Alters Relationships Interactions

American Journalists 1037 68,792 143,390 1,639,623
Australian Journalists 520 26,561 75,455 937,764
British Journalists 281 24,614 41,524 434,477
NYT Journalists 558 23,327 59,922 561,563
Science Writers 241 18,531 35,185 381,340
British MPs 440 27,538 76,857 323,765

Monday Motivation 1461 78,906 158,374 894,648
UK Users 921 84,993 111,426 1,474,882
Snowball 4049 366,168 574,585 8,593,290

the Ego Networks of journalists from 17 different countries across the globe [18]. Unfor-
tunately, many of these datasets contained, either entirely or in large part, non-English
Tweets. The sentiment analysis of non-English tweets would introduce an additional level
of complexity (since the vast majority of tools are trained and optimised for the English
language) without contributing to the scope of the paper. Therefore, only data from an-
glophone countries were included in the present study; specifically: the United States of
America, Australia and the United Kingdom. The American and Australian datasets were
collected in May 2018 and the British dataset was collected in January 2018, using existing
lists of Twitter journalists (validated in [47]).

In addition to these, another set of journalist data was taken from a different study [50].
This dataset was collected from a list of New York Times journalists, created by the New
York Times itself. All the users from this list were downloaded in February 2018. This
dataset will be referred to as NYT Journalists.

Science Writers The next dataset of specialised users contains science writers. Again,
these are users who use Twitter for professional means, albeit to a potentially different
extent compared to journalists. This dataset was collected using a curated list of science
writers, created by a writer at Scientific American, Jennifer Frazer. Its Timelines were gath-
ered in June 2018, as part of a previous study [50].

British Members of Parliament (MPs) The final specialised dataset was collected during
the preliminary investigation of SENMs [15]. This one includes the Timelines of members
of the British Parliament, taken from a publicly available list provided by UKinbound [51].
These Timelines were collected in March 2022. At the time of collection of this dataset,
Twitter allowed academics to retrieve full user timelines (i.e. not just the first 3200 Tweets),
however, for the sake of comparison with previous work, we limited our analysis to include
only the first 3200 Tweets for each user.

4.2 Generic users
Monday Motivation The first generic dataset consisted of users who tweeted in English
using the hashtag #MondayMotivation on 16th January 2020. The Timelines of these users
were then collected in January 2020, during a previous study [50].

UK Users The second generic dataset came from a random sample of all users who
tweeted in English from the United Kingdom on February 11th 2020. These users’ Time-
lines were collected in February 2020, as part of a previous study [50].
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Snowball The final dataset, taken from a cross-cultural analysis of SENMs [16] (in which
it was referred to as Baseline) consists of a collection of interconnected Ego Networks, col-
lected using a snowball sampling methodology. Specifically, an initial set of 31 intercon-
nected seed users were selected, pseudorandomly to ensure a degree of interconnectivity
between the seeds, from another preexisting dataset, which itself was collected using a
snowball sampling starting from Barack Obama [52]. The timelines of these users were
then collected, followed by those of their Alters and then of their Alters’ Alters. This means
that Egos have common Alters and can be themselves Alters for other Egos, which is an
important distinction as it is a requirement for carrying out Structural Balance analysis
(see Sect. 3.3). The Timelines for the Snowball dataset were collected between April and
May 2022. As with the British MPs dataset, the full timelines of each user were accessible
at the time of collection, however, they were limited to 3200 Tweets per user during our
analyses to ensure comparability with the other datasets.

4.3 Preprocessing
The first step of preprocessing was required to remove any undesired types of users from
the data, namely by filtering out any user accounts that are not owned by individual hu-
mans. This is an important consideration as, for example, bots and other types of auto-
mated accounts will not have any cognitive constraints. As the specialised user datasets
were gathered from verified lists of Twitter users, this step was only necessary for the
generic datasets: Monday Motivation, UK Users and Snowball. A Support Vector Ma-
chine (SVM) [53] was trained on a set of 500 Twitter users that were manually classified
as either “people” or “other”. This classifier and the training set are established in ENM
research [52] and an accuracy of 81.3% was achieved using k-fold cross-validation (with
k = 5). Any user accounts that were labelled as “other” by the SVM were removed by the
original authors of each dataset.

Next, before conducting any analyses on the ENMs, it was necessary to filter out inactive
and irregular users for all the datasets. This is because such users are unlikely to be engaged
enough with Twitter to have fully developed Ego Networks on the platform. For this, Egos
were removed if their timeline consisted of fewer than 2000 Tweets total, spanned a period
of fewer than 6 months (from the first to the last Tweet in their Timeline) or if they tweeted
less than once every 3 days for more than 50% of the months that they were active. The
main rationale behind these choices is to keep only Twitter users that are active and engage
regularly with Twitter. These filtration parameters are in line with those of previous work
on Ego Networks [18, 49], to which we refer for further details.

5 Results
In this section, we report our experimental findings. First, we conduct 2 tests: to inves-
tigate the impact of the choice of sentiment analysis model on the interactions and rela-
tionships labels (Sect. 5.1) and to support the validity of said labels (Sect. 5.2). Next, we
investigate the properties of the Signed Ego Networks of the 9 selected datasets extracted
according to the methodology discussed in Sect. 3.4. Recalling from Sect. 2.1 that an Ego
Network is composed of an active and inactive part, we study how negative relationships
are distributed in the full vs active network in Sect. 5.3. Then, in Sect. 5.4, we discuss the
differences between specialised and generic users and, in Sect. 5.5, analyse how positive
and negative relationships are distributed across the Ego Network social circles. Finally,
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in Sect. 5.7 we investigate the effects of negativity on cognitive effort by observing the
correlations between users’ Ego Network sizes and their level of negativity, using the 3
negativity metrics defined in Sect. 3.5.

5.1 Sensitivity of signing method to sentiment classifier
In Sect. 3.1, we have introduced our method for signing social relationships from un-
signed social network data. It comprises two steps: labelling of individual interactions
(using a state-of-the-art sentiment classifier) and labelling of relationships applying the
psychology-grounded golden interaction ratio. Here, we investigate the sensitivity of the
proposed relationship signing method to the choice of sentiment classifier, selected among
the ones discussed in Sect. 3.2. The Snowball dataset was chosen as the focus of this com-
parison as it is the largest dataset in this paper; it is also the only dataset that can be used
for the Triad Analysis in the next section.

We first compare the sentiment classifiers on the task of labelling single interactions.
For the interaction labels (Fig. 3), the models show a fair degree of variability, with around
30 to 45% for positive, 35 to 50% for neutral and 20 to 30% for negative. However, when
looking at the relationship labels (Fig. 4), there is a very tight percentage range for 3 of the
models (VADER, BERTweet and BERT-C): between 60.71% and 63.53% positive (39.29%
and 36.47% negative). By contrast, XLM-T, while still not far from the others,3 leans to-
wards almost equal numbers of positive and negative relationships (52.48% positive to
47.52% negative).

Overall, these observations suggest that even though the models may have significant
variations in their predicted labels for interactions, these differences shrink when it comes
to labelling relationships. As we verify at the end of this section, given the use of a threshold
for signing relationships, this finding is due to the models disagreeing on interactions in
relationships that are either very positive or very negative (i.e. where the signs of a few

Figure 3 Percentages of positive, neutral and negative interaction labels estimated by each model (95%
confidence intervals)

3Note that the difference between XLM-T and the other models could be partly due to XLM-T being a multilingual model.
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Figure 4 Percentages of positive and negative relationship labels estimated by each model (95% confidence
intervals)

Table 3 The proportions of interactions that each pair of sentiment analysis models agree upon

VADER BERTweet XLM-T BERT-C

VADER - 0.64 0.60 0.56
BERTweet 0.64 - 0.73 0.60
XLM-T 0.60 0.73 - 0.64
BERT-C 0.56 0.60 0.64 -

interactions could change without changing the sign of the relationship). Thus, the golden
interaction threshold approach of signing relationships appears to achieve very similar
results with three of the models used for signing the individual interactions and reasonably
close results for the fourth. Effectively, this robustness is due to the threshold-based nature
of the relationship signing method, which can tolerate a certain degree of disagreement.

Note, as an additional remark, that the percentages in Fig. 4 are more negative than
the aforementioned observations of previous research (between 15.0% and 22.6% nega-
tive [14]). However, as mentioned in Sect. 2.2, those results were observed in networks
with publicly visible signed links, meaning that the number of negative links could have
been suppressed due to the effects of Social Capital [23]. Thus, it is expected that datasets
without explicit signs that are disclosed to the users (as is the case for all datasets used in
this paper) would be more negative than these previous findings.

Next, the level of agreement between each pair of the models was calculated using the
proportion of predicted labels that matched exactly: i.e. the likelihood of the models agree-
ing on a randomly selected interaction or relationship. This was done to verify that the
models are not just displaying similar amounts of negative relationships but are actually
agreeing on the signs of specific interactions and relationships. A matrix displaying these
proportions for both the individual interactions labels and the relationships labels can be
seen in Table 3 and Table 4, respectively. For the relationships, only those with 6 or more
interactions are included as this is the minimum length required for the relationship signs
to be considered reliable. This is due to the 1:5 golden interaction ratio used for signing
the relationships (see Sect. 3.1). Indeed, for interactions, the models display somewhat
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Table 4 The proportions of relationships that each pair of sentiment analysis models agree upon.
Only relationships with at least 6 interactions are included

VADER BERTweet XLM-T BERT-C

VADER - 0.79 0.76 0.66
BERTweet 0.79 - 0.84 0.69
XLM-T 0.76 0.84 - 0.76
BERT-C 0.66 0.69 0.76 -

high levels of agreement; ranging from 0.56 to 0.73. What’s more, when looking at rela-
tionships, the models tend to agree much more; between 0.66 and 0.84. While the models’
strong agreements do not explicitly give an indication of their performance for the task
of signing relationships, it does further illustrate that the relationship labels obtained are
reasonably independent of models. Thus, the method of signing relationships proposed
in this paper can work irrespective of the choice of model used to analyse the sentiments
of individual interactions.

In order to gain a better understanding of the degree to which the models disagree with
each other, we then investigated the percentage of negative interactions in the relation-
ships that pairs of models disagreed on (i.e. the percentages that are used in combination
with the golden interaction ratio to determine a relationship’s sign). Again, only relation-
ships with at least 6 interactions are included. By plotting these negativity percentages for
pairs of models, it is possible to visualise where the models are disagreeing, as in the ex-
ample Fig. 5.4 However, given the fractional nature of these values, there are many points
that overlap with one another. To combat this, and to gain a more precise, numerical per-
spective, we then look at where the quantiles of these disagreements are. Specifically, for
each relationship marked as positive when using model X (meaning that the correspond-
ing fraction of negative interactions is below 0.17) and as negative when using model Y
(meaning that the fraction γY of negative interactions is above 0.17), we compute the dis-
tribution of γY . If our hypothesis is correct, we expect γY to be concentrated in the area
close to 0.17. The exact values of the quantiles corresponding to the distribution of dis-
agreements in the bottom-right area5 of the example Fig. 5 are displayed in Table 5, along
with those of the other combinations of models. The associated figures can be found in
Appendix A. These numbers show that the vast majority of disagreements are indeed hap-
pening in the area immediately above the 0.17 golden interaction ratio. This suggests that,
even when the models do disagree, they usually don’t disagree by very much. Even the
model that disagrees the most strongly with the others, BERT-C, has its third quantiles,
i.e. 75% of its disagreements, under and around 40, which corresponds to approximately
only 30% of the disagreement range (17,100).

5.2 Validation via triad analysis
The results in the previous section have shown that the signing method is sufficiently ro-
bust to the choice of classifier but they do not tell us anything about the soundness of

4Observing the graphs, one may take note of the horizontal lines at the 0.0 mark on the y-axis. This corresponds to the case
in which one model considers the relationship to be entirely positive but the other model still marks it as negative. While
these strong disagreements are somewhat surprising, the majority of these occur before the 33% mark along the x-axes, i.e.
close to the threshold, so most of them still correspond to relatively slight disagreements. What’s more, the average number
of interactions corresponding to these strong disagreements is 12.15, compared to 27.69 for all disagreements, meaning
that strong disagreements are much more likely to happen for relationships with fewer interactions.
5As some of the information in these plots is duplicated, for example, the comparison between model A and model B would
be the mirror of the comparison between model B and model A, only the lower half of these plots have been included.
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Figure 5 Example disagreement scatter plot. Each point corresponds to a relationship where two target
models (here, VADER and BERTweet) disagree. The x-coordinate of the point corresponds to the percentage of
negative interactions in the relationship according to VADER, and the y-coordinate to the percentage of
negative interactions in the relationship according to BERTweet. Only relationships with at least 6 interactions
are included

Table 5 Disagreement quantiles. The model giving a positive label is on the top and the model
giving a negative label is on the left

VADER BERTweet XLM-T BERT-C

Q1 VADER - 20.83 20.83 22.22
BERTweet 21.43 - 20.00 22.22
XLM-T 23.08 22.22 - 22.73
BERT-C 25.00 23.73 22.22 -

Q2 VADER - 25.00 25.00 27.78
BERTweet 26.09 - 25.00 28.57
XLM-T 28.57 27.27 - 28.57
BERT-C 33.33 30.52 28.57 -

Q3 VADER - 33.33 33.33 33.33
BERTweet 33.33 - 28.57 33.33
XLM-T 37.50 33.33 - 35.71
BERT-C 42.86 40.00 37.50 -

the obtained signs. In order to validate the assigned signs, we leverage triad analysis as
discussed in Sect. 3.3. Recall that there are four types of triads (as illustrated in Fig. 2, de-
pending on the number i of positive edges in them, with Ti denoting triads with i positive
edges). As a triad requires interconnected users, most of the datasets included in this work
are unsuitable for this analysis, as they contain data from a series of largely disconnected
users. The one exception to this is the Snowball dataset, which, due to its snowball col-
lection methodology, contains interconnected users. Therefore, the analysis of the signed
triads was only conducted for the Snowball dataset. Fortunately, this is the largest dataset
included in this study and is therefore the most likely to produce reliable results.

Four sets of signed triads were obtained using each of the four sentiment analysis clas-
sifiers. These were then compared against the signed triads extracted from their corre-
sponding null models where the signs are randomly shuffled, as explained in Sect. 3.3.
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Table 6 Results of the triad analysis, with the counts and proportions of the observed triads from
each model, along with the expected proportions (for a random distribution of signs) and the level of
surprise (as described in Sect. 3.3)

Model Triad Ti Counts Proportions Expectation Surprise

VADER T3 16,734 0.267 0.212 33.4
T2 19,018 0.303 0.431 –64.1
T1 16,934 0.270 0.287 –12.0
T0 10,020 0.160 0.064 94.9

BERTweet T3 21,439 0.342 0.232 65.5
T2 15,771 0.252 0.437 –93.8
T1 15,057 0.240 0.274 –18.8
T0 10,439 0.166 0.057 117.7

XLM-T T3 15,873 0.253 0.122 100.1
T2 12,715 0.203 0.372 –87.7
T1 15,946 0.254 0.377 –63.6
T0 18,172 0.290 0.128 120.9

BERT-C T3 20,683 0.330 0.222 64.8
T2 15,623 0.249 0.435 –93.8
T1 15,366 0.245 0.281 –20.2
T0 11,034 0.176 0.062 119.2

The triad counts and proportions, as well as the mean expectations and surprise levels
(calculated using Equations (1)), can be seen in Table 6. The main focus for this analy-
sis is the surprise (rightmost column), which indicates the number of standard deviations
by which the predicted number of each triad differs from that of the randomly shuffled
version. According to the weaker version of Structural Balance Theory, triad 3 should be
overrepresented and triad 2 should be underrepresented, and this is indeed the case for
all 4 of the models. This qualitatively confirms that the patterns of the extracted signs are
compatible with what is observed in explicitly signed human social networks. Addition-
ally, the surprisingly abundant T0 provides an initial glimpse at the higher prevalence of
negative relationships on Twitter, which we explore further in the subsequent sections.

Before moving on, it is important to note that, quantitatively, this triad analysis does
not provide a means of comparison between the models. In other words, the magnitude
of the surprise in the expected direction (e.g., T3 being overrepresented) is not a measure
of how good the model is (because there is no such numerical notion of “correct amount
of surprise”).

In the interest of time, all subsequent analyses were conducted using only the signs of a
single model. As all the models met the expectations of Structural Balance Theory, they
are all equally appropriate. However, given that VADER is well-established and known
to annotate individual Tweets more accurately than individual humans [35], this was the
model that was selected.

5.3 Negative relationships in full and active networks
We now investigate how the signs are distributed inside the Ego Networks. The percent-
ages of negative relationships in the full and active Ego Networks were compared for each
of the 9 datasets. Recall from Sect. 2.1 that the active Ego Network is defined as the set of
Alters with whom the Ego engages meaningfully (at least one interaction a year, as per the
anthropological definition). These percentages are displayed in Fig. 6.

For the full networks, the datasets display levels of negativity within and slightly above
the previously observed range of 15.0% to 22.6% [14] (mentioned in Sect. 2.2). Specifically,
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Figure 6 Percentages of relationships that are negative for the full and active networks of each dataset (95%
confidence intervals)

the full Ego Network negativities all fall between 16.45% (Monday Motivation) and 31.58%
(NYT Journalists). Given that the signs of the links in the current datasets are not explicitly
visible to the users, and that, therefore, social pressure towards having positive links will
likely be reduced, these observations are very much in line with a priori expectations.

By contrast, the active networks show significantly higher, albeit more varied, levels of
negativity, between 21.83% (Monday Motivation) and 54.89% (NYT Journalists). This in-
crease in negativity from the full to active networks suggests that individuals have propor-
tionally greater numbers of negative relationships amongst close contacts with whom they
engage frequently than amongst acquaintances. Messages containing or eliciting negative
emotions have previously been shown to elicit stronger responses [46] and to spread faster
[54] than positive ones. Therefore, one explanation for the higher negativities of the ac-
tive networks could be that, because the users of the active networks are communicating
more frequently, any negative content that enters a user’s Ego Network is more likely to be
dispersed along the more active connections. Therefore, the connections of the active net-
works may display higher negatives because they have an elevated risk of being exposed to
and spreading negativity. Thus, the more engaged an individual is, the seemingly greater
the likelihood their relationships have of being negative.

In addition, although the increase in negativity from full to active network is most pro-
nounced for the journalist datasets and science writers, this change is observable for all 9 of
the included datasets. Therefore, rather than being a unique feature of any specific com-
munity, it appears that increased negativity is an inevitable byproduct of engaging with
Twitter. Investigating whether this phenomenon is observable for other social platforms,
as well as how the effects differ, could be an interesting avenue for future research.

5.4 Negative relationships of specialised and generic users
After observing the full and active networks, the negativities of the specialised and generic
users were compared. As can be seen in Fig. 6, most of the specialised users display higher
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percentages of negative relationships, compared to the generic users. However, this differ-
ence is fairly small for the full networks, with Snowball and the generic UK Users dataset
actually containing more negative relationships (24.05% and 24.22% respectively) than the
British MPs (19.24%) and nearly as much as the Science Writers (25.62%). By compar-
ison, the difference for the active networks is much starker. With the only exception of
the British MPs (whose change in negativity better matches those of the generic datasets),
the least negative specialised dataset, Science Writers (45.23%), was nearly 5 percentage
points more negative than the most negative generic dataset, Snowball (40.31%).

The greater negativities of specialised users also support the hypothesis that more en-
gaged users are more likely to have a greater number of negative relationships, mentioned
in the previous subsection.

5.5 Circle-by-circle analysis of the ENM
As previously mentioned, the ENM is concentric, meaning that each of its circles contains
all the Alters of the circles that come before it. In this section, we briefly analyze the circle
sizes and the scaling ratios in the ENMs of our datasets, before proceeding with the SENM
discussion.6 It is important to note that the size of Ego Networks tends to vary slightly
from Ego to Ego due to various social differences between individuals, as can be seen in
Fig. 7. Because of these common variations, and in order to standardise the results of
any analysis performed on the circles, it is standard practice to focus on Egos who have
a common number of circles [18, 47]. Usually, the chosen number of circles is 5 as it is
the most common number for OSN data [32] and, as can be seen in Fig. 8, 5 is the closest
whole number for all except 2 of the datasets, the exceptions being NYT Journalists and
British MPs (with mean circle numbers of 5.53 and 6.00 respectively). Further, the mode
of all of the datasets is 5, except for NYT journalists and British MPs (which were both 6),

Figure 7 Mean active Ego Network sizes of users with 5 circles in each dataset (95% confidence intervals)

6This is necessary in order to ensure that the data used for the SENM analysis is compatible with the general models of
Ego Networks that emerged in the related literature.
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Figure 8 Mean number of circles for each dataset (95% confidence intervals)

Table 7 Mean circle sizes and number of Egos with 5 circles

Dataset Circle 1 Circle 2 Circle 3 Circle 4 Circle 5 # Egos w/ 5 circles

American Journalists 1.61 5.33 15.01 41.78 127.28 300
Australian Journalists 1.41 4.76 13.61 40.22 134.71 146
British Journalists 1.83 6.27 16.87 48.07 142.52 86
NYT Journalists 1.65 5.43 14.76 40.16 114.68 97
Science Writers 1.70 5.81 16.40 44.29 124.86 67
British MPs 1.98 6.67 18.09 49.00 146.79 103

Monday Motivation 1.72 5.26 13.22 33.58 103.71 421
UK Users 1.84 5.96 15.72 39.32 114.66 224
Snowball 1.78 6.16 16.86 44.19 125.91 1160

so there is, indeed, a concentration of values around 5. Therefore, only Egos with 5 circles
were considered for the subsequent circle-by-circle analyses.

The first part of the circle-by-circle analysis is to examine the mean sizes of the circles.
As expected from previous studies, the sizes are close to those of Dunbar’s expected values,
i.e. 1.5, 5, 15, 50,150 (with the typical scaling factor of roughly 3) [7], the exact numbers
can be seen in Table 7 (along with the remaining number of Egos after considering only
those with 5 circles for each dataset). Note that the difference between the numbers in
column “Circle 5” of Table 7 and the values displayed in Fig. 7 is due to the fact that, in
the former case, we only consider egos with five circles, while all Egos are included in the
latter. Some of the datasets (such as NYT Journalists, UK Users and Monday Motivation)
become somewhat distant for the expected numbers in the outermost circle, however, this
has also been observed in previous research [18, 31]. What’s more, the increasing scale of
roughly 3 is clearly visible in Table 8, with 3 being the closest whole number to every
single one of the ratios between subsequent circles as well as for the overall means of each
dataset.

Next, before considering the relationship signs at each level of the SENM, we gauge the
appropriacy of the threshold method of signing relationships (described in 3.1) for our
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Table 8 Scaling ratios between circle sizes

Dataset Circle 1-2 Circle 2-3 Circle 3-4 Circle 4-5 Mean

American Journalists 3.30 2.82 2.78 3.05 2.99
Australian Journalists 3.37 2.86 2.96 3.35 3.13
British Journalists 3.43 2.69 2.85 2.96 2.98
NYT Journalists 3.30 2.72 2.72 2.86 2.90
Science Writers 3.41 2.82 2.70 2.82 2.94
British MPs 3.37 2.71 2.71 3.00 2.95

Monday Motivation 3.07 2.51 2.54 3.09 2.80
UK Users 3.24 2.64 2.50 2.92 2.82
Snowball 3.46 2.74 2.62 2.85 2.92

Table 9 Mean number of interactions per Alter at each level of the ENM

Dataset Circle 1 Circle 2 Circle 3 Circle 4 Circle 5

American Journalists 59.09 23.66 12.69 6.69 3.18
Australian Journalists 83.90 21.80 12.56 6.33 3.02
British Journalists 49.14 20.10 12.26 6.60 3.13
NYT Journalists 50.30 22.48 11.88 6.00 2.56
Science Writers 59.91 25.59 14.91 7.11 3.03
British MPs 106.59 50.95 27.07 13.14 5.11

Monday Motivation 105.80 46.44 26.06 12.25 3.77
UK Users 86.53 44.34 22.53 10.81 3.72
Snowball 174.19 68.69 34.95 16.71 6.48

data. Indeed, given that psychological research has found the golden interaction ratio to
be 1:5, we consider that a relationship requires a minimum of 6 interactions in order to be
signed reliably. Therefore, we investigate the Egos’ mean numbers of interactions per Alter
at each level of the ENM, in order to verify that we have enough data to properly apply the
threshold. The results, summarised in Table 9, show that circles 1 to 4 have mean numbers
of interactions that are equal to or greater than the required 6. Indeed, only the outermost
circle tends to have numbers that are lower than necessary. This means that for circles 1
to 4, there is enough data, on average, to properly estimate the signs.

Beyond validating the application of the golden interaction ratio to relationships in cir-
cles 1 to 4, Table 9 also shows that journalists tend to interact about half as much per Alter
compared to generic users. While this finding is initially counter-intuitive (given that jour-
nalists are generally considered to be more engaged with Twitter), a follow-up examination
of the different types of interactions sent from the Egos revealed that this is actually in line
with the findings of previous works. Essentially, specialised users, such as journalists, tend
to generate more Mentions and Retweets, and fewer Replies, than generic users. Based on
the conclusions of previous work [55], this suggests that specialised users generally spread
their cognitive effort across slightly more distinct connections than generic users, while
generic users tend to spend slightly more cognition on each individual relationship. This is
supported by the slightly higher active ego network sizes of the specialised users in Table 7
(see Circle 5 column). While this investigation is important for properly understanding the
results of Table 9, its findings are only tangentially related to the main focus of this paper.
Consequently, the full details have been placed in Appendix B.

5.6 Circle-by-circle analysis of the SENM
Next, moving on to the analysis of the SENM, we observe the mean numbers and percent-
ages of negative relationships for each circle, these can be seen in Table 10. The propor-
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Table 10 Mean number and percentage of negative relationships at each level of the Signed Ego
Network (for Egos with 5 circles). In bold, the most negative circle of each dataset

Dataset Circle 1 Circle 2 Circle 3 Circle 4 Circle 5 Differenceb

American Journalists 0.99 3.15 8.53 22.28 60.23
61.37% 59.13% 56.85% 53.33% 47.32% –14.05

Australian Journalists 1.09 3.34 9.08 25.27 73.03
77.30% 70.14% 66.74% 62.82% 54.21% –23.09

British Journalists 1.16 3.63 9.76 27.02 70.94
63.33% 57.98% 57.85% 56.22% 49.77% –13.56

NYT Journalists 1.11 3.73 9.90 24.73 60.43
67.21% 68.66% 67.05% 61.59% 52.70% –14.51

Science Writers 0.82 2.90 7.97 21.31 55.87
48.39% 49.91% 48.59% 48.11% 44.75% –3.64

British MPs 0.58 1.88 5.08 13.09 31.31
29.41% 28.24% 28.07% 26.71% 21.33% –8.08

Monday Motivation 0.30 0.97 2.46 5.79 14.09
17.72% 18.37% 18.59% 17.25% 13.58% –4.14

UK Users 0.64 2.00 5.27 13.14 37.63
34.75% 33.46% 33.54% 33.41% 32.81% –1.94

Snowball 0.71 2.56 6.93 17.80 48.99
40.17% 41.54% 41.12% 40.29% 38.91% –1.26

bDifference between circle 1 and circle 5 in percentage points.

Table 11 Scaling ratios of negative relationships counts between circle sizes

Dataset Circle 1-2 Circle 2-3 Circle 3-4 Circle 4-5 Mean

American Journalists 3.18 2.71 2.61 2.70 2.80
Australian Journalists 3.06 2.72 2.78 2.89 2.86
British Journalists 3.14 2.68 2.77 2.63 2.80
NYT Journalists 3.37 2.65 2.50 2.44 2.74
Science Writers 3.52 2.75 2.67 2.62 2.89
British MPs 3.23 2.70 2.58 2.39 2.72

Monday Motivation 3.18 2.54 2.36 2.43 2.63
UK Users 3.12 2.64 2.49 2.86 2.78
Snowball 3.58 2.71 2.57 2.75 2.90

tions of negative relationships are found to be disproportionately higher at the innermost
circles of the ENM, especially for specialized users, decreasing steadily towards the outer
layers. The negative percentages of all journalist datasets are above 61% at the innermost
circle and are below 55% at the outermost. This is very surprising as the inner sections of
the ENM should be associated with an individual’s most trusted and similar connections.
Indeed, one of the four components from Granovetter’s definition of tie strength is recip-
rocal services [17], and reciprocity is thought to be very closely related to trust [56]. What
makes these findings even more surprising is that the aforementioned effect of social cap-
ital, which creates a bias towards maintaining positive connections, would be strongest in
the innermost circles, where individuals are expected to be the most tightly knit.

Despite these observed differences in the proportions of negative relations across the
circles, an observable ratio similar to that of the circle sizes appears to be fairly consistent,
as can be seen in Table 11. The mean value of this negativity ratio is marginally lower than
that of the circle sizes, however, it is still roughly equal to 3. Looking at the mean column,
this ratio appears to be roughly 2.8.

In Table 10, we can compare the proportions of negative relationships between the dif-
ferent types of users. Once again, there appears to be a divide between specialised and
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generic users. This difference becomes even more noticeable when the journalists are
compared to the non-journalists. Indeed, the variations in negativity across the circles
appear to be much greater for journalists than for any of the other datasets. The most
stable journalist dataset (British Journalists) drops by 13.56 percentage points from circle
1 to circle 5. By contrast, the biggest variation for the non-journalists is 8.08 percentage
points (British MPs).

Again, these observations lend support to the notion that increased levels of engage-
ment with Twitter lead to increased levels of negativity. Egos engage the most with their
innermost circles and this is where the strongest concentration of negative relationships is
found. What’s more, the difference between the negativity at this innermost level and that
of the outer level is greatest for the most engaged category of users (journalists). Other-
wise said, the most negativity is found at the highest levels of engagement and this is true
at every level of the Ego Networks as well as between different types of users. This could
also explain why the T0 triads in Sect. 5.2 were so prevalent.

5.7 Negativity metrics
As discussed in Sect. 3.5, a final analysis was carried out to investigate whether maintain-
ing negative relationships is more cognitively demanding than maintaining positive ones.
For this, 3 different metrics were computed: the proportion of negative relationships, the
proportion of negative interactions and the cognitive effort spent on negative relationships
(details in Sect. 3.5). These metrics were then compared to the sizes of the users’ active
Ego Networks and the number of users’ interactions: both statistically and graphically.

For the statistical comparisons, Pearson’s R was used. Our hypothesis is that an increase
in negativity may correspond to an increase in cognitive effort, hence to smaller active
Ego Networks and fewer interactions (this latter hypothesis is based on our observations
in Sect. 5.5, which showed that specialised users, who show higher negativity levels, tend
to display roughly half the number of interactions as generic users). Thus, a 1-tailed anal-
ysis was employed. The results showed no significant correlations for any of the datasets
for either the active Ego Network sizes (p>.523 for all cases) or the number of interac-
tions (p>.531 for all cases). This suggests that negativity does not decrease the size of Ego
Networks, on average.

Next, binned boxplots were made to visualise the interplay between negativity and cog-
nitive effort, for different classes of Ego negativity. We binned the Egos into quantiles with
respect to the negativity metrics (as described in Sect. 3.5), and then analysed the distri-
butions of the active Ego Network sizes and the number of interactions in each bin. The
corresponding boxplots for the 2 largest datasets in terms of Egos, Snowball and Monday
Motivation, can be seen in Figs. 9 and 10. The complete set of boxplots is available in Ap-
pendix C. For the majority of the datasets, the means, medians, boxes and whiskers of the
boxplots are fairly flat across the bins (as expected given the non-significant correlations).
However, the Snowball dataset shows a smaller active ego network for the first quantile
and numbers of interactions that steadily decrease from the first to fourth quantile. This
2 observations are seen for all 3 of the negativity metrics.

We followed up on these observations by conducting t-tests between pairs of bins for
each dataset, with the null hypothesis being that there should not be any differences be-
tween them. This was done for both the Ego network sizes and the number of interactions.
The resulting p-values are displayed in Tables 12 and 13 respectively and the t-scores are
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Figure 9 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the Snowball dataset. For each group of binned
Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5 times
the interquartile range beyond the box (whiskers) and outliers (black circles)

available in Tables 15 and 16 within Appendix D. The only dataset that displays consis-
tently significant values is Snowball, which shows significant differences for all compar-
isons involving the first bin, for the Ego network sizes, and all comparisons involving the
last bin for the number of interactions. The Snowball results would suggest that users
with many positive relationships are likely to have slightly smaller Ego networks (i.e. fewer
connections) and those with many negative relationships are likely to have more overall
interactions. Given that the Snowball dataset is significantly larger than the others this
may be a relatively weak effect that is only statistically significant when observing a very
large sample size.

These two results together would suggest that more positive users tend to have fewer
connections and interact less frequently overall but more intimately with the connections
they do have (at least on the Twitter platform). While more negative users have more,
yet less intimate, connections with whom they interact less frequently compared to the
positive users, they still end up interacting the most overall. In other words, these results
suggest that nurturing positive relationships in online social networks is more cognitively
engaging, resulting in smaller ego networks for more positive users. However, while these
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Figure 10 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the Monday Motivation dataset. For each group
of binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box),
1.5 times the interquartile range beyond the box (whiskers) and outliers (black circles)

results seem very promising, given some of the limitations of the negativity metrics anal-
ysis (i.e. the observations were only found to be significant for Snowball dataset), it would
be pertinent to further investigate the interplay between these effects.

6 Conclusion
The present study introduces a novel method for the inferral of signs in unsigned net-
works, which leveraged text-based communications among individual pairs of users. The
proposed method is founded on solid theoretical underpinnings and enables the appli-
cation of signed network techniques to non-signed networks in future research, even in
situations where data about the global network topology is scarce or unavailable (hence,
topology-based tools cannot be applied). The method was shown to be robust to the
choice of the underlying sentiment classifier and to reproduce a sign distribution that
matches the expectation of the well-known Structural Balance Theory. To demonstrate its
effectiveness, this approach was used to generate signed relationships and Ego Networks
across 9 distinct datasets. The resulting signed networks were then systematically exam-
ined and compared against their unsigned counterparts. This concluded in 4 main find-
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Table 12 The p-values from the pairwise comparisons between bins for Ego network sizes and
negativity. Statistically significant values (<0.05) are displayed in bold

Dataset Bin pairs

1-2 1-3 1-4 2-3 2-4 3-4

Metric 1 American Journalists 0.743 0.152 0.029 0.294 0.076 0.431
Australian Journalists 0.235 0.966 0.414 0.143 0.024 0.333
British Journalists 0.162 0.354 0.381 0.016 0.643 0.072
NYT Journalists 0.431 0.764 0.002 0.548 0.001 0.000
Science Writers 0.850 0.384 0.773 0.447 0.913 0.514
British MPs 0.127 0.189 0.904 0.610 0.151 0.230
Monday Motivation 0.598 0.892 0.447 0.680 0.846 0.519
UK Users 0.321 0.548 0.577 0.669 0.645 0.970
Snowball 0.000 0.000 0.000 0.221 0.146 0.829

Metric 2 American Journalists 0.230 0.582 0.164 0.513 0.917 0.420
Australian Journalists 0.944 0.825 0.384 0.712 0.315 0.155
British Journalists 0.872 0.584 0.806 0.728 0.721 0.495
NYT Journalists 0.289 0.375 0.236 0.787 0.967 0.770
Science Writers 0.242 0.383 0.959 0.712 0.232 0.378
British MPs 0.341 0.192 0.977 0.939 0.321 0.171
Monday Motivation 0.388 0.633 0.314 0.658 0.881 0.550
UK Users 0.326 0.089 0.387 0.558 0.875 0.426
Snowball 0.000 0.000 0.000 0.667 0.439 0.212

Metric 3 American Journalists 0.323 0.791 0.274 0.511 0.995 0.473
Australian Journalists 0.143 0.502 0.780 0.337 0.176 0.649
British Journalists 0.180 0.295 0.793 0.747 0.199 0.298
NYT Journalists 0.045 0.319 0.445 0.263 0.054 0.636
Science Writers 0.142 0.020 0.768 0.483 0.207 0.031
British MPs 0.169 0.101 0.540 0.895 0.377 0.321
Monday Motivation 0.997 0.364 0.390 0.280 0.315 0.998
UK Users 0.036 0.452 0.426 0.002 0.176 0.101
Snowball 0.000 0.000 0.000 0.421 0.978 0.391

ings: (i) somewhat unexpectedly, percentages of negative relationships tend to be higher
for active networks than for full networks and this is more pronounced for specialised
users than for generic users; (ii) specialised users display a higher propensity towards hav-
ing negative relationships than generic users; (iii) very surprisingly, negative relationships
are found disproportionately more at the more intimate levels of the ENM; (iv) having
and maintaining negative relationships appears to have a weak detrimental effect on the
number of interactions an individual creates and a weak incremental effect on the distinct
number of individuals one interacts with. On top of these core findings, a consolidated
signed version of the ENM is also established, with a scaling ratio of negative relation-
ships that decreases slightly from the inner circles to the outer circles for most types of
users and which has an overall value that is slightly lower than that of the original model’s
circle sizes (i.e. roughly 2.8).

The overall message is that OSNs, while generating structurally similar Ego Networks
with respect to offline relationships (i.e. not mediated by social platforms), tend to dras-
tically overemphasise negativity, leading to unexpectedly high percentages of negative re-
lationships. On the other hand, our results also provide weak signs of a more positive use
of online social platforms, as users who allocated more cognitive efforts to individual re-
lationships tend to enjoy more positive relationships than the average.

These contributions enable several avenues for further research. For instance, investi-
gating the observed effects in other OSNs such as Reddit or Mastodon or examining the
interplay between “positive connections that share negative content” and “actually neg-
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Table 13 The p-values from the pairwise comparisons between bins for number of interactions and
negativity. Statistically significant values (<0.05) are displayed in bold

Dataset Bin pairs

1-2 1-3 1-4 2-3 2-4 3-4

Metric 1 American Journalists 0.175 0.910 0.414 0.148 0.560 0.359
Australian Journalists 0.508 0.705 0.324 0.773 0.659 0.499
British Journalists 0.257 0.902 0.692 0.200 0.450 0.595
NYT Journalists 0.703 0.556 0.173 0.820 0.272 0.372
Science Writers 0.659 0.719 0.318 0.930 0.617 0.545
British MPs 0.726 0.239 0.385 0.373 0.579 0.718
Monday Motivation 0.810 0.335 0.611 0.457 0.781 0.649
UK Users 0.366 0.503 0.012 0.771 0.099 0.042
Snowball 0.126 0.003 0.000 0.082 0.001 0.110

Metric 2 American Journalists 0.469 0.993 0.911 0.454 0.401 0.916
Australian Journalists 0.567 0.606 0.100 0.929 0.223 0.184
British Journalists 0.873 0.783 0.607 0.893 0.714 0.843
NYT Journalists 0.271 0.087 0.597 0.528 0.491 0.163
Science Writers 0.482 0.441 0.699 0.932 0.744 0.689
British MPs 0.166 0.030 0.905 0.446 0.287 0.080
Monday Motivation 0.504 0.475 0.668 0.127 0.821 0.226
UK Users 0.462 0.993 0.466 0.448 0.129 0.440
Snowball 0.270 0.022 0.000 0.166 0.000 0.015

Metric 3 American Journalists 0.114 0.089 0.661 0.950 0.269 0.228
Australian Journalists 0.551 0.433 0.180 0.867 0.063 0.041
British Journalists 0.422 0.643 0.350 0.780 0.097 0.194
NYT Journalists 0.091 0.075 0.442 0.862 0.270 0.221
Science Writers 0.760 0.380 0.855 0.442 0.569 0.240
British MPs 0.368 0.099 0.806 0.437 0.565 0.196
Monday Motivation 0.080 0.003 0.073 0.241 0.949 0.276
UK Users 0.284 0.286 0.470 0.021 0.710 0.054
Snowball 0.000 0.000 0.000 0.445 0.010 0.060

Figure 11 The Ego Network Model, with the names and expected sizes of each subgroup
for social networks of humans

Figure 12 Percentages of positive, neutral and negative interaction labels estimated
by each model (95% confidence intervals)

Figure 13 Percentages of positive and negative relationship labels estimated by each
model (95% confidence intervals)

Figure 14 Percentages of relationships that are negative for the full and active networks of
each dataset (95% confidence intervals)

ative relationships”, which greatly increases our understanding of what it means to have
and interact with negative relationships as well as how sharing negative content online can
affect the polarity of communications over time.
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Figure 15 VADER disagreements. Each blue point represents a disagreement about the sign of a relationship,
with VADER determining a negative sign and the other models determining a positive sign. The other models
are, from top to bottom, BERTweet, XLM-T and BERT-C

Appendix A: Sentiment model disagreements
A.1 VADER
A graph displaying relationship disagreements where VADER predicts a negative label for
a relationship and one of the other models predicts a positive label can be seen in Fig. 15.

A.2 BERTweet
A graph displaying relationship disagreements where BERTweet predicts a negative label
for a relationship and one of the other models predicts a positive label can be seen in
Fig. 16.

A.3 XLM-T
A graph displaying relationship disagreements where XLM-T predicts a negative label for
a relationship and one of the other models predicts a positive label can be seen in Fig. 17.

A.4 BERT-C
A graph displaying relationship disagreements where BERT-C predicts a negative label for
a relationship and one of the other models predicts a positive label can be seen in Fig. 18.
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Figure 16 BERTweet disagreements. Each blue point represents a disagreement about the sign of a
relationship, with BERTweet determining a negative sign and the other models determining a positive sign.
The other models are, from top to bottom, VADER, XLM-T and BERT-C

Appendix B: Investigation of users’ interactions
Observing Table 9 in Sect. 5.5, one may note some distinct patterns, for instance, that
Egos interact most often with Alters of the inner circles. What’s more, the number of
interactions seems to decrease by a factor of around 2 between each circle, moving from
the inside out. Furthermore, the generic users and British MPs display roughly double the
number of interactions as the journalists and science writers. This is true for each level of
the ENM, resulting in numbers of around 50, 25, 12, 6 and 3 for the journalists and science
writers, and 100, 50, 25, 12 and 6 for the generic users and British MPs. Two exceptions to
this are the innermost circles of the Australian Journalists and the Snowball dataset, both
of which have numbers far higher than expected: 83.90 and 174.19 respectively.

This dichotomy between the journalists and generic users is rather unexpected because,
as mentioned previously, journalists are thought to be generally more engaged with Twit-
ter than other types of users, especially generic users and politicians [18]. To get a better
understanding of these observations, we then looked at the number of Tweets and interac-
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Figure 17 XLM-T disagreements. Each blue point represents a disagreement about the sign of a relationship,
with XLM-T determining a negative sign and the other models determining a positive sign. The other models
are, from top to bottom, VADER, BERTweet and BERT-C

tions each type of user generated, as well as the length of their timelines. This information
is displayed in Table 14.7

The mean number of Tweets is close to 3200 for all users. This shows that the majority
of users, regardless of whether they are specialised or generic, in our chosen datasets are
reaching the 3200 tweet limit imposed due to the restrictions of the Twitter API. Sim-
ilarly, although more surprisingly, the percentage of Tweets that are interactions is also
fairly consistent across the two different categories of users; with the exception of Snow-
ball (75.0%), they are all very close to the 65.41% average observed in previous work [55]
(see Table 14). However, one of the original papers that investigated the ENMs of journal-
ists suggests that the journalists’ increased level of engagement is mainly observable by the
types of communications they use [55]. Specifically, as Mentions and Retweets are gen-
erally less personal/intimate methods of interacting compared to Replies, users who rely
mainly on these two methods of communicating tend to have above-average numbers of
distinct peers (Alters), of presumably lower intimacy. By extension, users who mainly use
Replies tend to have fewer but more intimate Alters. Given that the journalists have fewer

7Retweets and Replies can also be Mentions if they tag different users in addition to the one being retweeted or replied to.
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Figure 18 BERT-C disagreements. Each blue point represents a disagreement about the sign of a relationship,
with BERT-C determining a negative sign and the other models determining a positive sign. The other models
are, from top to bottom, VADER, BERTweet and XLM-T

interactions per Alter, one would expect them to have more distinct peers and, therefore,
to use more Mentions and Retweets and fewer Replies than other types of users.

Indeed, looking at the percentages of the different types of interactions in Table 14, the
datasets with the 4 highest percentages of both Mentions and Retweets are non-generic
users and all the generic datasets have percentages of Replies that are within the top 4
highest. What’s more, these observations also match the sizes of the active Ego Networks,
i.e. the number of distinct peers, with the non-journalists having slightly smaller active
networks (between 103.71 and 125.91) than the journalists (between 114.68 and 146.79);
as displayed in the Circle 5 column of Table 7. While the two lowest percentages of Men-
tions do both belong to journalists (the British Journalists and NYT Journalists), these
datasets have the highest percentages of Retweets, after the British MPs. Similarly, they
both have percentages of Replies that are lower than the UK Users and Snowball, and the
NYT Journalists’ are also lower than those of the Monday Motivation dataset.

At first glance, the British MPs dataset doesn’t quite seem to fit this line of reasoning. In-
deed, this dataset has the highest mean number of distinct peers (146.79) as well as mean
number of interactions per user that are comparable to the generic users. This would sug-
gest that the users in this dataset simultaneously have more connections and also interact
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more with each connection. However, the British MPs have by far the lowest percentage
of Replies, which are the most demanding way of communicating in terms of both time
and cognition, and also have by far the highest percentage of Retweets, which is the least
demanding method of communicating. This suggests that the British MPs employ very
cognitively-efficient strategies of communicating.

Appendix C: Negativity metric boxplots
C.1 American journalists
Boxplots for the American Journalists dataset, plotting active ego network size and num-
ber of interactions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be
seen in Fig. 19.

C.2 Australian journalists
Boxplots for the Australian Journalists dataset, plotting active ego network size and num-
ber of interactions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be
seen in Fig. 20.

Figure 19 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the American Journalists dataset. For each group
of binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box),
1.5 times the interquartile range beyond the box (whiskers) and outliers (black circles)
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Figure 20 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the Australian Journalists dataset. For each
group of binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile
(box), 1.5 times the interquartile range beyond the box (whiskers) and outliers (black circles)

C.3 British journalists
Boxplots for the British Journalists dataset, plotting active ego network size and number
of interactions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen
in Fig. 21.

C.4 NYT journalists
Boxplots for the NYT Journalists dataset, plotting active ego network size and number of
interactions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen in
Fig. 22.

C.5 Science writers
Boxplots for the Science Writers dataset, plotting active ego network size and number of
interactions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen in
Fig. 23.
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Figure 21 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the British Journalists dataset. For each group of
binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5
times the interquartile range beyond the box (whiskers) and outliers (black circles)

C.6 British MPs
Boxplots for the British MPs dataset, plotting active ego network size and number of in-
teractions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen in
Fig. 24.

C.7 Monday motivation
Boxplots for the Monday Motivation dataset, plotting active ego network size and number
of interactions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen
in Fig. 25.

C.8 UK users
Boxplots for the UK Users dataset, plotting active ego network size and number of interac-
tions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen in Fig. 26.

C.9 Snowball
Boxplots for the Snowball dataset, plotting active ego network size and number of interac-
tions against each of the 3 negativity metrics, discussed in Sect. 3.5, can be seen in Fig. 27.
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Figure 22 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the NYT Journalists dataset. For each group of
binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5
times the interquartile range beyond the box (whiskers) and outliers (black circles)
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Figure 23 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the Science Writers dataset. For each group of
binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5
times the interquartile range beyond the box (whiskers) and outliers (black circles)
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Figure 24 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the British MPs dataset. For each group of
binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5
times the interquartile range beyond the box (whiskers) and outliers (black circles)



Tacchi et al. EPJ Data Science           (2024) 13:55 Page 41 of 47

Figure 25 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the Monday Motivation dataset. For each group
of binned Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box),
1.5 times the interquartile range beyond the box (whiskers) and outliers (black circles)
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Figure 26 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the UK Users dataset. For each group of binned
Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5 times
the interquartile range beyond the box (whiskers) and outliers (black circles)
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Figure 27 Boxplots for active Ego Network size (left column) and number of interactions (right column)
against the 3 negativity metrics (top, middle and bottom) for the Snowball dataset. For each group of binned
Egos, the boxplots display mean (orange line), median (green triangle), first to third quartile (box), 1.5 times
the interquartile range beyond the box (whiskers) and outliers (black circles)
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Appendix D: Negativity metric t-scores
D.1 Active egonetwork sizes

Table 15 The t-scores from the pairwise comparisons between bins for Ego network sizes and
negativity. Values corresponding to statistically significant p-values are displayed in bold

Dataset Bin pairs

1-2 1-3 1-4 2-3 2-4 3-4

Metric 1 American Journalists 0.328 1.440 2.198 1.053 1.790 0.790
Australian Journalists –1.197 0.043 0.822 1.480 2.306 0.974
British Journalists 1.426 –0.938 0.886 –2.503 –0.468 1.845
NYT Journalists 0.794 0.302 3.361 –0.606 3.479 4.045
Science Writers 0.191 0.884 0.291 0.770 0.111 –0.660
British MPs –1.553 –1.332 –0.121 0.514 1.459 1.214
Monday Motivation –0.529 –0.136 –0.762 0.413 –0.195 –0.646
UK Users –0.997 –0.602 –0.560 0.429 0.462 0.037
Snowball –5.657 –4.595 –4.471 1.226 1.456 0.216

Metric 2 American Journalists 1.205 0.552 1.397 –0.656 0.105 0.808
Australian Journalists 0.070 –0.222 0.875 –0.370 1.012 1.439
British Journalists –0.162 –0.552 0.247 –0.350 0.360 0.688
NYT Journalists 1.072 0.897 1.200 –0.271 –0.042 0.294
Science Writers –1.193 –0.885 –0.051 0.373 1.219 0.894
British MPs –0.962 –1.323 0.029 –0.077 1.004 1.390
Monday Motivation –0.866 –0.478 –1.010 0.443 –0.150 –0.599
UK Users 0.987 1.714 0.869 0.588 –0.158 –0.799
Snowball –3.926 –3.593 –4.926 0.431 –0.775 –1.249

Metric 3 American Journalists 0.992 0.266 1.098 –0.659 0.006 0.719
Australian Journalists –1.481 –0.675 –0.280 0.968 1.366 0.457
British Journalists –1.363 –1.061 0.264 0.324 1.305 1.054
NYT Journalists 2.061 1.007 0.771 –1.134 –1.977 –0.476
Science Writers –1.506 –2.459 –0.297 –0.710 1.288 2.257
British MPs –1.396 –1.669 –0.617 0.132 0.892 1.002
Monday Motivation 0.004 –0.910 –0.862 –1.083 –1.007 0.003
UK Users –2.127 0.755 –0.799 3.111 1.363 –1.655
Snowball –6.271 –5.463 –6.524 0.805 –0.028 –0.859
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D.2 Number of interactions

Table 16 The t-scores from the pairwise comparisons between bins for the number of interactions
and negativity. Values corresponding to statistically significant p-values are displayed in bold

Dataset Bin pairs

1-2 1-3 1-4 2-3 2-4 3-4

Metric 1 American Journalists 1.362 –0.113 0.819 –1.453 –0.584 0.920
Australian Journalists –0.665 –0.380 –0.993 0.290 –0.444 –0.680
British Journalists 1.149 –0.124 0.399 –1.304 –0.762 0.536
NYT Journalists 0.384 0.593 1.385 0.229 1.112 0.902
Science Writers –0.446 –0.363 –1.014 0.089 –0.505 –0.612
British MPs –0.352 –1.192 –0.876 –0.899 –0.558 0.363
Monday Motivation 0.241 0.967 0.509 0.746 0.279 –0.456
UK Users –0.908 –0.673 –2.563 0.292 –1.664 –2.062
Snowball 1.530 2.973 4.364 1.743 3.369 1.602

Metric 2 American Journalists 0.726 –0.009 –0.112 –0.751 –0.842 –0.105
Australian Journalists –0.575 –0.518 –1.665 0.090 –1.230 –1.341
British Journalists 0.161 0.277 0.518 0.136 0.369 0.199
NYT Journalists 1.113 1.751 0.533 0.636 –0.695 –1.417
Science Writers –0.712 –0.780 –0.391 –0.087 0.329 0.404
British MPs –1.405 –2.229 –0.120 –0.769 1.077 1.786
Monday Motivation –0.669 0.715 –0.429 1.532 0.226 –1.214
UK Users 0.738 0.009 –0.732 –0.761 –1.529 –0.776
Snowball 1.103 2.298 4.382 1.386 3.774 2.448

Metric 3 American Journalists 1.592 1.713 0.440 0.063 –1.110 –1.210
Australian Journalists 0.599 0.789 –1.355 0.168 –1.886 –2.082
British Journalists –0.811 –0.467 0.946 0.281 1.696 1.322
NYT Journalists 1.729 1.819 0.776 0.174 –1.116 –1.240
Science Writers –0.308 –0.891 0.184 –0.779 0.576 1.198
British MPs –0.908 –1.683 –0.247 –0.784 0.580 1.310
Monday Motivation 1.759 2.978 1.803 1.176 0.065 –1.092
UK Users –1.077 1.071 –0.726 2.342 0.372 –1.945
Snowball 4.007 4.700 6.148 0.764 2.595 1.887
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