
Mehler et al. EPJ Data Science (2024) 13:35
https://doi.org/10.1140/epjds/s13688-024-00475-0

R E S E A R C H Open Access

Who makes open source code? The
hybridisation of commercial and open source
practices
Peter Mehler1,3, Eva Iris Otto1,2 and Anna Sapienza1,4*

*Correspondence:
ansa@sodas.ku.dk
1Copenhagen Center for Social Data
Science, University of Copenhagen,
Øster Farimagsgade 5, 1353,
Copenhagen K, Denmark
4Università del Piemonte Orientale,
V.le Teresa Michel, 11, 15121,
Alessandria, Italy
Full list of author information is
available at the end of the article

Abstract
While Free and Open Source (F/OSS) coding has traditionally been described as a
separate commons linked to values of openness and sharing, recent research
suggests an increasing integration of private corporations into F/OSS practices,
blurring the boundaries between F/OSS and commodified coding. However, there is
a dearth of empirical, and especially quantitative studies exploring this phenomenon.
To address this gap, we model the power dynamics and infrastructural aspects of
software production within GitHub, a central hub for F/OSS development, using a
large-scale, directed network. Using various network statistics, we detect the
ecosystem’s most impactful actors and find a nuanced picture of the influence of
individuals, open source organizations, and private corporations in F/OSS practices.
We find that the majority of public repositories on GitHub depend on a small core of
specialized repositories and users. In accordance with expectations, individuals and
open source organizations are more prevalent in this core of elite GitHub users,
however, we also find a significant amount of private organizations with an indirect,
yet consistent influence within GitHub. In addition, we find that directly influential
individuals tend to facilitate sponsorship methods more often than indirectly or
non-influential individuals. Our research highlights a hybridization of F/OSS and sheds
light on the complex interplay between influence, power, and code production in the
multi-language dependency ecosystem of GitHub.

Keywords: Software production; Dependency; Network; Open-source; Hybridization

1 Introduction
Free and Open Source (F/OSS) coding and its environments have long been celebrated
within developer communities for embodying a unique set of values and principles. In
this distinct sphere, openness and sharing stand as central tenets, fostering a collabora-
tive ethos that supposedly sets it apart from the realm of commodified coding processes
[1–3]. This contrast is emblematic of a fundamentally conceived divide in the software
development world.

Within the F/OSS domain, the concept of “free” extends beyond cost; it encompasses
the freedom to access, use, modify, and distribute software [4]. Developers and enthu-

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-024-00475-0
https://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-024-00475-0&domain=pdf
https://orcid.org/0000-0002-0842-7987
mailto:ansa@sodas.ku.dk
http://creativecommons.org/licenses/by/4.0/

Mehler et al. EPJ Data Science (2024) 13:35 Page 2 of 20

siasts who participate in F/OSS projects are supposedly driven by a shared belief in the
importance of transparency and community-driven innovation, promoting software as a
public good, free from proprietary restrictions. In contrast, commodified coding usually
revolves around proprietary software. Proprietary, or closed-source development models,
prioritize safeguarding intellectual property and maximizing revenue, often at the expense
of openness and sharing.

This tension between open and closed source approaches has been a defining marker
of the software industry and it is repeatedly found as a near mythical tale within open-
source communities. Take, for instance, the recurring stories of “Nebraska Develop-
ers” (named after the well-known comic [5])—individuals who, feeling the social values
of F/OSS compromised or lacking financial compensation, withdraw their widely used
F/OSS code [6–8].

These tales problematize the intricate interplay between Free and Open Source (F/OSS)
coding and the considerable earnings generated by commercial software reliant on F/OSS
components. Further, such tales point to the idea that particular developers, within infras-
tructural dependencies of code going across F/OSS and commoditized code-production,
have a significant influence. However, the actual extent of this influence has not been stud-
ied yet.

While such tales highlight the tension between F/OSS ideals and commodification of
code within lay software communities, recent political economic studies of software pro-
duction argue that F/OSS practices are increasingly incorporated into private corporations
and that private corporations encroach on F/OSS spheres of code [9]. Some scholars point
to this as an encroachment of commodification processes into F/OSS spheres and a capi-
talist exploitation of labour, others instead, point to a growing hybridization of F/OSS and
commodified coding practices influencing processes of code-production [10].

This hybridization of F/OSS coding has, however, not been studied extensively, empiri-
cally (for exceptions see [10, 11]), nor quantitatively. In short, there is a need to attend to
this interplay empirically, and consider the influence of both open-source developers and
private corporations.

In this study, we therefore turn our attention to a well-known environment for F/OSS
coding: GitHub. Specifically, we contribute to questions about the growing hybridization
of relations between F/OSS and commodified coding by asking: (1) Who makes influential
open source code? (2) And what does the composition of actors making influential Open
Source Code mean for our understanding of influence within infrastructures of code pro-
duction today?

To answer these questions we operationalise the double meaning of dependency as both
a technical relation within software development and a relation that carries implications
for infrastructural power in software relations. In infrastructural terms, dependency gives
influence to actors upstream to set standards and control access, and thereby gives a view
to infrastructural power relations. To achieve this goal, we combine two different strands
of research in a novel way: We build on and extend software engineering studies of de-
pendency ecosystems and use this to engage a nascent field on infrastructural power in
code-production.

We thus contribute a study that takes a point of departure in a multi-language depen-
dency ecosystem and shifts the focus from typical questions regarding vulnerabilities,
package developments etc. to considering influence and power-relations within GitHub.

Mehler et al. EPJ Data Science (2024) 13:35 Page 3 of 20

We leverage state-of-the-art methods from network science to explore the dependency
network of Github, contributing an empirically based study to a nascent literature on the
infrastructures of code-production and their concomitant power-relations [9, 12, 13]. A
literature that points to the need of quantitative studies, especially of F/OSS relations, to
explore actual on-the-ground software production relations.

The following sections are organized as follows. Section 1 introduces previous work
on power relations in F/OSS, on GitHub and its dependencies. Section 2 provides a de-
scription of the data, including the data collection process, the pre-processing and net-
work definitions. Section 3 shows the results of our analysis, which we further discuss in
Sect. 4. Section 5 illustrates the conclusions, including the discussion of limitations and
implications for future work. Finally, Sect. 6 includes additional declarations, i.e. ethical
statement, data availability, etc.

2 Related work
2.1 Power relations in free and open source code-production
Social scientific approaches, in which building code also is fundamentally considered a way
of building social structures [14], have contributed three perspectives especially relevant
to our study.

First, studies analyzing the social values of F/OSS coding, qualitatively, have pointed to
how F/OSS is repeatedly envisioned and described as a “gift economy”, motivated by other
forms of value than commodification [1, 9, 14]. In this vein, F/OSS has been analyzed as
a modern type of commons, in which resources are freely shared, as opposed to being
bought or sold [9, 15]. Others point to how particular values of openness, sharing and
“hacking” influence coding practices and expectations within F/OSS communities [2, 3].
F/OSS code production is thus considered as different and “free” from processes of com-
modification, even though, as will be expanded below, this is not actually so.

Second, a nascent political economic literature, focusing on macro-power relations
within coding, considers the relations between F/OSS and commodified code produc-
tion. Early on, Barbrook (1998) [1] pointed out the difference between the idealised divide
and the de facto interconnection of F/OSS and commodified coding. This point has re-
cently gained more scholarly consideration in the context of corporations changing their
strategies and practices.

In this recent literature, Birkinbine (2020) [9], for instance, provides a political economic
analysis describing the encroachment of private corporations into open source practices,
a process by which companies absorb “free labour” into their process of capital accumula-
tion. His analysis aligns with other macro-scale analyses that describe the relation between
F/OSS and corporations as a growing capture of F/OSS work by capitalization and com-
modification processes, in which corporations are converting the value of F/OSS code into
economic value [16, 17].

A different approach to the interrelation between F/OSS and processes of commodified
code, has instead considered it a fundamental hybridization of economic forms (between
commodified and commons) within digital production, in which F/OSS and commodi-
tized code production are intertwined [10, 11].

Lastly, recent developments in the fields of internet and communication studies, have
turned to an infrastructure approach that links (material) software and data relations with
questions of power and control in code and code-production via big data (i.e. see Helles

Mehler et al. EPJ Data Science (2024) 13:35 Page 4 of 20

et al. 2018 [18]). As part of this “infrastructural turn” [19] scholars have, amongst other
things, mapped out the ecosystems of software development kits (SDK’s) in apps [12, 13,
20], mapped cookies on the internet [21], as well as considered the material infrastructures
of the internet more broadly [22].

We take inspiration from the infrastructure approach in communication and internet
studies to contribute an empirically grounded quantitative analysis, exploring the depen-
dency relations of F/OSS code. Through this approach we contribute a complementary
perspective to existing qualitative studies of F/OSS code production and political eco-
nomic analyses of commodification and hybridisation of code-production.

2.2 Package dependency ecosystems
Software development heavily relies on package dependency ecosystems to build com-
plex applications using external libraries and frameworks. In recent years, researchers
have studied the topology of several language-based ecosystems, including Python, R, and
JavaScript, to understand dependencies and their relationships [23]. Large-scale analyses
of the npm ecosystem [24] and the R ecosystem [25] have shown that, despite the growth
in package dependencies, developers mainly depend on a core set of packages, and the
majority of packages do not have any dependencies [26].

However, as the number of dependencies in a project increases, so does the complex-
ity of managing and maintaining them, and ensuring the security and stability of soft-
ware systems becomes challenging [27]. Researchers have proposed different approaches
to prevent dependency conflicts and reduce the potential for errors when automatically
downloading and installing dependencies [28, 29]. However, automated dependency up-
dates can still lead to build failures, and developers have been found to use dependency
downgrades to react to or prevent these issues [30].

Another significant challenge associated with package dependency ecosystems [31, 32]
is the emergence of vulnerabilities. Researchers have highlighted the potential for run-
ning vulnerable or malicious code due to third-party dependencies and the lack of main-
tenance, which causes many packages to rely on vulnerable code [33]. In particular, it has
been shown how removing the most popular packages has an increasing impact on vul-
nerabilities [34].

Overall, research on package dependency ecosystem is mainly related to software engi-
neering studies, where the main focus is either addressing issues of security and stability
or mapping and characterizing different ecosystems. Here, we build on the latter to un-
cover the inner structure of dependency relations of F/OSS code through GitHub. Further,
we detach from applications that are typical in software engineering studies to propose a
broader perspective where dependencies are used as a proxy to understand influence dy-
namics in F/OSS code production.

2.3 GitHub as an essential space for code-production and F/OSS code
As a vastly popular platform, GitHub has been considered a particularly interesting con-
text for exploring different topics and social dynamics, including collaborations/coordi-
nation behaviors [35], the model and prediction of user behaviors [36], and the structure
of developers’ social networks [37].

Here, we take an empirical point of departure by studying dependency relations on
GitHub, a large-scale open source code development platform used by more than 94M
users and including about 330M repositories [38].

Mehler et al. EPJ Data Science (2024) 13:35 Page 5 of 20

While previous research on package dependency ecosystems has mainly focused on offi-
cial sources, including CRAN for R, PyPI for Python, etc., developers have the flexibility to
create and distribute packages on other platforms as well. Among these platforms, GitHub
has recently emerged as a popular choice for package development and distribution.

Moreover, we focus on the fact that GitHub is not only commonly associated with F/OSS
projects, but is also increasingly a space for corporations, who engage in F/OSS-like prac-
tices of code-building and sharing [9, 11, 17]. Mackenzie [17] describes GitHub as a “plat-
formizing” platform, a specific space of F/OSS coding that also traverses to others spaces
of F/OSS and commodified code (see also [14]). As such Github is an interesting space to
consider questions of hybridity.

A few studies focus on understanding package ecosystems in GitHub through depen-
dencies. The authors of [39] investigate the use of GitHub for R package development
and distribution, focusing on inter-repository package dependencies. Their findings re-
veal that more R packages are hosted on GitHub, and many are exclusively distributed
through GitHub. However, the lack of support for dependency constraints in R and the
absence of centralized package listings on GitHub lead to inter-repository dependency
issues, such as update and compatibility problems.

In Ma et al. [40], the authors examine the GitHub Python ecosystem to identify influen-
tial projects in relation to their centrality and popularity. The authors find that influential
projects are often custom libraries, and only a small number of projects are considered
central. Moreover, they show that dominant projects are not always popular among the
GitHub users.

Finally, Blinco et al. [41] introduce Reference Coupling, a method for detecting tech-
nical dependencies between projects using user-specified cross-references. The method
uncovers untracked dependencies, and identifies ecosystems in GitHub, highlighting the
interconnectedness of popular ecosystems centered around software development tools.

Overall, these studies did not consider the power relations characterising F/OSS nor try
to identify the main actors in this ecosystem as a whole. Instead, they have mainly focused
on mapping the structure and evolution of language-specific dependencies. Our study
extends previous literature on package dependency ecosystems, by also considering the
possible interconnections that packages and projects within cross-language dependencies
might have.

Moreover, the very definition of dependency varies across different studies. While some
propose methodologies to parse source files to find dependencies [40], others propose new
definitions, such as the reference-coupling proposed by Blinco et al. [41], which, however,
mostly captures collaborations between developers instead of direct package dependen-
cies.

We propose to use the technical dependencies tracked by GitHub, thus, using its techni-
cal capacities to capture dependencies. This dependency relation allows us to investigate
the structure of influence relations within GitHub, thereby uncovering the role and types
of its influential owners. As such, our work contributes to a nascent field uncovering the
infrastructures and power relations of code-production, while connecting it to the soft-
ware engineering studies on package dependencies.

3 Data collection and description
Dependency definition To map the package dependency ecosystem of GitHub, we first
need to provide a definition for dependencies.

Mehler et al. EPJ Data Science (2024) 13:35 Page 6 of 20

Contrary to previous work on GitHub, where dependencies are defined via reference-
coupling [41, 42], and thus capturing a more collaborative relation between coding
projects, we rely on the dependency definition provided by the platform to capture tech-
nical dependencies between coding projects. This approach also allows to capture depen-
dencies across different coding languages by following a unique approach, as opposed to
infer them by the repository source code, as previously done in studies focusing on a spe-
cific language ecosystem.

GitHub describes a dependency as a “summary of the manifest and lock files stored in
a repository and any dependencies that are submitted for the repository using the De-
pendency submission API” [43]. Such dependencies are automatically identified by the
GitHub’s Dependabot [44], which scrapes all repositories and searches for common file
types housing information about a repository’s dependencies. Dependabot then aggre-
gates such files to compile a list of all dependencies. We collect the resulting list of de-
pendencies via the GitHub’s GraphQL API [45], which provides information about the
dependency graph of repositories.

Data collection process To build the GitHub dependency ecosystem, we query the
GitHub GraphQL API, using a recursive approach.

We first use the GH Archive [46], which records the public GitHub timeline and more
than 20 types of events, to detect the set of all repositories that were active, i.e. repositories
on which users made some actions, during the observation period spanning from the 1st
to the 31st of January 2020. This results in 2.3M repositories, of which we use an initial
sample of 200K repositories as seeds in our recursive approach.

We iterate through the list and query the GitHub GraphQL API to return the list of
dependencies of each seed. Then, we repeat this step on the list of new repositories we
found. The process continues until it converges, i.e. no new repositories are found.

Note that, for some repositories, the GitHub GraphQL API does not return any depen-
dencies. This could be due either to the repository not depending on any other repository
on GitHub, or to missing dependencies. As we cannot distinguish between the two sce-
narios, we consider repositories without incoming dependencies in our analysis only to
study the overall structure of the package dependency network (see the Results section),
as directly filtering them would cause to miss some or all of their dependency relations.

Finally, for each repository in our data, we also collect their metadata via the GitHub
REST API.

Metadata We use the GitHub REST API [47] to collect additional repository metadata:
the user type and the repository language. The user type is the type of user that owns a
certain repository. GitHub distinguishes between two user types: the type user, which in-
dicates individuals owning repositories with their personal accounts, and the type organi-
zation, which is related to shared accounts where an unlimited number of people can work
from one account at once. The repository language is the primary programming language
used to develop the project associated with a certain repository.

Data preprocessing and network representation The dataset includes a total of 529,430
repositories having 32,084,227 dependency relationships and 358,922 unique users. To
answer our research questions, we study the GitHub dependency ecosystem at two levels:
the repository level and the owner level.

Mehler et al. EPJ Data Science (2024) 13:35 Page 7 of 20

Table 1 Summary statistics of the repository (RDN) and the owner (ODN) dependency network

RDN ODN

N. repos/owner In degree Out degree In degree Out degree

std 6.8 89.7 1576.3 180.8 1473.8
min 1.0 0.0 0.0 0.0 0.0
25% 1.0 0.0 0.0 1.0 0.0
median 1.0 8.0 0.0 27.0 0.0
75% 2.0 104.0 1.0 148.0 1.0
max 408.0 1098.0 154,745.0 38,808.0 142,459.0

We start by modelling and preprocessing the repository dependency network (RDN).
Here, we represent the GitHub ecosystem as a dependency network, whose nodes are
repositories and links are dependencies. Links in this network are directed: given the
repositories i and j, we create a link eij starting from i and pointing to j if repository j
is dependent on repository i.

Starting from this network, we remove self-loops (a total of 8200), i.e. dependency re-
lations between a repository and itself, and extract the weakly connected component
(WCC) of the network, to avoid considering disconnected parts of the ecosystem in the
analysis. Our final repository network has a total of 527,422 repositories and 32,076,027
dependency relationships.

To uncover the influence relation of GitHub users and their repositories we aggregate
the RDN at the level of the repositories owners and build a owner dependency network
(ODN). The ODN allows us to uncover dependency relations among GitHub developers,
and thus highlights the overall influence each developer has in the GitHub ecosystem.

We first aggregate all repositories belonging to the same user into a single node. Given
the set of repositories RA and RB, belonging to owner A and B respectively, we then define
a new link eAB going from A to B, if any repository r′ ∈ RB is dependent on any repos-
itory r ∈ RA. Finally, we create the weighted directed network by weighting the link eAB

with the count of all the dependencies going from A to B, i.e. wAB = |{r′ ∈ RB|∃r ∈ RA :
r′depends on r}|.

For instance, let us examine the repository tensorflow/tensorflow in the RDN, which
relies on two packages from the same keras-team user: keras-applications and keras-
preprocessing. In the RDN representation, we observe three nodes, with both keras nodes
having an unweighted outgoing edge to the tensorflow/tensorflow node. In contrast, the
ODN condenses these three nodes into two, representing the owner of tensorflow/tensor-
flow and the owner of keras-applications and keras-preprocessing. These nodes are linked
by a single edge with a weight of 2, indicating the degree to which the first owner depends
on (and thus is influenced by) the code developed by the second owner.

Our final owner network has a total of 358,922 users and 16,313,939 dependencies. Ta-
ble 1 reports an overview of the summary statistics for the degree distributions (in and
out) of the two networks.

We use high performance network analysis packages graph-tool [48] and igraph [49] in
Python in the following analysis.

4 Results
4.1 The structure and organization of GitHub dependency ecosystem
We first map the structure of the GitHub ecosystem as a whole by studying the RDN at
the macroscopic level.

Mehler et al. EPJ Data Science (2024) 13:35 Page 8 of 20

Figure 1 Degree distributions and programming languages proportion of the two main components of the
network.: (a) out degree distribution of SCC and OUT; (b) difference in proportion of programming languages
in SCC and OUT with respect to the whole network

We are interested in understanding how dependencies tie different parts of the net-
work together and detecting its main components. To this aim, we analyse the WCC via
a bow-tie analysis, following the procedure described by Broder et al. [50], which aims at
identifying three main components in the network: (1) the strongly connected component
(SCC); (2) the IN component, which includes nodes that give dependencies to the SCC but
do not depend on the SCC; and (3) the OUT component, which includes nodes that are
dependent on the SCC but do not provide dependencies to it.

Note that some nodes in the WCC might not belong to any of these components. As we
are interested in the overall structure of the RDN, we disregard this set of nodes from our
component analysis.

The bow-tie analysis on the RDN yields two main components: a core, i.e. the strongly
connected component (SCC), where dependencies are mutually given between reposito-
ries, and an out component (OUT), i.e. a group of repositories receiving dependencies
from either the core or other repositories in the group but that do not provide any depen-
dencies to the core.

Note that we also find repositories belonging to the IN component. However, these are
repositories for which we do not have any information related to their dependencies. As
this could be due to missing information, we disregard the IN component in the following
analysis.

We find that the OUT component includes the vast majority of repositories in the net-
work (i.e. 94.5% which is about 331.6K repositories), while only 5.5% of repositories (i.e.,
19.4K) make part of the SCC. Both components display power-law-like distributions of
the out degree (Fig. 1(a)), indicating that the minority of repositories provide the majority
of dependencies.

Moreover, the repositories in OUT heavily rely on the SCC: 84.1% of all dependencies are
given by repositories in SCC to repositories in the OUT component. These dependencies
are not provided by a limited set of repositories that act as gatekeepers between the SCC
and the OUT component. Instead, about 90.1% of all nodes in SCC provides at least a
dependency to nodes in OUT.

We further characterize these main structures of the network in light of the repository’s
most prevalent language.

Mehler et al. EPJ Data Science (2024) 13:35 Page 9 of 20

Figure 2 Degree distributions. (a) in degree distribution of SCC and OUT; (b) in degree distributions of
JavaScript and Typescript repositories in the network

We compare the language distribution of each component to the one of the overall net-
work (Fig. 1(b)). While the OUT component mostly resembles the overall network, we
find that the SCC is mainly organized around JavaScript, having about 15% more repos-
itories in this language than the overall network. This is almost the opposite for Python
repositories, which are about 15% less likely to be in the SCC than in the whole ecosystem.

The difference in language distributions could suggest a relation between the typical use
of different coding languages and their accessibility. While Python frameworks are widely
used in different settings (e.g. Instagram, TensorFlow, etc.) it is often a beginner-choice
when approaching certain projects and as such it is generally more accessible than for
instance JavaScript.

This result is further supported by the analysis of the in degree distributions of the two
components (Fig. 2(a)). Here, we observe some irregularities in the shape of the distribu-
tions of both the SCC and OUT component. While both components show a higher prob-
ability of importing a number of dependencies for certain degree ranges (e.g. between 100
and 500), the OUT component also displays some peaks.

By investigating the repositories generating these peaks, we find that both JavaScript
and TypeScript offer pre-built project skeletons, which create a pre-set number of depen-
dencies to the same repositories on GitHub (Fig. 2(b)). This phenomenon is only related
to the OUT component, suggesting that repositories in JavaScript and TypeScript in this
part of the network are more likely to be made from pre-built and accessible code.

Finally, we study the two components in light of the their user type. We find that, in
proportion, organizations have a much higher presence than individual developers in the
core of the GitHub ecosystem: organizations own 47.8% of repositories in the SCC, while
this is the case for only 19.1% of the repositories in OUT.

Taken together, these results show that despite the open source organization of GitHub,
projects and, thus, dependencies are not equally distributed. The majority of projects ul-
timately depend on a very small subset of the entire ecosystem: a core, which consists of
a different language and user composition and that tends to be more professionally orga-
nized compared to the rest of the network. For now we home in on this core: If this core
creates the code on which the rest of the network depends, and it is differently organised
as well, it begs the question of a closer look at exactly how this core is organised, to which
we turn now.

Mehler et al. EPJ Data Science (2024) 13:35 Page 10 of 20

Table 2 Embeddedness. Average Embeddedness and standard deviation of nodes for the partition
achieved by different community detection algorithms. The highest value is reported in bold

Infomap Walk-Trap Leiden

Embeddedness 0.857± 0.22 0.939 ± 0.12 0.719± 0.23

Table 3 Percent of a community’s repositories which are organizations and the number of
repositories in each community. We report the community size together with the prevalence of
organizations (here Percent Organization). Communities are sorted by size

Community index 2 1 3 0 6 5 7 4 8 9 10 11 12 13

Community size 12,018 2517 1534 911 876 673 498 284 86 8 7 3 3 2
Percent Organization 43.9 53.4 41.5 62.8 53.4 64.3 74.5 67.7 38.4 100.0 100.0 0.0 100.0 0.0

4.2 The modular structure of the GitHub ecosystem core
Having identified that there is a marked difference in structure and composition of lan-
guages and actors between the SCC and rest of the GitHub ecosystem, we are now inter-
ested in understanding more closely how the core of the GitHub dependency ecosystem
is structured. To this aim, we identify the building modules of the SCC via state-of-the-art
community detection algorithms.

Previous research studying package dependency networks has typically used the Lou-
vain method to identify communities. Despite Louvain being one of the most popular
community detection algorithms, it may find badly connected communities [51]. Thus,
we consider Leiden as a modularity optimization approach, which is proposed as a better
alternative for Louvain [51] and compare it to Walk-Trap [52] and Infomap [53], which are
dynamical processes approaches [54]. For each method, we follow a grid-search approach
and find, when relevant, the set of best performing parameters.

We then compare the quality of the partition identified by the methods by computing the
embeddedness score [55]. We compute the embeddedness of a given community detection
algorithm as the average of the embeddedness of its nodes, i.e. the proportion of internal
and total degree of a node in the community. It is defined as:

embeddedness =
1
N

N∑

i=1

kic

ki
, (1)

where n is the number of nodes in the network, ki is the degree of a node and kic is the
within community degree of a node. Here, degrees are the sum of both in and out edges.

Table 2 shows the embeddedness score and its standard deviation for each community
detection algorithm. We find that the methodology achieving the highest embeddedness
score is Walk-Trap, followed by Infomap, and Leiden. We thus select Walk-Trap, which
divides the core of the RDN in 14 communities of different sizes spanning from a few
nodes, i.e. five communities under 10 nodes, to a few thousand, i.e. the biggest community
has 12,018 nodes. Table 3 shows the community size breakdown.

To shed light on the composition of these communities, we consider two aspects char-
acterizing their repositories: the programming language and the ownership.

Starting from the programming language, we find that, the uncovered communities are
mainly language-based, i.e. only one language characterizes the majority of repositories
in the community, and could map to more typical language ecosystems. In particular, we

Mehler et al. EPJ Data Science (2024) 13:35 Page 11 of 20

Figure 3 Coverage of top two languages in each community. We report the fraction of repositories in each
communities that are characterized by the first (blue) and the second (red) most frequent languages. Labels
on the x-axis refer to the first and second largest languages in each community respectively. Other languages
are shown in grey. Communities are displayed in order of size

find that only the largest JavaScript community, has its first language covering less than
80% of repositories in the community (see Fig. 3).

However, if we consider its second top language, we find that JavaScript together with
TypeScript make up 93.2% of the total number of repositories in the community. This
relation is consistent with TypeScript being superset of JavaScript: code developed in
JavaScript is valid TypeScript code, making these two languages interdependent.

While communities are primarily language-based, all communities (with more than
10 nodes) are characterized by more than one language. The presence of multiple lan-
guages in the communities could be due to the way projects and packages are developed
in GitHub. For example, the Python ecosystem has many popular repositories which are
based on C++, like Tensorflow. Additionally, C# and F# both exist within the .NET ecosys-
tem and have a Common Intermediate Language allowing streamlined connections be-
tween the two languages.

For our purposes of studying dependencies and thereby structural power-relations in
code production, these interactions between languages show that it is not sufficient to
consider one-language ecosystems. A point we return to in the discussion.

Finally, we investigate the composition of communities. Table 3 shows that organizations
are present in all communities to different levels.

Considering only communities with more than 10 repositories, the percentage of repos-
itories which are organizations ranges from 38% to 74%. Four out of five of the smallest
communities have a single owner, and thus have either 0% or 100% ownership by an or-
ganization.

We then select the top owners of each community and consider the number of reposito-
ries they have in the community compared to the average user in that community (Table 4).
While the top owners tend to be mostly companies, we find the presence of both individ-
uals and companies. Among the top owners which are companies we find well-known
private tech companies such as Google, and open-source companies, such as Apache.

The percentage of community owned by the top owner varies from 1.6% for bigger com-
munities to 100.0% for smaller communities. Despite the small absolute percentage ob-
served, the number of repositories owned by top owners is substantial when compared to
the average number of repositories owned (Table 4).

We show the relative difference calculated as (ntop – n)/n to represent the number of
times more repositories that the top user has (ntop) in comparison with the average user

Mehler et al. EPJ Data Science (2024) 13:35 Page 12 of 20

Table 4 Top owners in each community. We show the number of repositories owned by the first,
second, and third largest owners in the respective community as well as statistics regarding the
prevalence of the top owners in each community. Communities are displayed in order of size

Community Top First Second Third Other Top Owner Average Relative
index owner owner owner owner owners percent N. repos difference

2 Individual 1 408 198 94 11,318 3.4 2.6 157.0
1 googleapis 40 22 22 2433 1.6 1.6 23.5
3 rust-lang 34 33 24 1443 2.2 1.7 18.8
0 apache 110 27 20 754 12.1 1.7 63.4
6 ruby 37 21 21 797 4.2 1.9 18.9
5 hashicorp 45 22 17 588 6.7 1.8 24.2
7 symfony 52 24 22 400 10.4 2.7 18.2
4 dotnet 22 19 13 228 7.7 1.7 11.9
8 Individual 2 50 16 6 13 58.1 7.8 5.4
9 ProseMirror 8 0 0 0 100.0 8.0 0.0
10 blockdiag 7 0 0 0 100.0 7.0 0.0
11 Individual 3 2 1 0 0 66.7 1.5 0.3
12 ethereum 3 0 0 0 100.0 3.0 0.0
13 Individual 4 2 0 0 0 100.0 2.0 0.0

in a community (n). Take for instance the relative difference between the top owner of
community 2 corresponding to 3.4 percent ownership. Here, 408 repositories belong to
the same owner, which corresponds to almost 157 times more than the average owner
within the community (owning 2.6 repositories).

4.3 Influential owners in the ecosystem
Having found that there are specific owners that own relative large portions of core com-
munities, we want to focus more directly on the influential owners in the network. To
understand who the most influential developers are and how they shape the open source
environment of GitHub, we compute different measures of influence, i.e. centrality mea-
sures, on the ODN and select the top 50 users. In particular, we consider:

• Out degree centrality: it ranks nodes by their out degree, so that the higher the out
degree the more influential is the node. In the present case, an owner is influential if a
high number of users in GitHub depend on them. We consider this type of influence a
direct influence metric, as the user importance is visible within dependent repositories.

• Betweenness centrality: it is based on the concept of shortest paths and it is computed
by considering the proportion of shortest paths that pass through nodes in the
network. The higher the proportion the more influential is the node. We consider an
owner with high betweenness to act as an intermediary, connecting different parts of
the network by both depending on and providing dependencies to other nodes.

• Eigenvector centrality: it considers a node influential if it connects to other influential
nodes in the network. Thus, an owner’s influence is not solely determined by the
number of dependencies they give, but also by the other influential owners that
depend on them. As such, this can be interpreted as an indirect influence metric.

• PageRank: it is based on the concept that important nodes are likely to be connected
to other important nodes. It assigns a score to each node based on the number and
quality of incoming links it receives from other nodes and the rank of these nodes. To
compute this metric on the owner network, we switch the direction of links so that,
owners that give many dependencies to other highly ranked owners are considered
more important. While PageRank is connected to eigenvector centrality, in that it

Mehler et al. EPJ Data Science (2024) 13:35 Page 13 of 20

Figure 4 Top 50 owners by centrality measure Colors refer to different types of owners. For each centrality
metric, we report the fraction of owners of a certain type, i.e. individuals, open source, open-core, and
closed-source organizations, and others as a bar plot summarizing the owner types of each top 50 ranking

considers the importance of a node’s neighbors, it also heavily relies on the out degree
of nodes.

While GitHub provides a high-level characterization of users into two types (i.e. individ-
uals and organizations), we provide a fine-grained characterization of the top 50 owners
identified by the centrality measures through the following annotation task. We asked 3
independent annotators to inspect each owner profile, gather information about the type
of owner, and identify the presence of sponsorship methods (if any).

The annotators are instructed to classify owner types in individuals, i.e. GitHub users
that do not belong to any organization, open source organizations, not selling any prod-
ucts open core organizations, i.e. organizations selling services and features extending their
open source code, closed source organizations, private companies that mainly sells propri-
etary software and do not typically have open source products and other, e.g., universities,
governmental organizations, etc.

Sponsorship methods are defined as any service provided on the users GitHub page,
which is used to facilitate the payment of someone for their open source work.

Annotators are told to first look for the GitHub sponsor link with the pink heart in the
main owners page or in the sponsor section of one of their top repositories. If this exists,
they are listed as using GitHub as a sponsorship method. Thereafter, other sponsorship
methods are checked for in the same way. We did not provide a fixed list of sponsorship
methods, and annotators were free to create new labels for the new sponsorship method
found.

Through this approach we most repeatedly found the sponsor methods GitHub, Tidelift,
and Open Collective, which we separate out within our analysis, while less recurring meth-
ods are aggregated together in the analysis under the label Other.

Figure 4 shows that individuals are the most prevalent central owners when consider-
ing direct influence (i.e. out degree) and open source organizations are the most prevalent
when considering direct influence of their connections (i.e. PageRank).1 The same indi-
vidual is the most influential user for both Out degree and Pagerank, and has the highest
number of repositories in the largest community.

Despite the relatively large prevalence of closed and open-core users in eigenvector and
betweenness ranks, open-source organizations make up the largest proportion of influen-

1note that the closed source companies in second position of PageRank is actually GitHub with GitHub actions.

Mehler et al. EPJ Data Science (2024) 13:35 Page 14 of 20

Figure 5 Sponsorship method by type of owner. The radar plots show the percentage of (a) individuals and
(b) open source organizations with sponsorship methods in a certain ranking. Circles in the radar refers to the
fractions 0.2, 0.4, 0.6, 0.8, and 1. Closed source organizations and Other types of organizations are here
omitted as no type of sponsorship method has been found

tial users when considering all users within the top 50 of all metrics with 73 users, closely
followed by individuals with 64 users. These are relatively large compared to the 32 and 27
closed sourced and open-core users. This result indicates that open source organizations
and individuals are the main actors that provide dependencies to general repositories in
GitHub.

However, the presence of certain types of owners is more balanced in the case of eigen-
vector centrality. Here, we find a higher presence of closed source and open core orga-
nizations than in the other rankings. Among the most known private companies we find
Microsoft (2nd), Google (8th), Facebook (23rd), and Amazon (24th). The eigenvector cen-
trality measures how influential owners are in giving dependencies to other influential
owners. Thus, while private organizations do not provide the most direct dependencies
in the network they are generally better connected to other influential nodes than open
source users.

These results show that, while GitHub is typically imagined as an open-source space for
individuals and open source organisations, closed and open core organizations are present
and important to the ecosystem.

Finally, we find that most influential developers and open organizations on GitHub (by
Out degree and PageRank) provide ways for direct sponsorship.

In the case of individual developers, the main sponsor method found, is the function
directly provided by GitHub, but we also find Tidelift, Open Collective and other forms of
sponsorship in smaller proportions (Fig. 5(a)). While individuals dominate the use of dig-
ital sponsorship links, open source organizations use sponsor methods as well, although
in different proportions (Fig. 5(b)).

While GitHub remains the main sponsor method used, open source organizations tend
to use Tidelift and Open Collective slightly more than individuals. This observation is in
line with the characteristics of the sponsor types, where GitHub allows users to sponsor
individual developers directly, while Tidelift and Open Collective are platforms providing
ways to fund open source projects development and maintenance.

While the presence of sponsorship methods can be a good way for platforms like GitHub
to directly support and encourage developers, this indicates again a level for more pro-
fessional organization surrounding their coding practices and it indicates the prevalent
hybridisation of commodified and open source code.

Mehler et al. EPJ Data Science (2024) 13:35 Page 15 of 20

5 Discussion
In this study, we contribute a state-of-the-art network analysis to two growing fields of
literature by studying: (1) power relations of code production, through (2) package depen-
dency ecosystems. To this aim, we consider GitHub, a platform that plays a large role for
both F/OSS and commodified code production, and study its dependencies.

We find a small core of repositories that delivers the majority of dependencies to projects
in the whole of GitHub. The majority of GitHub projects, thereby, rely on a small subset of
the overall ecosystem. This result is in line with previous studies on package dependencies,
that have shown how, despite a large growth in the number of dependencies, the majority
of packages in different language-based ecosystems depend on a few core packages [26].

In contrast to most dependency studies, however, we do not limit our dependency
analysis to one programming language. It is, thus, interesting to note how this underly-
ing structure is preserved in the context of multiple programming languages and their
inter-relations. Our results clearly demonstrate that not all F/OSS repositories on GitHub
are equal in terms of influence, which contributes a quantitative perspective on power in
larger F/OSS ecosystems to studies focused on values or specific F/OSS communities.

Looking more closely at the repositories in the core in comparison to the others, we
find a difference in the language distribution. Some of this difference can be interpreted
through the roles different languages play within coding.

Take for instance Python which we pointed to in the results section. Python is less
present in the core than in the rest of the ecosystem; it is commonly cast as being a more
accessible and beginner-friendly language. As such, it is not far-fetched to think that one
common use for Python repositories are individually oriented learning- or beginner repos-
itories, not explicitly aimed at developing code that others would rely on.

Conversely, we find a strong presence of JavaScript and TypeScript within the core. This
is an interesting find, and could point to the popularity of open-source tweaked or “cus-
tom” solutions within these common languages for web-development. In other words,
there might be a large demand for such solutions outside Github that drives the devel-
opment of these repositories in JavaScript/TypeScript within the core. Such a hypothesis
points to further questions concerning the relation between open-source spaces and com-
mercialised coding spaces, for further studies.

In addition to the language difference, we observe a much higher proportion of the
owner type “organization” within the core. Such a finding might indicate that individual
projects turn into organizations as they become more popular, as for instance the Apache
Incubator. While this is a hypothesis, calling for further studies, we can establish that a
higher concentration of organizations within the core contributes to the conclusion that
the core is more specialized in comparison with the overall network.

In short, we find that this core is not only special in terms of facilitating a relative small
proportion of projects others rely on, but crucially, also that it is specialized (in terms of
language) and differently structured, with a higher weight of organizations (in terms of
ownership).

Overall, we thereby find what we could interpret as a Github-elite. While open source
project organization has been studied on a project basis, this finding of an elite within
the larger GitHub ecosystem is novel. It points to the necessity of understanding more of
the role that this Github-elite plays in code production within F/OSS spaces. Further, it

Mehler et al. EPJ Data Science (2024) 13:35 Page 16 of 20

nuances the view of the “Nebraska developer” as probably more than just a “random guy”.
It begs the question of further enquiry of who this elite is?

To consider this, we turn to uncover the communities within the ecosystem’s core. When
considering the owner distribution of repositories in different communities of the core, we
find both organizations and individuals as top owners of repositories within these com-
munities. In addition, we find that specific individuals own relatively high proportions of
communities, and that communities tend to map onto languages, although not entirely.

Considering the implications of these dependency structures in terms of influence
within code-production, we see a network organization in which specific individuals and
organizations play an influential role in a whole language base. This points to further ques-
tions for empirical studies of influence within relations of code-production, such as studies
considering why these owners are dominant. Is it because they were the first on the scene?
What would it mean for the chances of newcomers to become influential owners, and what
possibilities and restraints does this offer for private tech companies also present within
the F/OSS ecosystem?

Looking closer at the organizations that own a large proportion of repositories across
both communities and languages, as mentioned, we find well-known tech companies, such
as Google. As such, the interplay between languages is not only given by the direct depen-
dencies of projects, but also by the presence of certain actors in different language-based
ecosystems. This result provides insights on how private companies seem to incorporate
themselves in F/OSS dependency relations.

As noted, the literature considering the encroaching privatization—or hybridization—
of F/OSS and commodified code-relations, mentions these tendencies of private compa-
nies, but lacks an empirical attention to the ways in which hybridisation occurs. Here we
find one such way, through which large private companies seemingly successfully insert
themselves as large owners within the communities comprising the core of the GitHub
ecosystem.

In terms of infrastructural influence, we would expect the presence of large tech com-
panies in and across different language communities, to overlap with the strategies and
software development of these companies—at least to some degree. The finding of these
companies, as significant actors within different communities, therefore opens up a host of
new questions concerning the interplay and influence that such actors might have in these
communities—and in forming the relations between these communities—over time.

Taking the above finding as a point of departure for future studies looking at the de-
velopment of this network over time, would give important insights into how such actors
can or cannot influence these dependency relations. Are they stable structures once built?
Which translated into questions of power and influence, would give insights into the reach
and limits of power that private large tech companies have to influence these relations.

Finally, we have found individuals owning significant portions of repositories in core
communities within languages. This leads us to a last question: are individuals also im-
portant in terms of the influence they wield through their dependency connections? To
look at this, we turn to different types of influence measures.

When looking at direct influence, through the out-degree centrality, i.e. the amount of
dependencies given, we note how open source organizations and individuals are the most
influential. Relatedly, individuals also act as important intermediaries within the core.

Mehler et al. EPJ Data Science (2024) 13:35 Page 17 of 20

However, this changes when looking at eigenvector centrality. Here, closed source and
open core organizations are more present and provide indirect dependencies; what can be
considered an indirect power, not immediately obvious to the common user depending on
popular repositories. Looking at the specific closed organizations these entail the global
biggest tech companies (Google, Amazon, Microsoft etc.).

Overall, we observe an interesting dynamic. Open source organizations and individuals
are most prevalent when considering direct influence, while closed source organizations
become more prevalent when considering indirect forms of influence. This demonstrates
the specific ways in which encroachment of private companies into F/OSS space can hap-
pen. It is not immediately as visible as for instance the type of influence based on giving
many direct dependencies. However, it can potentially carry quite a big influence behind
the scenes, we thereby consider this an indirect form of power.

Noting this, we also study the sponsorship methods that owners have. Here, we find an
interesting correlation between the fact that many of individuals ranking highly in terms
of out degree and PageRank, also make use of sponsorship methods. This is, however, not
so evident for individuals that rank highly in terms of eigenvector centrality. We therefore
see a relation between direct dependencies—what most closely relates to visibility and
ways to turn F/OSS work into paid work.

6 Conclusions
In conclusion, our analysis reveals a hybridization of F/OSS and commodified coding prac-
tices at different levels. We find private tech organizations are integrated into the core of
the GitHub dependency ecosystem and exert an indirect influence vie their dependencies.
Additionally, individuals facilitating most direct dependencies within this core engage in
sponsorship to support their work, prompting a nuanced understanding of commodifica-
tion processes.

These findings nuance critiques of commodification processes within F/OSS as a uni-
directional capitalization of “free labour” (e.g., [16]) and show a close entanglement of in-
fluence and commodification that both private organisations and individuals engage with
in different ways, thereby opening up a new avenue of questions for studies of commodi-
fication processes.

Broader perspective Our analysis underscore the hybridization of F/OSS and commer-
cial coding practices, prompting a broader discourse on corporate encroachment in
open source. Politically, corporate influence over F/OSS projects raises concerns about
community-driven practices and participatory ideals. Economically, integration of F/OSS
components into commercial products may restrict access, impacting the freedom tra-
ditionally associated with F/OSS and the sustainability of independent contributors. In-
creased corporate involvement risks power imbalances, potentially limiting diversity, in-
novation, and meaningful participation of smaller contributors in open source develop-
ment.

Implications for future studies We propose three avenues for future research. Firstly, we
suggest broadening the scope of software dependency studies to include multi-language
communities and exploring dependencies as indicators of infrastructural power.

Secondly, investigating the historical development of dependency relations could shed
light on how certain individuals and companies gained the influence within the network

Mehler et al. EPJ Data Science (2024) 13:35 Page 18 of 20

that they have today. This perspective could highlight possibilities and limits for gaining
influence in code-production. This study thus provides a stepping stone for the nascent
field of infrastructural power within internet and communication studies [19, 21].

Lastly, we bring together discussions about value spheres and hybridization in software
production commonly “abstracted away” [16] by empirically going “close to the code” (for
other examples see Fourcade and Kluttz 2020 [10], Otto et al. 2023 [11]). By framing the
study of hybridisation as a multi-sphere field, we show how it is fruitful for future studies
of software power to consider F/OSS as entangled with commodified code production.

Limitations We acknowledge the following limitations. First, while the use of GitHub’s
public data is reasonable given our focus on open source, it captures only part of the
ecosystem. Second, self-selection bias may also affect our findings, as users marking de-
pendencies likely have a professional interest. Finally, we excluded repositories without
dependencies, potentially missing influential entities. However, we note that, while con-
servative, this approach maintains the reliability of our findings, highlighting the unequal
distribution of influence and the interplay between individuals, open source, and corpo-
rations on GitHub.

Abbreviations
F/OSS, Free and Open Source; RDN, Repository Dependency Network; ODN, Owner Dependency Network; WCC, Weakly
Connected Component; SCC, Strongly Connected Component; IN, IN Component; OUT, OUT Component; GDPR, General
Data Protection Regulation.

Acknowledgements
We would like to thank the annotators at the Copenhagen Center for Social Data Science (SODAS) of the University of
Copenhagen, and the ERC DISTRACT team, in particular Professor Morten Axel Pedersen and Professor Anders Blok for
their valuable input to previous versions of this article.

Author contributions
EO and AS designed the study and the research approach. PM performed the data analyses. All authors analysed the
results and wrote the paper. All authors read and approved the final manuscript.

Funding
This work is funded by H2020 European Research Council (grant number 834540) as part of the project “The Political
Economy of Distraction in Digitized Denmark”. This work has further been supported by DATAFIED LIVING (grant no.
947735).

Data availability
The dataset generated and analysed during the current study is not publicly available due to the general data protection
regulation (GDPR), but we share the minimal dataset that would be necessary to interpret, replicate and build upon the
findings reported in the article in a repository whose link will be shared upon acceptance.

Declarations

Ethics approval and consent to participate
The data collection process was approved by the European Research Council as part of running reviews of the overall
project of which this research forms part.
Following the minimization principle of the General Data Protection Regulation (GDPR), we only collected data related to
dependencies and metadata needed for the study on public repositories and users.
Based on the size of GitHub, and the wide recognition of such public repositories as part of a public online forum, it is
reasonable to assume that users do not consider GitHub as a private space, which would require a different ethical
consideration [56]. However, we do identify particular owners, and also manually annotate their information. As a number
of these owners are individuals, we consider our data as personal data according to GDPR. As such, we have followed the
requirements concerning personal data collection and storage.
Because of size of the data-set and the nature of the data, it was impossible to inform data subjects of the study directly.
Instead, we mitigate this by publishing the data processing on the research project website, in accordance with GDPR
protocols.
Further parts of this evaluation rest on the basis that the data processing was evaluated as non-intrusive, and we also
anonymize names of individual repository owners that we refer to in the paper.

Mehler et al. EPJ Data Science (2024) 13:35 Page 19 of 20

Competing interests
The authors declare that they have no competing interests.

Author details
1Copenhagen Center for Social Data Science, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen K,
Denmark. 2Center for Tracking and Society, Department of Communication, University of Copenhagen, Karen Blixens
Plads 8, 2300, Copenhagen, Denmark. 3Department of Computer Science, IT University of Copenhagen, Rued Langgaards
Vej 7, 2300, Copenhagen, Denmark. 4Università del Piemonte Orientale, V.le Teresa Michel, 11, 15121, Alessandria, Italy.

Received: 19 December 2023 Accepted: 22 April 2024

References
1. Barbrook R (1998) The hi-tech gift economy. First monday
2. Kelty C (2005) Geeks, social imaginaries, and recursive publics. Cult Anthropol 20(2):185–214
3. Coleman EG (2013) Coding freedom: the ethics and aesthetics of hacking. Princeton University Press, Princeton
4. Barbrook R (2002) The regulation of liberty: free speech, free trade and free gifts on the Net. Sci Cult 11(2):155–170
5. xkcd. Dependency; n.d. Available from https://xkcd.com/2347/
6. The Stack (2023) JavaScript library is EVERYWHERE. Its maintainer is broke. The Stack. Available from

https://www.thestack.technology/core-js-maintainer-denis-pusharev-license-broke-angry/
7. Stokel-Walker C (2014) The Internet Is Being Protected By Two Guys Named Steve. BuzzFeed. Available from

https://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-named-st
8. Collins K (2016) How one programmer broke the internet by deleting a tiny piece of code. QUARTZ. Available from

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
9. Birkinbine B (2020) Incorporating the digital commons: corporate involvement in free and open source software.

University of Westminster Press
10. Fourcade M, Kluttz DN (2020) A Maussian bargain: accumulation by gift in the digital economy. Big Data Soc

7(1):2053951719897092
11. Otto EI, Salka JH, Blok A (2023) How app companies use GitHub: on modes of valuation in the digital attention

economy. J Cult Econ 16(2):242–259
12. Sophus Lai S, Flensburg S (2020) A proxy for privacy uncovering the surveillance ecology of mobile apps. Big Data

Soc 7(2):2053951720942543
13. Blanke T, Pybus J (2020) The material conditions of platforms: monopolization through decentralization. Soc Media

Soc 6(4):2056305120971632
14. Geiger RS, Howard D, Irani L (2021) The labor of maintaining and scaling free and open-source software projects. In:

Proceedings of the ACM on human-computer interactio, CSCW1, vol 5. pp 1–28
15. Ghosh R (2006) CODE: collaborative ownership and the digital economy. MIT Press, Cambridge
16. Parikka J (2014) Cultural techniques of cognitive capitalism: metaprogramming and the labour of code. Cult Stud Rev

20(1):30–52
17. Mackenzie A (2018) 48 million configurations and counting: platform numbers and their capitalization. J Cult Econ

11(1):36–53
18. Helles R, Ørmen J, Jensen KB, Lai SS, Menchen-Trevino E, Taneja H et al (2018) A division of labor: the role of big data

analysis in the repertoire of internet research methods. AoIR Selected Papers of Internet Research
19. Flensburg S, Lai SS (2020) Mapping digital communication systems: infrastructures, markets, and policies as

regulatory forces. Media Cult Soc 42(5):692–710
20. Flensburg S, Lai SS (2022) Datafied mobile markets: measuring control over apps, data accesses, and third-party

services. Mob Media Commun 10(1):136–155
21. Helles R, Lomborg S, Lai SS (2020) Infrastructures of tracking: mapping the ecology of third-party services across top

sites in the EU. New Media Soc 22(11):1957–1975
22. Flensburg S, Lai SS (2021) Networks of power. Analysing the evolution of the Danish Internet infrastructure. Int Hist

5(2):79–100
23. Lertwittayatrai N, Kula RG, Onoue S, Hata H, Rungsawang A, Leelaprute P et al (2017) Extracting insights from the

topology of the javascript package ecosystem. In: 2017 24th Asia-Pacific software engineering conference (APSEC).
IEEE, New York, pp 298–307

24. Wittern E, Suter P, Rajagopalan S (2016) A look at the dynamics of the JavaScript package ecosystem. In: Proceedings
of the 13th international conference on mining software repositories, pp 351–361

25. Bommarito E, Bommarito MJ II (2021) An empirical analysis of the R package ecosystem. arXiv preprint.
arXiv:2102.09904

26. German DM, Adams B, Hassan AE (2013) The evolution of the R software ecosystem. In: 2013 17th European
conference on software maintenance and reengineering. IEEE, New York, pp 243–252

27. Serebrenik A, Mens T (2015) Challenges in software ecosystems research. In: Proceedings of the 2015 European
conference on software architecture workshops, pp 1–6

28. Wang Y, Wen M, Liu Y, Wang Y, Li Z, Wang C et al (2020) Watchman: monitoring dependency conflicts for python
library ecosystem. In: Proceedings of the ACM/IEEE 42nd international conference on software engineering,
pp 125–135

29. Hejderup J, Gousios G (2022) Can we trust tests to automate dependency updates? A case study of Java projects.
J Syst Softw 183:111097

30. Cogo FR, Oliva GA, Hassan AE (2019) An empirical study of dependency downgrades in the npm ecosystem. IEEE
Trans Softw Eng 47(11):2457–2470

31. Pfretzschner B, Ben Othmane L (2017) Identification of dependency-based attacks on node. js. In: Proceedings of the
12th international conference on availability, reliability and security, pp 1–6

32. Staicu CA, Pradel M (2018) Freezing the Web: a study of {ReDoS} vulnerabilities in {JavaScript-based} web servers. In:
27th USENIX security symposium (USENIX Security 18), pp 361–376

https://xkcd.com/2347/
https://www.thestack.technology/core-js-maintainer-denis-pusharev-license-broke-angry/
https://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-named-st
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
http://arxiv.org/abs/2102.09904

Mehler et al. EPJ Data Science (2024) 13:35 Page 20 of 20

33. Zimmermann M, Staicu CA, Tenny C, Pradel M (2019) Small world with high risks: a study of security threats in the
npm ecosystem. In: 28th USENIX security symposium (USENIX Security 19), pp 995–1010

34. Kikas R, Gousios G, Dumas M, Pfahl D (2017) Structure and evolution of package dependency networks. In: 2017
IEEE/ACM 14th international conference on mining software repositories (MSR). IEEE, New York, pp 102–112

35. Romero D, Huttenlocher D, Kleinberg J (2015) Coordination and efficiency in decentralized collaboration. In:
Proceedings of the international AAAI conference on web and social media, vol 9, pp 367–376

36. Blythe J, Bollenbacher J, Huang D, Hui PM, Krohn R, Pacheco D et al (2019) Massive multi-agent data-driven
simulations of the github ecosystem. In: International conference on practical applications of agents and multi-agent
systems. Springer, Berlin, pp 3–15

37. Yu Y, Yin G, Wang H, Wang T (2014) Exploring the patterns of social behavior in GitHub. In: Proceedings of the 1st
international workshop on crowd-based software development methods and technologies, pp 31–36

38. GitHub. GitHub Webpage; n.d. Available from https://GitHub.com/about
39. Decan A, Mens T, Claes M, When GP (2016) GitHub meets CRAN: an analysis of inter-repository package dependency

problems. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER),
vol 1. IEEE, New York, pp 493–504

40. Ma W, Chen L, Zhou Y, Xu B (2016) What are the dominant projects in the github python ecosystem? In: 2016 third
international conference on trustworthy systems and their applications (TSA). IEEE, New York, pp 87–95

41. Blincoe K, Harrison F, Kaur N, Damian D (2019) Reference coupling: an exploration of inter-project technical
dependencies and their characteristics within large software ecosystems. Inf Softw Technol 110:174–189

42. Blincoe K, Harrison F, Damian D (2015) Ecosystems in GitHub and a method for ecosystem identification using
reference coupling. In: 2015 IEEE/ACM 12th working conference on mining software repositories. IEEE, New York,
pp 202–211

43. GitHub. About The Dependency Graph; n.d. Available from https://docs.github.com/en/code-security/supply-chain-
security/understanding-your-software-supply-chain/about-the-dependency-graph

44. GitHub. GitHub Dependabot; n.d. Available from https://GitHub.com/dependabot
45. GitHub. GitHub GraphQL; n.d. Available from https://docs.GitHub.com/en/graphql
46. GH Archive; n.d. Available from https://www.gharchive.org/
47. GitHub. GitHub REST API documentation; 2022. Available from

https://docs.github.com/en/rest?apiVersion=2022-11-28
48. de Paula Peixoto T (2018) Graph-tool documentation. Available from https://graph-tool.skewed.de/
49. core team I (2022). igraph—The Netwotk Analysis Package. Available from https://igraph.org/
50. Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R et al (2000) Graph structure in the web. Comput

Netw 33(1–6):309–320
51. Traag VA, Waltman L, Van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep

9(1):5233
52. Pons P, Latapy M (2006) Computing communities in large networks using random walks. J Graph Algorithms Appl

10(2):191–218
53. Rosvall M, Axelsson D, Bergstrom CT (2009) The map equation. Eur Phys J Spec Top 178(1):13–23
54. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44
55. Lancichinetti A, Kivelä M, Saramäki J, Fortunato S (2010) Characterizing the community structure of complex

networks. PLoS ONE 5(8):e11976
56. Eysenbach G, Till JE (2001) Ethical issues in qualitative research on Internet communities. BMJ 323(7321):1103–1105

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://GitHub.com/about
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://GitHub.com/dependabot
https://docs.GitHub.com/en/graphql
https://www.gharchive.org/
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://graph-tool.skewed.de/
https://igraph.org/

	Who makes open source code? The hybridisation of commercial and open source practices
	Abstract
	Keywords

	Introduction
	Related work
	Power relations in free and open source code-production
	Package dependency ecosystems
	GitHub as an essential space for code-production and F/OSS code

	Data collection and description
	Dependency deﬁnition
	Data collection process
	Metadata
	Data preprocessing and network representation

	Results
	The structure and organization of GitHub dependency ecosystem
	The modular structure of the GitHub ecosystem core
	Inﬂuential owners in the ecosystem

	Discussion
	Conclusions
	Broader perspective
	Implications for future studies
	Limitations

	Abbreviations
	Acknowledgements
	Author contributions
	Funding
	Data availability
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note

