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Abstract
The escalation of urban traffic congestion has reached a critical extent due to rapid
urbanization, capturing considerable attention within urban science and
transportation research. Although preceding studies have validated the scale-free
distributions in spatio-temporal congestion clusters across cities, the influence of
travel demand on that distribution has yet to be explored. Using a unique traffic
dataset during the COVID-19 pandemic in Shanghai 2022, we present empirical
evidence that travel demand plays a pivotal role in shaping the scaling laws of traffic
congestion. We uncover a noteworthy negative linear correlation between the travel
demand and the traffic resilience represented by scaling exponents of congestion
cluster size and recovery duration. Additionally, we reveal that travel demand broadly
dominates the scale of congestion in the form of scaling laws, including the
aggregated volume of congestion clusters, the number of congestion clusters, and
the number of congested roads. Subsequent micro-level analysis of congestion
propagation also unveils that cascade diffusion determines the demand sensitivity of
congestion, while other intrinsic components, namely spontaneous generation and
dissipation, are rather stable. Our findings of traffic congestion under diverse travel
demand can profoundly enrich our understanding of the scale-free nature of traffic
congestion and provide insights into internal mechanisms of congestion
propagation.
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1 Introduction
Traffic congestion is characterized by slower vehicle speeds, longer trip times and in-
creased queuing of vehicles, often occurring when travel demand exceeds the road capac-
ity [1]. In 2022, the total cost of traffic congestion was over $81 billion in the US and £9.5
billion in the UK [2], making it a severe problem hindering urban development. Studies
have shown that under various internal or external disturbances, minor congestion can
potentially evolve into large-scale cascading reactions similar to a domino effect [3–5],
with unpredictable and severe consequences. In light of this, it is highly crucial to explore
factors that affect traffic congestion and understand its intrinsic characteristics, which can
contribute significantly to enhancing traffic planning [6, 7] and traffic management [8, 9].
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There have been adequate studies that approached the issue of congestion from the per-
spectives of demand and supply, focusing on factors such as travel demand [10–15], road
network supply [16–19], and network topology [20–23]. Other studies have examined how
resident travel patterns and transportation mode choices may influence the development
of congestion [24–26], or how the socio-economic attributes of cities, like population den-
sity [27–29] and land area [30–34], can shape the congestion. Besides, external factors
such as climate conditions also play a role in traffic congestion [35–37]. However, these
studies primarily employ simulation or machine learning methods, which exhibit limita-
tions in gaining insight into the fundamental principles governing urban traffic congestion.

To investigate further mechanisms governing urban traffic congestion in real-life scenes,
more researchers have recently turned to physical models from empirical data. The perco-
lation theory is widely used to model traffic congestion, providing valuable insight through
the analysis of critical percolation threshold [1, 38, 39]. The framework of urban scaling
law [40] is also promising since the scale-free distribution has been observed in many ur-
ban subsystems [41–43], as well as in the congestion percolation transition [44, 45]. The
concept reveals the self-similarity of a system, wherein the system exhibits similar behav-
ioral patterns at different spatial or temporal scales [46, 47]. This self-similarity means
rules on different spatial regions and time scales follow the same statistic, which has wide-
ranging applications in exploring nonlinear behaviors and self-organizing phenomena in
complex systems [41, 48–50]. In traffic congestion propagation within road networks,
jammed clusters can range from an entire area to a small section of road, lasting from
minutes to hours. And the urban scaling law can unveil their inherent nature by study-
ing their basic variables: cluster size for their spatial size and duration for their temporal
size [51–54]. One of the critical research by Zhang et al. verified that the distribution of
congestion cluster size and duration shows a scale-free property, independent of micro-
scopic details [53]. When the distribution of these metrics follows a power-law pattern, it
indicates the presence of similar congestion phenomena at various scales, rather than be-
ing isolated incidents [52, 55]. Furthermore, this pattern often reflects the self-organizing
nature and nonlinear behavior within complex systems [56, 57]. Therefore, by identify-
ing this power-law distribution, we can gain a better understanding of the dynamic char-
acteristics of traffic networks and how congestion emerges and spreads within the road
networks. This, in turn, facilitates more accurate congestion prediction and management,
enhances the efficiency of road networks, and supports the development of more effective
traffic policies.

However, despite Zhang et al.’s observations [53] claim that the power-law exponents of
size and duration distributions are stable on different workdays in different cities, there
are still some critical issues that need to be explored. Firstly, the study mentioned a higher
exponent during the significantly decreased travel demand but did not further analyze
possible influence from demand. Furthermore, the study primarily focused on the overall
distribution of congestion and did not delve into the propagation of congestion, which is
critical for understanding possible cascading diffusion under strong traffic demand [58].
Based on these considerations, our study aims to fill this gap by focusing primarily on the
scale-free property of traffic congestion and its propagation characteristics in different
travel demand levels.

Studying the impact of traffic demand on congestion may face challenges from the rel-
ative stability of travel demand in the city. Albeit there are some fluctuations in traffic
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volumes between weekends, holidays, and weekdays [53], the intensity of these variations
is often insignificant. While the long-term variations are usually accompanied by changes
in land use and urban morphology [59], making direct comparisons imprudent. The out-
break of COVID-19 and the corresponding lockdown, as a black swan event [60, 61], have
provided us with excellent empirical data. During the pandemic of COVID-19, travel de-
mand has undergone tremendous changes in the same urban setting, making it a natural
experiment to study the patterns and variations of traffic congestion in different travel
demands.

We conducted the research using real traffic data of Shanghai City from March 1st, 2022,
to July 1st, 2022, covering an entire period of the pandemic cycle with dramatically de-
creased and slowly recovered travel demand. Our result shows that the traffic resilience,
described by the distribution exponents of congestion cluster size and recovery duration
[53], linearly decreases as travel demand increases. Besides the exponents of distributions,
travel demand also brings about a significant impact on the scale of congestion, with a
sub-linear scaling relation to the aggregate volume and a modified scaling-like relation to
the number of congestion clusters. In microscopic consecutive periods, our results sug-
gest that rising demand will lead to a sharp worsening of congestion, demonstrated by
the super-linear scaling relation between the number of congested roads and vehicles on
the roads. Subsequent analysis demonstrates that cascade diffusion dominates such sharp
worsening, while other propagation components like spontaneous generation and dissi-
pation are rather stable. Our results show the critical role of travel demand, enable better
prediction and management of urban traffic and subsequently improve traffic efficiency
and sustainability.

2 Results
2.1 Scale-free distributions of traffic congestion cluster
We conducted our research using real traffic data from Shanghai covering the pandemic
period from March 1st, 2022 to July 1st, 2022. Shanghai is one of the largest cities in China,
characterized by an intricate road network and substantial traffic flow. From March 28th
to June 1st, 2022, Shanghai implemented a lockdown policy to stop the pandemic [62],
including suspension of the public transportation system and strict traffic permit control
for private vehicles. The fluctuations in travel demand resulting from the pandemic and
policies facilitated the availability of non-routine large-scale traffic data, providing us with
real traffic data under varying travel demands.

Considering congestion in urban areas often forms clusters through propagation, we
first construct spatiotemporal congestion clusters [53] for subsequent analysis. Specifi-
cally, the road network of Shanghai is abstracted into a directed graph where each node
represents a road segment, edges represent the adjacency relationships between road seg-
ments, and the direction of edges aligns with the direction of traffic flow. Therefore, con-
gestion can be viewed as a spatiotemporal cluster on the graph, where all spatial or tem-
poral connected congested road segments are assigned to the same jammed cluster, con-
structing multiple spatiotemporal jammed clusters within the road network of Shanghai
cross time (see Additional file 1, Sect. 2 for the details). All the red links within the shaded
area of Fig. 1A belong to the same cluster, an example of a spatiotemporal jammed cluster.
Note that, when a jammed cluster splits into two or more subgraphs at a certain time, all
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Figure 1 Spatiotemporal jammed clusters in Shanghai. (A) Illustration of the evolution of a jammed cluster in
Shanghai. Red links represent congested roads. All red links in the shadow belong to the same jammed
cluster. (B) The number of congested roads of the second largest jammed cluster on March 1st, 2022 in
Shanghai, where the y-axis is reversed to put the larger number at a lower location. The gray area is the size of
the spatiotemporal jammed cluster (S) shown in red in A. The timespan between t0 and t1 represents its
recovery time (T = t1 – t0). (C) The cluster size (S) of the first, second, and third largest jammed clusters on
March 1st, 2022 in Shanghai as a function of time

nodes within all subgraphs still belong to the same cluster since they are temporally con-
nected. This construction of jammed clusters intuitively reflects the propagation of traffic
congestion in both time and space, laying the foundation for subsequent analysis.

The schematic representation of the second-largest jammed cluster in Shanghai on
March 1st is depicted in Fig. 1B. The horizontal axis represents time, and the vertical axis
depicts the number of congested road segments within this cluster at each time t. To illus-
trate that the congestion is a deduction of traffic capacity and to align with the resilience
triangular, the y-axis is reversed to put the larger number at a lower location. The recovery
duration T of the jammed cluster is defined as the duration between the first congested
road segment of this cluster occurring t0 and the last congested segment dissipating t1.
Furthermore, the shaded region in Fig. 1B represents the temporal accumulation of con-
gested road segments, defined as the cluster size S. The specific jammed cluster gradually
increases to approximately 60 and then recovers to zero, leading to an accumulative S that
speeds up and then slows down. The temporal evolution of the size S of the three largest
jammed clusters on March 1st is shown in Fig. 1C, showing distinct characteristics. The
largest jammed cluster in pink persists throughout the day and dissipates completely after
18:00. While the jammed cluster in blue emerges during the morning rush hour, and the
jammed cluster in black develops during the evening rush hour.
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Figure 2 Illustration of scale-free distributions of jammed clusters under different total travel demand. (A) The
total travel demand in Shanghai as a function of date. (B) The distribution of the jammed cluster size S under
different total travel demand M. (C) The distribution of recovery duration T under different total travel
demand M

To further explore the impact of travel demand, we utilize the number of origin-
destination (OD) pairs, denoted as M, as a representation of daily travel demand (Fig. 2A).
It can be observed that following the outbreak of the pandemic, the travel demand in
Shanghai experienced a significant decrease of 92%, remained at a lower level during the
lockdown, and gradually recovered to a near pre-pandemic level after the policy was lifted.
Under such dramatically varying travel demand in a relatively short period, our dataset can
reflect the impact of travel demand on the traffic road system.

To further understand the spatial and temporal characteristics of a single jammed clus-
ter, we look into its size S and duration T . The S captures how spatially the congestion
ranges and the T captures how temporally it lasts. Considering that a jammed cluster
contains many stochastic factors, it is more important to examine their distribution on
the variation of traffic demand [44, 45, 53]. As shown in Fig. 2B,C, we observe signifi-
cant variations in both size and recovery duration of jammed clusters, which aligns with
previous research. We confirm that both cluster size S and recovery duration T follow a
power-law distribution, specifically

p(S) ∼ S–αS and p(T) ∼ T–αT (αS,αT > 0), (1)
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with parameters αS ∈ [2.40, 2.71] and αT ∈ [3.04, 3.48] respectively. The results are very
close to the 2.3 and 3.1 in Beijing and Shenzhen reported by Zhang et al. [53]

The ubiquity of scale-free distributions across different days suggests that despite vary-
ing demand, traffic jams exhibit the same self-organizing mechanisms. However, it is
equally noteworthy that scaling exponents αS and αT , representing traffic resilience, ex-
hibit significant differences across travel demand. During periods of high travel demand,
the scaling exponents are smaller. Whereas, during periods of low travel demand, the scal-
ing exponent of the distribution is larger (Fig. 2B,C). Note that smaller αS and αT mean
more prevalent larger jammed clusters and longer recovery duration, and the congestion
clusters are less vulnerable and harder to deal with. Therefore, it is reasonable to conclude
that higher travel demand is related to worse traffic congestion.

2.2 Travel demand and scaling exponents of congestion clusters
Since the scaling exponents capture the full picture of congestion, we further investigate
the correlation between the scaling exponents and the daily travel demand. As depicted
in Fig. 3A,B, a strong negative linear correlation exists between the scaling exponents and
the travel demand M, which holds true for both cluster size αS (Fig. 3A) and duration αT

(Fig. 3B):

αS = 2.7134 – 2.485 × 10–7M
(
R2 = 0.91

)
,

αT = 3.5078 – 3.844 × 10–7M
(
R2 = 0.94

)
.

(2)

These findings indicate that daily travel demand directly influences the magnitude of con-
gestion distributions. Specifically, an increase of one unit in travel demand results in a
corresponding decrease of 2.485 × 10–7 in the scaling exponent of jammed cluster size.
Likewise, with every unit increase in travel demand, we observe a decline by 3.844 × 10–7

in the scaling exponent for recovery duration. This means that the power-law exponent is
not stable as reported before [53], and the variation can be observed in the case of large
changes in travel demand.

Since the travel demand M represents a daily variation, we further investigate its rela-
tionship with the total congestion size Stotal, which is defined as the sum of all congestion
cluster size S and represents a cumulative measure of daily congestion. As demonstrated
in Fig. 3C, the Stotal exhibits a power-law growth with respect to M, following the relation-
ship:

Stotal = S0 · Mλ, (3)

where S0 = 1.00, λ = 0.78 (R2 = 0.94, 95% CI = [0.75, 0.81]). The observed sub-linear scal-
ing exponent λ < 1 suggests the growth rate of congestion is relatively slower than the cor-
responding increase of demand, implying the possible existence of self-organizing prop-
erties within the traffic network system. When travel demand grows, for instance, traffic
flow can be distributed throughout various road segments and time periods by changes to
routes and timetables, resulting in a comparatively slower growth in congestion.

Furthermore, by leveraging the quantitative relationship between M, αS and Stotal, we
can mathematically derive the relationship between the number of jammed clusters N
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Figure 3 Correlation between the power-law exponent of the spatial and temporal distribution of jammed
clusters and aggregate travel demand. (A) Correlation between the power-law exponent of the jammed
cluster size αS and the aggregate travel demand M. (B) Correlation between the power-law exponent of the
jammed cluster size αT and the aggregate travel demandM. (C) The scaling law of aggregate cluster size Stotal
and aggregate travel demand M. (D) The number of jammed clusters under different travel demand. The
theoretical values of N are calculated using Eq. (6)

and travel demand M. Assuming the size of a single cluster is denoted by S, the value of
summing up all daily values of Stotal can be represented as

Stotal = N ·E[S], (4)

where E[S] represents the expected value of a single cluster size. Given the power-law
probability distribution of p(S) ∼ S–αS , we have

E[S] =
∫ ∞

1
S · p(S) · dS =

1
αS – 2

, αS > 2. (5)

Given Eq. (2)(3)(4)(5), the relationship between N and M is obtained as

N = (αS – 2) · S0 · Mλ. (6)

It combines a power-law component Mλ and a linear component αS – 2. From Fig. 3D, it
is evident that the observed data aligns closely with the theoretical values (R2 = 0.96).

It can be observed in Fig. 3D that as the travel demand increases, the number of jammed
clusters also increases but at a steadily diminishing rate, similar to the sub-linear growth
of Stotal. This result indicates that the increase in travel demand initially leads to rapidly
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growing congestion when the road segments reach their capacity limit. However, as travel
demand continuously increases, the growth rate of N slows down. One possible expla-
nation is that as more congestion clusters occur, small clusters are more likely to merge
and limit the total number of clusters. Moreover, noting that our analysis represents the
congestion over a day, the temporal variations of travel demand may also contribute to the
result. The growth in travel demand during peak periods may be more pronounced, lead-
ing to a sharp increase in N . However, residents may correspondingly adjust their travel
periods to avoid peak, which results in a slowdown of congestion growth.

2.3 Scaling laws for the propagation of congestion
The linear relationship between demand and scaling exponents implies that travel demand
directly influences the micro-mechanism of congestion cluster formation. Therefore, we
examined the microscopic level of congestion propagation, aiming to enhance the under-
standing of this dynamic process.

To examine congestion in successive periods, we track the total number of congested
roads, denoted as C, at five-minute intervals between 6:00 a.m. and 11:00 p.m. For fine-
grained traffic demand, we calculate the total number of vehicles on the road network V
corresponding to each time interval, using a moving average of three intervals for noise
reduction. Unlike Stotal and M for daily aggregation, C and V represent the congestion and
demand at any given time slot respectively, forming the microscopic perspective of con-
gestion. This facilitates a more detailed observation of the travel demand and congestion
over consecutive periods.

Figure 4B illustrates the scatter plot of C versus V on double logarithmic axes, re-
vealing an obvious power-law relation with the exponent γ of approximately 2.10 (R2 =
0.89, 95%CI = [2.06, 2.12]):

C = k · V γ . (7)

Note that in contrast to the sub-linear scaling of Stotal and M during the whole day, con-
gested roads C increase with vehicles on road V with a super-linear scaling pattern, which
means slight increases in travel demand can rapidly elevate the number of congested roads
and exacerbate traffic congestion. It is also interesting that the scaling exponent γ falls be-
tween 2 and 3 for congested road networks, similar to other complex networks such as
social networks [63–65], urban road networks [66, 67], and so on.

To further examine the cascading propagation of congestion, we differentiate C into
three distinct components based on the real scenarios of traffic congestion and relevant
literature: 1) congestion generated through cascade diffusion, denoted by F , which is the
accumulation number of congested roads that are connected to pre-existing congestion; 2)
congestion generated spontaneously, denoted by I , which is the accumulation number of
congested roads that arise spontaneously; 3) dissipation, denoted by R, which is the accu-
mulation number of roads that were congested but subsequently recovered. The distinc-
tion of C into diffusion (F), spontaneous congestion (I), and recovery (R) is based on real
scenarios. Typical congestion would start from a spontaneously congested road (I) asso-
ciated with sporadic factors such as traffic accidents and construction projects [1, 68, 69].
Then, the congestion would diffuse (F) with traffic flow and road network topology, which
may persist for extended periods during peak hours [23, 70]. Finally, the congested roads
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Figure 4 Power law relationship of road congestion on March 1st in Shanghai. (A) A demonstration of
cascading progress in the traffic network. Color represents the state of road segments, including spontaneous
congestion (pink), cascading diffusion (red), existing congestion (orange), and dissipation (blue). (B)
Power-law relationship between the total number of congested roads C and the travel demand V
(represented by the number of vehicles recorded) in consecutive periods. (C) Illustration of the scaling
relationship between the number of congested roads generated by diffusion, denoted as f and the total
number of congested roads C . (D) Illustration of the scaling relationship between the number of
spontaneously generated congested roads I and the total number of congested roads C . (E) Illustration of the
scaling relationship between the number of dissipating roads R and the total number of congested roads C

will gradually recover (F), reflecting the self-healing capability of the transportation sys-
tem. Traffic congestion exhibits such dynamic spatiotemporal patterns, and analyzing the
temporal and spatial changes of different types of congestion helps provide a more com-
prehensive understanding of congestion patterns. This, in turn, allows for a more precise
determination of measures needed to alleviate congestion. Figure 4A illustrates a sam-
ple of cascading progress and the corresponding components. Naturally, the sum of these
three parts equals C:

C = F + I – R. (8)

Since the diffusion component F is an extension from pre-existing congestion and in-
herently has an incremental property, we reformulate it using the newly added diffusive
congested roads, denoted by f . The f directly captures the propagation rate of congestion
at a given time, offering more information about congestion [4, 71–73]. The equation can
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be reformulated as:

C =
∑

f + I – R, (9)

We then examined the relationship between C and its three components f ,I ,R from our
empirical data (Fig. 4C,D,E). The results show that all three components show a power
law to the total number of congested roads on any given day.

f = kf Cβf , I = kICβI , R = kRCβR . (10)

Taking data on March 1st as an example, results shows that f obeys sub-linear growth to
C with βf = 0.514 ± 0.011, (R2 = 0.92). While I and R is approximately linear to C with
βI = 0.998 ± 0.003, (R2 = 0.88) and βR = 0.997 ± 0.007, (R2 = 0.89). The result is stable over
different dates and travel demand (refer to Additional File 1, Sect. 5 for more information).

The results show that both I and R demonstrate almost linear relationships with C,
meaning they keep proportional to C despite dates and demand. For spontaneously gen-
erated component I that serves as seeds of congestion clusters, this proportion can be
related to relatively stable road capacity and recurring congestion [74]. Regarding the dis-
sipation component R, the constant proportion suggests the dissipation is independent of
present congestion and can be simply described by a dissipation rate [3]. As for the sub-
linear scaling of diffusion f , one plausible conjecture is that the network topology may
impose constraints besides the intrinsic diffusion dynamics, similar to what has been ob-
served in urban amenities [42, 67]. Further investigation into the topology structure may
provide more insight into it.

Based on the existing results, we examine how the three components determine the
power-law relationship of C and V by determining key coefficients k and γ . Starting with
the difference in congested roads in different demand scenarios, we have a differential
form of the congestion propagation:

dC
dV

= f +
dI
dV

–
dR
dV

. (11)

While Eq. (11) cannot be solved for an analytic expression, an approximation can still be
derived under the empirical data showing βI ≈ 1 and βR ≈ 1. Based on Eq. (10), (11), we
can obtain

k ≈ kf (1 – βf )
1 – kI + kR

,γ ≈ 1
1 – βf

, (12)

with both k and γ are determined by the coefficients and exponents of components (See
Additional File 1 Sect. 4 for more information).

Figure 5A,B,C show that the values of βf , βI , and βR exhibit relatively stable distribu-
tions in all observed days (βf = 0.515 ± 0.002, βI = 0.996 ± 0.002, βR = 0.996 ± 0.002).
Considering the drastic changes in daily demand M, the observation suggests a univer-
sal connection in congestion components over consecutive time. The observed empirical
data of k and γ is illustrated in Fig. 5D,E, alongside their corresponding theoretical values
obtained through Eq. (12). Notably, Eq. (12) indicates that both k and γ are solely cor-
related with βf , demonstrating the dominant role of cascade diffusion in the growth of
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Figure 5 Distribution of fitted exponents for the 123 different days and the theoretical and empirical values
for k and γ as a function of date. (A) Distribution of the scaling exponent βf with kernel density estimation.
(B) Distribution of the scaling exponent βI with kernel density estimation. (C) Distribution of the scaling
exponent βR with kernel density estimation. (D) The theoretical (gray) and empirical (purple) values of k as a
function of date. The shadow areas represent the 95%CI of k. (E) The theoretical (gray) and empirical (blue)
values of γ as a function of date. The shadow areas represent the 95%CI of γ

congestion. The reciprocal-like relationship between γ and βf demonstrates how a sub-
linear growth of cascading diffusion leads to super-linear growth of total congested roads.
These scaling laws enable us to comprehend the micro-scale mechanism underlying con-
gestion across different travel demand, making it conceivable that universally applicable
strategies for congestion management may exist.

3 Discussion
Traffic demand has always been one of the key factors when examining traffic conges-
tion [10–15]. Our primary contribution lies in discovering a universal scaling law that
constrains the spatiotemporal scale and propagation patterns of congestion in cities un-
der varying travel demand. In this research, we identify the crucial role of travel demand
in the scaling laws of urban traffic congestion. Based on the real traffic data during the
COVID-19 pandemic in Shanghai, we extend our research on the power-law scaling of
urban traffic congestion and reveal the relationship between traffic congestion and travel
demand at the macroscopic congestion cluster and the microscopic congestion propaga-
tion.

Compared to the study by Zhang et al. [53], we have utilized more recent traffic data
to verify the power-law distribution in scenarios with varied traffic demand. Our results
illustrate that changes in traffic demand directly affect traffic resilience, with a negative
linear relationship that has not been reported before. Such results suggest that conges-
tion can be predicted and intervened by managing travel demand, and proper mitigation
resources and policies should be designed for different demand levels. Furthermore, the
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sub-linear power-law relationship between traffic demand and the total congestion size
demonstrates resilience within the transportation system [75]. More efficient and frugal
methods and policies could be developed under the guidance of such resilience. It is also
interesting that the scaling exponent γ , between the number of congested roads and the
number of vehicles, falls between 2 and 3. One of the possible explanations is the preferen-
tial attachment mechanism commonly used to model a dynamic network. A small fraction
of congestion bottlenecks within the traffic network attracted newly congested segments
driven by demand, establishing the super-linear growth pattern. The initial bottlenecks
and subsequent attachments form the cascading propagation. Although we have not con-
ducted any direct analysis to support such a hypothesis, we believe that future modeling
based on it may provide a detailed analysis of the internal mechanisms.

At the micro level, the super-linear growth pattern of congested roads highlights the po-
tential of significant congestion arising from minor increases in travel demand, in line with
the cascading dynamics of congestion [58]. Using the cascading failure framework [4], we
discover a stable proportion of spontaneous generation and dissipation across dates and
demand levels, implying it can be hard to ease congestion by speeding dissipation or re-
ducing spontaneous generation. However, the sub-linear scaling relation between diffu-
sion and congested roads indicates that diffusion increases relatively slower, and blocking
cascading diffusion through appropriate early intervention could be an essential path to
avoid cascading diffusion and change congestion distribution. Our result is of great the-
oretical interest since it can link the cascade diffusion to the scaling law framework and
illustrate that the cascade diffusion rate is decisive to the power-law of congestion.

The two distinct power-law growth exponents we have observed at the cluster level
and road level hold significant implications. Although total congestion cluster size is sub-
linearly scaling with daily travel demand, the congested road number is a super-linear
scaling to short-term travel demand. Similar paradoxical scaling laws have been found
in other areas of urban research [76]. For instance, there is a sub-linear or linear relation-
ship between building area and population in various administrative districts of Shanghai.
However, a super-linear scaling law emerges between building area and population among
more administrative districts over time [77]. Studies have also revealed that different scal-
ing relationships can arise due to variations in the definition of cities [78–80] or differences
among groups [81]. This difference means we should consider targeted measurements and
management on different space or time scales.

Specifically, the sub-linear growth at the daily clusters suggests that people have more
flexibility and adaptability to avoid peak hours by choosing alternative transportation
modes or changing their schedules, resulting in a lower growth rate than the travel de-
mand. Therefore, it is essential to consider people’s flexibility and adaptability for long-
term planning to alleviate traffic pressure. Persistent measures like encouraging alterna-
tive transportation choices, optimizing public transportation systems, and implement-
ing differentiated road tolls help alleviate overall congestion pressure and ensure effi-
cient, safe, and sustainable urban transportation development. However, the super-linear
growth within consecutive time intervals is related to the cascade diffusion, leading to
the rapid emergence of road bottlenecks and congestion spread. Hence, short-term re-
sponse and quick interventions are necessary, including monitoring fluctuations in traffic
flow on highly connected roads and promptly identifying potential bottlenecks. Such dis-
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tinct managing strategies are based on the different characteristics in different time scales,
leading to distinct traffic optimization directions.

Regarding the observed power-law growth pattern of congestion with traffic demand,
our data only provide observations from one city focusing on the demand changes. Due
to constraints related to data availability and research resources, our research exclusively
utilized traffic data from Shanghai during the COVID-19 pandemic. Unlike minor fluc-
tuations in traffic demand under normal conditions, this unique dataset provided us with
an opportunity to investigate congestion patterns throughout the entire process of a sig-
nificant decrease in traffic demand to recovery, thereby establishing a link between traffic
demand and congestion. With more urban data, we can verify if similar congestion pat-
terns exist in other cities in future work. Besides, although we utilized data including the
period before the lockdown (March 1st to March 28th) and after the lockdown (June 1st
to July 1st), the COVID-19 pandemic may have drastically altered our cities and making
the comparison using multi-year historical data an important aspect. Furthermore, the
authorities implemented traffic control measures like checkpoints during the lockdown,
which could potentially impact the occurrence and propagation of traffic congestion. Al-
though most lockdown policies are mainly achieved by reducing travel demand, which
is covered in our study, the subsequent effect on other aspects, like travel mode prefer-
ence [82], should be carefully examined in the future. Other factors, such as road network
topology and traffic flow heterogeneity, can also be included to describe the congestion dy-
namics. Unexpected weather conditions, road incidents, ongoing construction, and road
capacity can all affect the relationship between travel demand and traffic congestion. In
future research, our analytical framework can be extended to encompass a broader range
of urban contexts, enabling its application to multiple cities. It is promising that big traffic
data will continue to enhance our understanding of traffic congestion and contribute to
effective strategies for managing transportation systems.

4 Materials and methods
4.1 Traffic dataset
Our research is primarily based on travel Origin-Destination (OD) data and road conges-
tion index data (0 for congested, and 1 for normal traffic flow) with a resolution of 5 min in
Shanghai. The dataset covers a time period of 123 days from March 1st to June 1st, 2022,
collected through floating car records in Shanghai. The data are sourced from a large map
service provider. In addition, we have collected topological data on the road network of
Shanghai from the OpenStreetMap [83], which includes the adjacency relations among
major roads in Shanghai. The dataset contains over 32,000 road segments, along with the
lists of outbound and inbound roads for each segment.

4.2 Definition of spatiotemporal jammed clusters
Based on the topological information of the road network in Shanghai, we define a spatial-
temporal network GT . G is a directed connected graph, representing a snapshot of the
graph at time T . And T is a period comprising a set of consecutive time slots. The edges
in E represent road segments and the nodes in V represent the adjacencies of the road
segments. The direction of edges is the same as the direction of congestion propagation,
and the opposite direction of traffic flow. In the first snapshot, denoted as t0, all connected
road segments form the initial jammed cluster. For each subsequent snapshot t, the newly
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Table 1 List of Symbols and Description

Symbol Description Symbol Description

S Cluster size αS Scaling exponent of S
T Recovery Duration αT Scaling exponent of T
M Total daily travel demand Stotal Total number of cluster size
N Daily number of jammed clusters V Travel demand represented by vehicles on the road
C The total number of congested roads γ Scaling exponent of C
k Normalization constant of C F Number of congested roads due to diffusion
f Number of newly-added diffusive

congested roads
βf Scaling exponent of f

I Number of spontaneously generated
congested roads

βI Scaling exponent of I

R Number of dissipating roads βR Scaling exponent of R

congested road segments connected to the previous snapshot are grouped into the same
jammed cluster. Within the time period from t0 to tn, congested and connected road seg-
ments are included in the same jammed cluster. Therefore, the jammed cluster at snap-
shot t represents the spatio-temporal distribution of road congestion at time t. It should
be noted that if two jammed clusters are connected during the diffusion process, they
are considered as the same jammed cluster. Ultimately, multiple jammed clusters are ob-
tained within the time period from t0 to tn, representing the distribution of congestion
throughout the day (refer to Additional File 1, Sect. 2 for detailed definition). The full list
of symbols is shown in Table 1.

4.3 Parameter fitting methods
The fitting of the power-law distribution is accomplished through the powerlaw package
[84] in Python. We used the ordinary least square (OLS) method to fit the data and esti-
mated parameters of the power function as previous literature [53, 85]. The power func-
tion is defined as y = axb, where a and b are parameters, x is the independent variable, and
y is the dependent variable. The principle of fitting involves minimizing the error between
the power function and real data utilizing ordinary least squares estimation.

min
a,b

∑

i

(
log(yi) – b log(xi) – log(a)

)2. (13)

The selection of OLS method is grounded in the minimal variance and absence of het-
erogeneous fluctuations in our dataset, where OLS reliably delivers reasonable and easily
interpretable outcomes. However, in scenarios characterized by substantial variance and
heteroscedasticity, alternative methods such as probabilistic models [86] ought to be ex-
plored. Please refer to Additional File 1, Sect. 3 for more details.
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