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Abstract
The selection of research topics by scientists can be viewed as an exploration process
conducted by individuals with cognitive limitations traversing a complex cognitive
landscape influenced by both individual and social factors. While existing theoretical
investigations have provided valuable insights, the intricate and multifaceted nature
of modern science hinders the implementation of empirical experiments. This study
leverages advancements in Geographic Information System (GIS) techniques to
investigate the patterns and dynamic mechanisms of topic-transition among
scientists. By constructing the knowledge space across 6 large-scale disciplines, we
depict the trajectories of scientists’ topic transitions within this space, measuring the
flow and distance of research regions across different sub-spaces. Our findings reveal
a predominantly conservative pattern of topic transition at the individual level, with
scientists primarily exploring local knowledge spaces. Furthermore, simulation
modeling analysis identifies research intensity, driven by the concentration of
scientists within a specific region, as the key facilitator of topic transition. Conversely,
the knowledge distance between fields serves as a significant barrier to exploration.
Notably, despite potential opportunities for breakthrough discoveries at the
intersection of subfields, empirical evidence suggests that these opportunities do not
exert a strong pull on scientists, leading them to favor familiar research areas. Our
study provides valuable insights into the exploration dynamics of scientific
knowledge production, highlighting the influence of individual cognition, social
factors, and the intrinsic structure of the knowledge landscape itself. These findings
offer a framework for understanding and potentially shaping the course of scientific
progress.

Keywords: Scientists’ exploration; Knowledge space; Topic-transition behavior;
Gravity model; Radiation model

1 Introduction
Throughout their academic careers, scientists must confront a multitude of choices when
it comes to selecting their research topics. These decisions wield a substantial influence
over their academic productivity, impact, and overall career trajectory. Nobel laureate
Chen Ning Yang shared a valuable insight during a symposium at the University of Chi-
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nese Academy of Sciences [1]. He emphasized that, particularly for emerging scientists,
the decision to persist in a particular field may not directly dictate their career’s level of
achievement. However, the wise selection of research topics and research directions holds
paramount significance. In his words,

Pursuing a direction that leads to an impasse can be a treacherous endeavor, as the
deeper one delves, the more arduous it becomes to alter course. Diverting from an
unproductive trajectory is no simple feat, making persistence in a barren direction a
most regrettable choice.

On a broader scale, the choices made by scientists in terms of topic selection and transi-
tion impact the development of the entire scientific ecosystem. Understanding the intri-
cate motivations and multifaceted influences that guide scientists’ decisions in the process
of selecting research topics presents a substantial challenge in unraveling the behavioral
patterns and internal mechanisms that underlie these choices.

Scientists’ choices of topics can be illuminated as the persistent endeavors of cogni-
tively constrained individuals within the intricate expanse of knowledge [2]. This pursuit
adheres to the principle of “no free lunch”. Owing to the inherent tension between accu-
mulating academic accomplishments and fostering innovation, scientists grapple with the
delicate task of balancing conventional and pioneering research fields [3]. Diverse strate-
gies employed in the process of topic selection yield markedly distinct outcomes, impact-
ing both personal development [4–6]and scientific progress [7]. Consequently, various
levels of behavioral risk must be contemplated. To unravel these intrinsic conundrums,
prior investigations have empirically validated and dissected the trade-offs scientists en-
counter during their exploration, focusing primarily on individual scientists’ topic selec-
tion and their relationship with academic performance within their respective research
fields [8, 9].

The exploration within the realm of knowledge reflects a complex interplay of scien-
tists’ decision-making behaviors. The selection of research topics is shaped by individual
volition and concurrently influenced by the collective dynamics within the specific knowl-
edge field. In contrast to the early days of modern scientific development, characterized
by a limited number of scientists who primarily pursued research based on personal in-
terests, contemporary scientific progress has witnessed a proliferation of participants and
a diversification of topic matter [10, 11]. This expansion inevitably renders the process of
selecting research topics susceptible to the impact of social factors. As government en-
tities, corporations, and diverse social organizations have increasingly assumed central
roles in funding scientific research, the defining characteristics of the scientific establish-
ment have become more pronounced. In this era of ‘big science’, scientists’ choice of topics
is not solely propelled by personal aspirations and inclinations. It is equally shaped by a
spectrum of social behaviors such as following, learning, emulating, and conforming to
prevailing trends.

Aligning research interests within scholarly groups has the potential to accelerate scien-
tific outputs, increase scholarly impact, and improve access to scholarly resources. This, in
turn, serves the advancement of individual scholarly careers. However, it is important to
remain vigilant that the advancement of science depends on groundbreaking discoveries
and trendsetting contributions. An overemphasis on conforming to popular trends and
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crowd-sourced research selection may lead to stagnation within the broader scientific re-
search and innovation ecosystem [12], potentially resulting in a scenario where resources
are allocated without commensurate progress.

The central question is whether scientists should opt for popular research areas that
attract widespread attention or explore an uncultivated territory of research fields. It con-
cerns the patterns of behavior that scientists exhibit when moving between topics within
or across the research field. Can these patterns be quantified and further explained by a
simple mechanistic model of group behavior? A comprehensive understanding of these
issues can shed light on the strategic choices and risk preferences of scientists, provide
deep insights into the underlying mechanisms of scientific development, and serve as a
valuable basis for the design of research management policies.

To gain a deeper understanding of knowledge spaces and scientists’ exploratory be-
haviors within them, we draw inspiration from Geographic Information Systems princi-
ples. The analysis of human mobility patterns in physical space has provided valuable in-
sights [13]. Recent advancements in machine learning, especially in representation learn-
ing algorithms, have opened up opportunities for measuring knowledge distance between
research subfields and help us better quantify the intricate and abstract knowledge spaces
of disciplines [14], underpinning the empirical study of the collective mobility behavior of
scientists.

Therefore, to bridge the gap in understanding scientists’ topic selection and transition
patterns at the population level, this study builds on the foundation of constructing a scien-
tific knowledge space as a research field map, and attempts to integrate complex network
analysis methods, machine learning algorithms, and geographic information analysis the-
ories to understand the collective knowledge creation process in the scientific ecosystem.
The main research contributions of this paper are as follows:

(1) Within the framework of constructing a knowledge space, scientists’ papers are em-
bedded in this space based on the topical distance. The knowledge space is partitioned
into the grid and the Voronoi diagram subfields, using both equidistant and equal-density
approaches. Scientists’ trajectories are constituted of published papers and merge into
Origin-Destination (OD) flows that effectively encapsulate scientists’ exploration patterns
in the knowledge space. The analysis of these topic selection and transition trajectories,
when rooted in the entire scientific field space, provides novel insights for quantifying sci-
entists’ topic-changing. Including activities such as online socializing, web searching, and
gaming, all of which involve complex and abstract spaces, the methodological approach
in this study can potentially be extended to quantify individual-level or population-level
mobility in virtual spaces with fine granularity.

(2) When exploring the flow of scientists’ publication trajectories across different sub-
fields within the knowledge space, it is evident that the distance traveled by scientists as
they move between topics follows a log-normal distribution. This observation is particu-
larly pronounced in the context of Voronoi diagram-based field partitioning. This broad,
“heavy-tailed” distribution suggests that scientists’ inter-field movement patterns, while
predominantly characterized by short-range transits, also include occasional long-range
transitions. It is noteworthy, however, that these patterns do not exhibit a “scale-free” be-
havior, underscoring that the majority of scientists tend to change their subfields with
cautious, short-range transits.



Liu et al. EPJ Data Science           (2024) 13:27 Page 4 of 20

(3) Intriguingly, the study reveals that the gravity model, which takes into account fac-
tors such as population size and the distances between starting and ending points, offers a
more robust explanation and prediction of scientists’ topic selection and transition within
the knowledge space. In the quest to unravel the underlying mechanisms governing scien-
tists’ topic-transition patterns at the group level, this study introduces two distinct group
exploration models: the distance-based “gravity” model and the opportunity-based “ra-
diation” model. Our finding implies that the fundamental driving force behind scientists’
topic selection and change is the research hotspots generated by the density of scientists
in a given region. Conversely, the inhibiting factor is the knowledge distance between dis-
tinct fields. While research opportunities may exist at the intersection of subfields, this
factor does not significantly influence scientists’ decisions to change their research focus.

In Sect. 2, we describe the use of the dataset, the framework for constructing a knowl-
edge space, the tessellated diagram types of spatial partitioning, the gravity model, the
radiation model, and corresponding evaluation metrics. In Sect. 3, we use complex net-
work and representation learning techniques to construct a knowledge space for physics
using the American Physical Society (APS) dataset and identify paper positions. We then
use the grid and Voronoi diagram to delineate sub-field regions, capturing the population-
level mobility of scientists in the knowledge spaces. To disclose the underlying mechanism
of scientists’ inter-field OD flow, we introduce the gravity model and the radiation model.
Then we test and validate the explanatory and predictive capabilities of these models on
the mobile patterns of scientists in the knowledge space. In Sect. 4, we discuss our find-
ings with studies on human mobility patterns in real and virtual spaces and other related
works. Finally, in Sect. 5, we summarize our main findings, highlight research limitations,
and suggest future directions.

2 Materials and methods
2.1 Dataset
The major part of this paper focuses on the field of physics and utilizes the journal litera-
ture dataset provided by the APS [15]. In exploring the topic-transition behavior patterns
of scientists, more than 258,000 papers published in APS journals from 1985 to 2009 were
used. Taking into account the impact of authors and the percentage of the number of pa-
pers, 13,720 scientists in the field of physics with more than or equal to 16 publications,
involving 450,290 publication records, were eventually selected. Author and paper records
were preprocessed and provided by Sinatra et al [16]. The selection of scientists is based
on the fact that although the number of scientists with 16 or more publications accounts
for only 13.1% (13,720/104,483) of the dataset of this study, the number of their papers
accounts for 82.4% (209,473/254,117).

Our findings have also been further extended to Computer Science, Chemistry, Biology,
Social Science, and Multidisciplinary Science with Microsoft Academic Graph (MAG)
[17]. Leveraging the comprehensive “fields of study” classification system provided by the
MAG [18], we extract a dataset encompassing 4,752,206 authors and 4,391,220 papers as-
sociated with the label “Computer Science”, spanning from 1948 to 2019. Subsequently, we
focus on a subset of 180,339 highly productive scientists, each with a minimum of 10 pub-
lished papers within the domain. The Chemistry dataset encompassed 9,568,741 authors
and 6,916,260 papers labeled “Chemistry”, covering the period until 2019. We focus our
analysis on 117,960 prolific scientists who had published at least 30 papers, totally involved
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with 4,048,890 papers. The Biology dataset, comprising 9,731,092 authors and 7,157,231
papers categorized as “Biology” in MAG, covered the same timeframe. We finally identify
164,871 highly active scientists, whose papers count greater than or equal to 30, and their
4,701,836 papers. The Social Science dataset consisted of 740,196 authors and 765,709 pa-
pers published in journals belonging to the SAGE publishing group, spanning the period
from 1965 to 2019. Our analysis focuses on 19,105 scientists, whose number of published
papers is larger than or equal to 10, and their 237,278 papers in this domain. Further-
more, we construct a multidisciplinary dataset encompassing scientific publications from
five prominent journals representing diverse research areas: Nature, Science, Proceedings
of the National Academy of Sciences, Nature Communications, and Science Advances.
This dataset comprises 948,180 authors and 562,998 papers published between 1869 and
2019. We identify 22,842 scientists, who had published at least 10 papers, contributing to
a collective body of 295,888 papers in this area.

2.2 Construction of knowledge space
In the context of the scientific innovation system, a crucial aspect of the collective be-
havior of scientists corresponds to their decisions and transitions in research directions
within the epistemic landscape. The establishment of an accurate and valid knowledge
space serves as the basis for determining the distance at which scientists’ interests change.
Given the stable characteristic of most physical subfields [19], we construct a knowledge
network of physics disciplines by utilizing the co-occurrence relationship between Physics
and astronomy classification scheme(PACS)codes and their co-occurrence frequency in
each paper published in APS journals. This network consists of 874 secondary PACS codes
as nodes and co-occurrence relationships between PACS codes as connected edges. Con-
sidering the elimination of the influence of the absolute difference in frequency between
PACS codes, we further take the square root of the inverse of the joint probability of PACS
code i and PACS code j appearing in a paper at the same time as the weight value wij of
the network, and the calculation process is shown in Eq. (1):

wij =
1√

( fij
fi

· fij
fj

)
=

√
(fifj)
fij

, (1)

where the fi and fj are the cumulative edge frequencies in the network connected to node
i and node j, respectively. The network’s modularity, calculated at approximately 0.506
through a community detection algorithm [20], signifies the presence of distinct commu-
nity structures within the field of physics. This implies that physics can be divided into
several closely related subfields with relatively sparse interconnections between them. We
then apply Node2Vec [21] and the UMAP manifold learning algorithm [22] to create a
knowledge map of physics.

Furthermore, to eliminate the potential influence of choosing representation methods
for our observed patterns in this study, we utilize Doc2Vec [23], a widely used document
embedding technique, to extract high-dimensional features from the title and abstract
of research papers belonging to the other five disciplines. This approach ensures consis-
tency across different disciplines and minimizes bias introduced by specific representation
learning methods. The constructed map represents the research field and benefits from
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representation learning to uncover knowledge structure and manifold learning for virtual
spatial analysis. Overall, this approach facilitates embedding and visualizing the scientific
landscape and offers a foundation for quantifying scientific research movements within
the knowledge space.

2.3 Tessellated models of space: grid and Voronoi diagram
To comprehensively analyze the topic selection and transition of scientists, the follow-
ing step involves partitioning the knowledge space into distinct regions and identifying
the “geographic units”. In real-world geographic spaces, people often adopt administra-
tive districts as their fundamental research units. However, these pre-defined districts do
not exist within the realm of knowledge spaces. Consequently, in this section, the knowl-
edge space is divided into spatial regions based on the principles of “equal distance” and
“equal density”, with subsequent comparison of scientists’ behavioral patterns. Tessellated
models of space, including grid and voronoi diagrams, serve as potent tools for the repre-
sentation and analysis of spatial arrangements [24]. They offer a unified research frame-
work for comprehending the knowledge space. In this study, we employ those two distinct
spatial region delineation approaches to understand the impact of the knowledge space
delineation method on our research conclusions.

The grid diagram approach involves partitioning the entire knowledge field map into a
series of grid regions, with each grid region spanning a 1° interval in knowledge space. This
results in a total of 90 grid regions arranged in a 10×9 configuration, of which 73 available
non-empty grid regions were associated with the specific research areas addressed in this
study.

On the other hand, the voronoi partitioning approach utilizes the spatial distribution
of high-frequency PACS codes within co-occurrence networks to define the knowledge
space. Initially, we identify the top 10 high-frequency PACS codes within each subfield
region and designate their centroid positions as the focal points in the voronoi diagram
field. These 90 positions were instrumental in generating the boundaries of the voronoi
diagram.

The main difference between these two methods is their spatial division approach. The
grid diagram method divides space into uniform grid points, maintaining an isometric
structure. On the other hand, the voronoi diagram, determined by the high-frequency
PACS code, divides space based on isodensity, aligning with the heterogeneous distribu-
tion of the population. In this study, we will perform statistical analyses of scientists’ group
mobility OD flows and use predictive modeling to analyze trajectory patterns under both
tessellated modes of knowledge spatial region.

2.4 Models of OD flow prediction: gravity model and radiation model
The measure of “OD flow distance” is based on the geographical distance between two
points, a metric extensively applied in the field of human mobility research [25, 26]. When-
ever this study involves operations that depend on distance or area, we consistently employ
a projected coordinate reference system (CRS) with the authority code “EPSG:4326”. This
ensures that all operations are conducted on a plane.

The Gravity Model [27] and the Radiation Model [28] are two prominent mathematical
models employed in human mobility and migration studies. These models aim to eluci-
date the population-level patterns of movement between different locations. The Gravity
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Model is predominantly distance-based, while the Radiation Model additionally incorpo-
rates factors like competition for destinations and accessibility.

Specifically, the gravity model, inspired by Newton’s gravitational formula, suggests that
the flow of exploration by groups in different regions is directly proportional to the size of
the regional group and inversely proportional to the square of the distance accessible be-
tween regions [29]. The model was also the firstly used in the field of geography to explain
group migration. The mathematical expression of the general gravity model is shown in
Eq. (2):

Tij =
(mα

i )(nβ

j )
f (dij)

, (2)

where Tij denotes the flow of people between location i and location j, mi and nj denote
the total population of location i and location j, respectively. dij denotes the distance be-
tween locations i and j. α and β are adjustable exponential variables and α = β = 1 in our
settings to keep the gravity model simple. f (dij) is a damping function set according to
different empirical data, such as a power-law function f (dij) = dγ

ij or exponential function
f (dij) = e(γ ·dij). Depending on the constraints, gravity models can also be categorized into
models under one-way and two-way constraints. This type of constrained model can more
accurately estimate and predict total inter-regional flows by fixing the population from lo-
cation i to location j (output model) or the number of people entering (attraction model).
The gravity model estimates the parameters using the flow data provided as input, employ-
ing a Generalized Linear Model (GLM) that utilizes Poisson regression, as introduced in
[13, 30].

Inspired by the opportunity model, Simini et al. [28] propose a radiation model that
more accurately predicts population movement. They claim that the radiation model not
only predicts the average flow between two locations but also captures the variability of
the flow compared to the gravity model. Specifically, the mathematical expression of the
radiation model is given in Eq. (3):

〈Tij〉 =
Ti(minj)

(mi + sij)(mi + nj + sij)
, (3)

where 〈Tij〉 denotes the average population flow between location i and location j and
Ti ≡ ∑

(j �=i) Tij. Compared to the gravity model, an additional parameter sij has been intro-
duced. This parameter represents the population (or employment opportunities) outside
of locations i and j within a distance of dij. It signifies the potential opportunities within
the range from location i to location j that attract people to move.

The gravity model is a one-way constraint model that predetermines the population size
at the origin while incorporating power-law and exponential damping functions to capture
varying distance effects. In contrast, the radiation model is a parameter-free model, and
we directly apply Eq. (3) for conducting simulation experiments.

2.5 The evaluation metrics of the population-level human mobility model
To quantify the performance of population-level models in this study, we then introduce
a set of evaluation metrics. Human mobility model evaluation metrics are specifically de-
signed to gauge the level of consistency between a model and actual human mobility data
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Figure 1 The constructed knowledge space in Physics. a. The PACS code co-occurrence network. b. The
embedded knowledge graph of PACS code co-occurrence network

within spatial contexts. Beyond the common metrics such as R-squared, root mean square
error, Spearman’s correlation coefficient, and Pearson’s correlation coefficient, the evalu-
ation metrics for human mobility behavior models also encompass distinctive measures
for assessing the convergence of human mobile activities [31].

These measures include the Common Part of Commuters (CPC), which quantifies the
proportion of individuals with overlapping trajectories, the Common Part of Commuters’
Distance (CPCd), which represents the fraction of overlapping distances traveled, and the
Common Part of Links (CPL), which indicates the extent of overlap in mobility paths.
Detailed formulas for computing these three metrics can be found in Eqs. (4)–(6):

CPC(T , T̃) =
∑n

(i,j=1) min(Tij, T̃ij)
N

= 1 –
1
2

∑n
(i,j=1) |Tij – T̃ij|

N
, (4)

CPCd(T , T̃) =
∑∞

(k=1) min(Nk , Ñk)
N

, (5)

CPL(T , T̃) =
2
∑n

(i,j=1) 1(Tij>0) · 1(T̃ij>0))∑n
(i,j=1) 1(Tij>0) +

∑n
(i,j=1) 1(T̃ij>0)

. (6)

Among the three formulas mentioned earlier, the symbols T and T̃ represent the actual
flow and model-predicted flow values between locations i and j, respectively. N refers
to the overall population flow, while Nk denotes the number of individual movements
occurring between distances in the range of 2k-2 to 2k. The variable 1x takes on a value of
1 when condition x is met, and it is 0 otherwise.

These indicators evaluate the precision of the model’s fitting or predictions, considering
three essential factors: the population size, the knowledge distance, and the particular
routes. These scores are instrumental in identifying the model’s strengths and limitations,
as well as its adaptability for a specific human movement context at the population level.

3 Results
3.1 Knowledge space and trajectories in physics
Using the embedded PACS code co-occurrence network as a foundation, we create a
knowledge space within the field of physics. By merging the node PACS code labels and
the community tagging data, the results are depicted in Fig. 1.

In Fig. 1(a), the physical subfields that share a community not only show remarkable
proximity but also exhibit distinct clustering characteristics on the knowledge map. Each
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Figure 2 The illustration of scientists’ trajectories in the knowledge space. a. The distribution of papers in the
physical knowledge field. b. Moving trajectories of two Nobel laureates [36, 37]

node in Fig. 1(a) corresponds to a PACS code, where the node’s size is determined by the
number of connecting edges. The nodes are distinguished by different colors representing
the identified 9 subfields. In this context, a higher co-occurrence frequency between PACS
codes translates into a shorter distance in the network, thus indicating a closer knowledge
relationship between those specific PACS codes. This is evident in the network as nodes
belonging to the same community or a particular subfield are grouped closely together.

In addition, the knowledge space is established based on the Node2vec algorithm with
the parameters of dimensions = 64, walk length = 30, and number of walks = 200. We
further test the stability of the node2vec algorithm with various parameters and metrics
provided in [32]. As shown in Fig. 1(b), it effectively preserves the distinctions between
different subfields. For example, the left side of the overall space is dominated by subfields
related to condensed matter and statistical physics, and the right side is characterized
by two subfields representing nuclear physics and astrophysics. It demonstrates that it is
reasonable and effective to use the graph-embedded method to construct a knowledge
map of physics.

After establishing the PACS code coordinates, we extract labeling information connect-
ing authors’ papers with PACS codes. Using this data, we calculate the center of mass for
each paper, allowing us to position them on the knowledge map.

The distribution of papers in the physical field within the knowledge space is depicted in
Fig. 2. In the knowledge map of Fig. 2(a), scattered dots represent papers and colors indi-
cating 9 subfields in physics. The topological structure of the field knowledge space, along
with the location information of each paper on the map, serves as the foundational basis
for quantitatively analyzing scientists’ topic-transition. Figure 2(b) illustrates the publica-
tion trajectories of two Nobel Prize laureates, Wolfgang Kettler (left, blue) and Leo Esaki
(right, pink), within the physics field knowledge space. Wolfgang Kettler’s Nobel Prize-
winning contributions are in the realm of trapping cold atoms and reaching absolute zero,
fundamental to the study of condensed matter within atomic physics. By observing his
publication trajectory, we observe that his research encompasses nearly all subspaces of
atomic physics. Leo Esaki’s significant accomplishment lies in the discovery of the quan-
tum tunneling effect in semiconductor materials, a key component of the superconductiv-
ity subfield in physics. In contrast to Wolfgang, Esaki’s scientific exploration appears more
focused on his research trajectory.
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Figure 3 The aggregated inter-flow of scientists in the knowledge space under two types of tessellations
(inter-flow ≥ 150, the color gradient of the sub-region from blue to red indicates the incremental increase of
relevance, calculated by the relative population size across all regions)

Figure 4 Distribution of scientists’ mobility characteristics in grid space. a. Distribution of the number of
scientists or papers (inset plot) in each grid area. b. A Log-norm distribution of the number of grid tiles for
each scientist and its corresponding fitting plots (inset plot). c. A well-fitted Log-norm distribution of OD flows
from origin to destination

These findings underscore the divergent topic-transition trajectories of scientists within
physics, despite their significant contributions to the field. This variation is likely at-
tributed to the distinct research fields they inhabit. For the physics community as a whole,
it remains fascinating to unravel the statistical patterns governing the selection and tran-
sition of research topics.

3.2 The non-scale-free pattern of the aggregated inter-flow of scientists in the
knowledge space

When a researcher’s paper transitions from one region of knowledge space to another,
we can trace a sequence of origin and destination points within the region, mapping a
trajectory from point i to point j. As we introduced before, we employ a partitioning of the
knowledge space into two categories: the grid diagram and the Voronoi diagram, following
the spatial division principles of Geographic Information System analysis.

Figure 3 illustrates these divisions: solid lines demarcate boundaries, circles signify cen-
tral positions, while white connecting edges represent OD flows between regions, where
the volume of flow is larger than 150. In addition, the color gradient of the sub-region
from blue to red indicates the incremental increase in relative population size, relevance,
compared to the other regions.
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Figure 5 The survival distribution function CCDF of the OD distance for scientists’ mobility in the knowledge
space, comparing two distinct approaches to diagram partitioning

In Fig. 4, we present essential statistics on scientists’ mobility within a grid space. It
includes the distribution of the number of scientists or papers at each grid region (see
Fig. 4(a)), the distribution of the number of scientists’ knowledge tiles (see Fig. 4(b)), and
OD flows between two regions (see Fig. 4(c)). Moreover, as depicted in the inset plot of
Fig. 4(b) and Fig. 4(c), using the power-law distribution fitting method proposed by Al-
stott et al. [33], our analysis reveals that the number of grid tiles associated with each sci-
entist, and the corresponding OD flow patterns, exhibit log-normal distributions rather
than scale-free characteristics.

Figure 5(a)-(b) depicts the distribution of OD flow distances originating from and end-
ing at scientists’ locations under grid and Voronoi diagram partitioning methods. We also
apply power-law and log-normal function fitting to the Complementary Cumulative Dis-
tribution Function (CCDF) of these OD flow distances. Furthermore, the insets in Fig. 5
illustrate the density distribution of people within each spatial region.

Our analysis reveals that scientists’ OD flow distance distribution exhibited more log-
normal features than power-law characteristics under both the grid diagram and the
Voronoi diagram methods. Notably, the Voronoi diagram partitioning method yields su-
perior log-normal distribution fitting results compared to the power-law fit. This heavy-
tailed distribution suggests that scientists’ inter-field exploration patterns are not notably
‘scale-free’, despite being characterized by short-distance transitions for the majority and
long-distance transitions for the minority.

3.3 Models of scientists’ topic-transition behavioral patterns
Delving into the social factors that influence scientists’ decisions to change their research
topics is key to understanding the dynamics of scientific progress. To what extent can we
predict scientists’ topic-transition? Addressing this question requires a deep exploration
of the behavioral mechanisms underlying group-level mobility patterns within the knowl-
edge space. Building upon the established knowledge space and scientists’ publication tra-
jectories, we introduce two models within the framework of GIS analysis methodology:
the gravity model and the radiation model.

Figure 6 presents a comparison between actual OD flows and model-predicted flows
across various types and parameters of population-level models. Gray points represent the
correspondence level between observed and predicted flows for scientist topic-transition
behaviors at each pair of starting and ending points. Box plots illustrate the 0.5-fold in-
terquartile ranges, offering insights into data concentration intervals. White upward tri-
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Figure 6 The predicted OD flow results of scientists’ topic transition models in the knowledge space. Grey
dots and blue box plots: Marking and estimating the measured flux between the Model generated (Two
gravity models, a radiation model, and a baseline model) against the real flow. The white triangle-up marker
corresponds to the mean number of predicted points in that bin. A blue line y = x lies in the plot as the
benchmark

Figure 7 The original and three predicted probability density function (PDF) of OD distance in collective-level
scientists’ topic transition models

angular symbols pinpoint the mean values of this dataset, and a green diagonal reference
line represents a perfect alignment between actual and model results. The baseline model,
where the damping function employs a γ parameter set to 0, effectively nullifying the im-
pact of distance difference, performs the poorest in prediction accuracy. In contrast, both
gravity models outperform the radiation model. The Box plot reveals that the exponen-
tial damping function in the gravity model yields superior predictions compared to the
power-law damping function.

Figure 7 displays the observed OD distance density distributions in knowledge space
alongside three model-predicted distributions. Our analysis reveals that the gravity model
again offers a superior capability of explanations and predictions for the patterns of sci-
entists’ topic-transition within the knowledge space, compared to the radiation model. To
ensure the robustness and consistency of our findings, we conduct experiments involving



Liu et al. EPJ Data Science           (2024) 13:27 Page 13 of 20

Figure 8 The results of robustness experiments of scientists’ topic transition model in the knowledge space.
a–b. A fine-grained Voronoi diagram of knowledge space with 258 subspaces and its predicting results of
topic-transition models. c. The predicting results of topic-transition models under the experiment of
randomizing papers’ coordinates. Grey dots and red box plots: Marking and estimating the measured flux
between the Gravity or Radiation Model generated against the real flow. The white triangle-up marker
corresponds to the mean number of predicted points in that bin. A blue line y = x lies in the plot as the
benchmark

adjustments to the division scale of the field knowledge space and introduce randomized
experiments in various contexts. These results serve to scrutinize the model predictions
further.

In our scale-reconfiguration experiments (see Fig. 8), we alter the scale of subfield re-
gions by different multiples and subsequently reevaluate the topic-transition pattern of
scientists as well as the predictions from the simulation model. Figure 8(a) illustrates the
subdivision of the Voronoi diagram into smaller segments, expanding the high-frequency
10 PACS codes from each subfield community to 30 PACS codes, creating 258 non-empty
subspaces. Figure 8(b) compares actual OD flows with model predictions at this scale set-
ting, showing the continued superiority of gravity models over the radiation model.

In the null model experiments, three scenarios were tested: (1) randomizing authors’
publication date order to remove sequential timing effects, (2) random perturbation of
paper coordinates in the knowledge space, and (3) maintaining the author’s publication
frequency while randomly selecting the same number of papers. Figure 8(c) demonstrates
the diminished results of scenario 2 in the randomized experiment, highlighting the signif-
icance of keeping original publication coordinates in the knowledge space for predicting
OD flows. The simulation results of scenarios 1 and 3 are not shown but close to scenario
2.

It’s important to note that the key distinction between the gravity and radiation models
lies in key factors that drive scientists’ mobility in the knowledge space. The gravity model
emphasizes the impact of distance between subfield regions on topical transition, while
the radiation model focuses on attraction or repulsion based on potential research gaps
between subfield regions. Our findings suggest that the distance between subfields and
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the number of scientists in research subfields significantly influence scientists’ movement
more than the potential research ‘opportunities’ between subfields. Although peripheral
research areas between subfield regions are crucial for scientific progress but pose risks, as
their outcome is unpredictable. This uncertainty may contribute to the radiation model’s
reduced predictive accuracy, while the gravity model aligns with most scientists’ conserva-
tive and ‘hot-spot-tracing’ research strategy when selecting or transiting research topics.

3.4 Null model experiments and robustness test of results
We systematically assess the effect of different parameters or experimental settings on
model performance, including subfield region division granularity, damping function
types, and randomized permutations in authors’ trajectories. In addition, we introduce
multiple model evaluation indices to compare experimental results comprehensively.

As summarized in Table 1, we deploy experiments with specific groups to evaluate
model predictions against real results under various experimental conditions. Experiment
groups 1–4 and 17–20 correspond to basic experimental settings depicted in Figs. 5-8.
Experiment groups 5–10 and 21–26 involve randomized experiments with grid-based
diagram and Voronoi-based diagram division, respectively, aligning with the above null
model experiments. Experiment groups 11–16 explore model evaluation with grid region
granularity reduced and expanded by a factor of 1. Experiment groups 27–32 pertain to
modeling the Voronoi diagram subregions, involving adjustments to the number of high-
frequency PACS codes and corresponding sub-regions. Furthermore, we consider the im-
pact of coordinate scale transformations on experimental predictions, with experiments
33–35 representing scaled experiments.

Cross-validating across different model evaluation metrics minimizes bias inherent to
a single metric. Of particular interest is the CPC indicator, widely used in the studies
of human mobility behavior at the collective level, measuring explorer’s overlap trajec-
tories between origins and destinations in real or model-predicted data. The colored
(blue) number indicates the best-performing results of the models within the same group.
The group is categorized based on data input and model settings, including the baseline
model(BSL), publishing order randomized experiments(Rand), and tessellation scaled ex-
periments(Scale). By comparing various model evaluation metrics in Table 1, we deduce
five key findings:

(1) Regardless of the grid partition type and subregion granularity, two gravity models
significantly outperform the radiation model, predicting over 30% more real OD flows
and 25% more trajectories. The baseline model, which does not consider distance factors,
produces the poorest predictive results, with CPC indices of only 0.391 and 0.424 in the
grid and Voronoi diagram cases, respectively.

(2) In the scale experiments, while the predictive power of the gravity model decreases
with a smaller unit area granularity and increases with a larger granularity, overall, the
scaling of the model does not significantly impact predictive performance. The minimum
CPC index remains around 0.75.

(3) Regarding the three sets of null model experiments, only the model generated by
shuffling the order of authors’ publications shows a slight decrease in predictive perfor-
mance compared to the baseline model, with a decrease of only 0.01 in the CPC index.
However, the two models created by randomly shuffling all paper coordinates exhibit a
noticeable drop in predictive performance for real OD flows, with a reduction of 0.23 in
the CPC index.
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Table 1 The aggregated results of the evaluation indexes of two population-level models and null
models

Id Network
Type

Robust
Exp.

Model Model
Para.

R2 RMSE Spearman
Coef.

Pearson
Coef.

CPC CPCd CPL

1 Grid BSL Baseline - 0.088 269.57 0.475 0.324 0.391 0.006 1
2 Grid BSL Gravity exp 0.888 94.625 0.906 0.944 0.8 0.011 1
3 Grid BSL Gravity pl 0.887 94.778 0.935 0.943 0.82 0.011 1
4 Grid BSL Radiation - –0.541 350.498 0.843 0.729 0.534 0.007 0.755

5 Grid Rand1 Gravity exp 0.878 98.478 0.913 0.94 0.794 0.011 1
6 Grid Rand1 Gravity pl 0.892 92.805 0.932 0.945 0.818 0.011 1
7 Grid Rand2 Gravity exp 0.527 1914 0.761 0.73 0.572 0.011 1
8 Grid Rand2 Gravity pl 0.527 191 0.761 0.731 0.572 0.011 1
9 Grid Rand3 Gravity exp 0.529 193.76 0.762 0.732 0.573 0.011 1
10 Grid Rand3 Gravity pl 0.53 193.635 0.762 0.733 0.573 0.011 1

11 Grid Scale1 Gravity exp 0.828 22.865 0.775 0.919 0.76 0.065 1
12 Grid Scale1 Gravity pl 0.866 20.201 0.797 0.931 0.785 0.069 1
13 Grid Scale1 Radiation - –2.284 100.007 0.645 0.67 0.431 0.039 0.494
14 Grid Scale2 Gravity exp 0.878 502.72 0.954 0.938 0.839 0.001 1
15 Grid Scale2 Gravity pl 0.851 555.99 0.968 0.923 0.842 0.001 1
16 Grid Scale2 Radiation - 0.18 1304.34 0.92 0.713 0.603 0.001 0.923

17 Voronoi BSL Baseline - 0.092 128.097 0.421 0.304 0.424 0.008 1
18 Voronoi BSL Gravity exp 0.836 54.514 0.857 0.917 0.79 0.017 1
19 Voronoi BSL Gravity pl 0.769 64.61 0.866 0.879 0.77 0.018 1
20 Voronoi BSL Radiation - –1.685 220.29 0.827 0.679 0.488 0.011 0.761

21 Voronoi Rand1 Gravity exp 0.821 56.869 0.863 0.911 0.784 0.018 1
22 Voronoi Rand1 Gravity pl 0.781 62.963 0.866 0.884 0.768 0.018 1
23 Voronoi Rand2 Gravity exp 0.4 104.114 0.648 0.642 0.539 0.015 1
24 Voronoi Rand2 Gravity pl 0.401 104.039 0.648 0.642 0.539 0.015 1
25 Voronoi Rand3 Gravity exp 0.401 103.997 0.649 0.643 0.539 0.015 1
26 Voronoi Rand3 Gravity pl 0.403 103.886 0.649 0.644 0.54 0.015 1

27 Voronoi Scale1 Gravity exp 0.745 14.502 0.766 0.874 0.746 0.08 1
28 Voronoi Scale1 Gravity pl 0.708 15.523 0.76 0.845 0.748 0.088 1
29 Voronoi Scale1 Radiation - –5.169 71.326 0.669 0.581 0.38 0.046 0.476
30 Voronoi Scale2 Gravity exp 0.836 54.287 0.857 0.917 0.79 0.017 1
31 Voronoi Scale2 Gravity pl 0.776 63.388 0.868 0.883 0.771 0.019 1
32 Voronoi Scale2 Radiation - –1.702 220.143 0.829 0.682 0.488 0.011 0.762
33 Voronoi Scale3 Gravity exp 0.836 54.349 0.857 0.917 0.79 0.017 1
34 Voronoi Scale3 Gravity pl 0.769 64.412 0.866 0.879 0.769 0.018 1
35 Voronoi Scale3 Radiation - –1.701 220.249 0.827 0.681 0.488 0.011 0.762

Note: 1. Spearman and Pearson coefficients in the experiment p-value are less than 0.001. 2. Abbreviations of BSL:
benchmark experiment under the initial setting, exp: exponential function, pl: power-law function, Rand: randomized
experiment, Scale: scale expansion/reduction experiment. 3. The bold number indicates the best-performing results of the
models within the same group.

(4) When uniformly reducing the coordinate scale by a factor of 10 without chang-
ing the grid partition granularity, the predictive power of the model remains largely un-
changed. The experimental results of groups 33–35 show only minor differences com-
pared to groups 18–20.

(5) In terms of the damping function type in the gravity model, the exponential func-
tion model under the grid partition is slightly inferior to the power-law function model in
predicting results, whereas the results are reversed under the Voronoi diagram partition.

Furthermore, we analyze the relationship between different levels of granularity in
knowledge space partitioning, including three different random experiments, and the γ

index in the gravity model damping function. As shown in Fig. 9, the analysis reveals that
in the context of real scientists’ topic selection and transition within the knowledge space,
the absolute value of the distance decay factor γ between scientists in different regions
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Figure 9 The analysis of the distance exponent γ in the deterrence function under the different randomly
configured models

exceeds that in three other random experimental scenarios. This result underscores a sig-
nificant bounded characteristic in the transition of scientists’ interests. The conserved
characteristic is influenced by mixed factors such as modularized knowledge structure,
individual knowledge attributes, exploration preference patterns, or inter-domain knowl-
edge barriers as scientists move in the knowledge space.

3.5 The generalizability of scientists’ knowledge exploration pattern to other
disciplines

To assess the generalizability of our findings beyond the discipline of physics, we test the
performance of the gravity model and the radiation model across diverse disciplines. As
depicted in Fig. 10, the results demonstrate the robustness of our proposed gravity model
compared to the radiation model across various fields, including Biology, Chemistry, Com-
puter Science, Multidisciplinary Science, and Social Science. Detailed descriptions of the
dataset and the method for constructing the knowledge space based on the Doc2vec al-
gorithm are provided in the Materials and Methods.

Across all disciplines with significant distinct research areas, the gravity model (blue
dots in Fig. 10) consistently outperforms the radiation model (red dots in Fig. 10) in pre-
dicting scientists’ actual mobility patterns within the knowledge space. However, further
examination of the simulation results depicted in the grid diagram reveals a significant
variance in model performance across disciplines. Social Science exhibits the lowest R-
squared metric of 0.746 (p < 0.001), while Chemistry achieves the highest R-squared met-
ric of 0.874 (p < 0.001). The observed disciplinary discrepancies reveal diverse patterns in
scientists’ exploration paths within the knowledge space.
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Figure 10 The predicted results of scientists’ topic transition model in the disciplines of Biology, Chemistry,
Computer Science, Multidisciplinary Science, and Social Science. Blue dots and box plots: Marking and
estimating the measured flux between the Gravity Model generated against the real flow. Red dots and box
plots: Marking and estimating the measured flux between the Radiation Model generated against the real
flow. The white triangle-up marker corresponds to the mean number of predicted points in that bin. A green
line y = x lies in the plot as the benchmark

4 Discussion
In this study, we utilize a knowledge space to map the trajectories of scientists’ publica-
tions in chronological order, shedding light on their patterns of topic selection and tran-
sition within this knowledge space. We subdivide this space into grid or Voronoi diagram
subfields using density and equidistant approaches. Our analysis reveals an overall log-
normal distribution of scientists’ topic-transition distances at the origins and destinations.
To delve into the mechanisms governing these topic transitions at a group level, we in-
troduce two movement behavior models: the gravity and radiation models. Our findings
indicate that the gravity model, driven by factors such as population size and knowledge
distance, outperforms considerations of research gap areas in explaining and predicting
scientists’ topic-transition behaviors. To enhance our insights, we compare our results to
three key aspects related to existing studies:

1. Comparison with human commuting patterns in real geographic space: We find that
scientists’ explorations in the knowledge space are more influenced by ‘distance’ and re-
gional ‘population’ factors than ‘opportunity’ factors. This mirrors the patterns observed
in human commuting within administrative regions in a city, albeit without predefined
sub-field spaces in our knowledge space.

2. Comparison with human movement patterns in virtual space: Scientists’ exploratory
behavior in the knowledge space exhibits similarities to human behaviors in virtual spaces.
The log-normal distribution of exploration trajectories aligns with patterns seen in the
game and website access behaviors [34]. Although the space construction frameworks dif-
fer, the underlying psychological mechanisms for resource search and acquisition appear
to share commonalities [35].

3. Comparison with other models of scientists’ topic-changing or switching behavior:
We emphasize a collective rather than individual-level perspective on scientists’ topic se-
lection and transition, and find that knowledge distance and population size are two key
social factors in explaining scientists’ exploration patterns in the knowledge space, sug-
gesting a typical hotspot-tracing tendency for the majority of scientists.

In summary, our research advances the understanding of scientists’ topic transition by
accounting for social influences and distance heterogeneity in the constructed knowledge
space. Our findings suggest that most scientists tend to make cautious topic transitions,
guided primarily by the number of scientists in their field and the knowledge distance
between fields, rather than by ‘gaps’ or ‘opportunities’. This cautious approach may have
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significant implications for the efficiency and effectiveness of the scientific innovation sys-
tem.

5 Conclusion
Our study deploys quantitative analysis methods to investigate scientists’ topic selection
and transitions, offering insights into the underlying mechanisms at the group level. We
find that scientists’ movements within the knowledge space exhibit heterogeneity, char-
acterized by an overall log-normal distribution of OD flow distances. It indicates that,
in essence, most scientists tend to make prudent and short-range transitions in their re-
search interests. Our analysis identifies key social factors, including subfield population
size, research gaps or opportunities, and knowledge distances, as instrumental in shaping
scientists’ topic transition.

The mechanistic analysis reveals a prevailing tendency towards hotspot-tracing and
opportunity-seeking within the academic field, akin to animal foraging behavior, where
resource distribution influences foraging strategies. In the competitive realm of scien-
tific research, adopting a conservative strategy appears safe for scientists. Most scientists
tend to follow a hotspot-tracing tendency rather than proactively exploring research op-
portunities between subfields and connecting knowledge from different domains. This
conservatism can lead to issues like resource concentration, reduced research originality,
and decreased research efficiency for the whole scientific enterprise. Understanding this
conservative strategy reveals valuable insights into the dynamics of scientists’ knowledge-
creation within the innovation system, and provides empirical support for science policy-
makers.

In future research, we plan to refine existing population-level models by incorporating
additional factors that influence scientific mobility, such as individual career aspirations,
hotspots’ knowledge structures, and the evolving landscape of scientific research, opti-
mize model performance by exploring various machine learning algorithms, and investi-
gate the nuances of scientific mobility across diverse disciplines and career stages, utilizing
academic datasets spanning a broad range of fields and historical periods.

Abbreviations
GIS, Geographic Information System; OD, Origin-Destination; APS, American Physical Society; MAG, Microsoft Academic
Graph; PACS, Physics and Astronomy Classification Scheme; CRS, Coordinate Reference System; CPC, Common Part of
Commuters; CPCd , Common Part of Commuters’ Distance; CPL, Common Part of Links; CCDF, Complementary Cumulative
Distribution Function; BSL, Baseline experiment under the initial setting; Rand, Randomized experiment; Scale, Scale
expansion/reduction experiment; exp, exponential function; pl, power-law function.

Acknowledgements
Not applicable.

Author contributions
HX and FL conceived the study. FL and SZ designed the research. FL and SZ performed the experiments. All authors
contributed to the analysis of the results and writing of the manuscript. All authors read and approved the final
manuscript.

Funding
This work is supported by the National Natural Science Foundation of China under Grant Nos. 72371052 and 71871042
(to HX), and by the Humanities and Social Science Project of the Ministry of Education of China Grant No 18YJA630118 (to
HX).

Data availability
The APS data are available at https://journals.aps.org/datasets by submitting a request. The MAG data used in this paper
was downloaded via the Microsoft Academic Graph APIs. However, the Microsoft Academic website and underlying APIs
have been retired in 2021. All other materials used in this study are available from the corresponding author upon
reasonable request.

https://journals.aps.org/datasets


Liu et al. EPJ Data Science           (2024) 13:27 Page 19 of 20

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Systems Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China.
2Institute for Advanced Intelligence, Dalian University of Technology, Linggong Road, Dalian, 116024, Liaoning, China.
3Center for Big Data and Intelligent Decision-Making, Dalian University of Technology, Linggong Road, Dalian, 116024,
Liaoning, China. 4Key Laboratory of Social Computing and Cognitive Intelligence, Ministry of Education of China,
Linggong Road, Dalian, 116024, Liaoning, China.

Received: 12 December 2023 Accepted: 21 March 2024

References
1. Chen-Ning Y (2019) My study and research experience. University of Chinese Academy of Sciences
2. Weisberg M, Muldoon R (2009) Epistemic landscapes and the division of cognitive labor. Philos. Sci. 76(2):225–252.

https://doi.org/10.1086/644786
3. Besancenot D, Vranceanu R (2015) Fear of novelty: a model of scientific discovery with strategic uncertainty. Econ.

Inq. 53(2):1132–1139. https://doi.org/10.1111/ecin.12200
4. Jia T, Wang D, Szymanski BK (2017) Quantifying patterns of research-interest evolution. Nat. Hum. Behav. 1(4):0078.

https://doi.org/10.1038/s41562-017-0078
5. Yu X, Szymanski BK, Jia T (2021) Become a better you: correlation between the change of research direction and the

change of scientific performance. J. Informetr. 15(3):101193. https://doi.org/10.1016/j.joi.2021.101193
6. Huang S, Huang Y, Bu Y, Luo Z, Lu W (2023) Disclosing the interactive mechanism behind scientists’ topic selection

behavior from the perspective of the productivity and the impact. J. Informetr. 17(2).
https://doi.org/10.1016/j.joi.2023.101409

7. Azoulay P, Graff-Zivin J, Uzzi B, Wang D, Williams H, Evans JA, Jin GZ, Lu SF, Jones BF, Börner K, Lakhani KR, Boudreau
KJ, Guinan EC (2018) Toward a more scientific science. Science 361(6408):1194–1197.
https://doi.org/10.1126/science.aav2484

8. Zeng A, Shen Z, Zhou J, Fan Y, Di Z, Wang Y, Stanley HE, Havlin S (2019) Increasing trend of scientists to switch
between topics. Nat. Commun. 10(1):3439. https://doi.org/10.1038/s41467-019-11401-8

9. Aleta A, Meloni S, Perra N, Moreno Y (2019) Explore with caution: mapping the evolution of scientific interest in
physics. EPJ Data Sci. 8(1):27. https://doi.org/10.1140/epjds/s13688-019-0205-9
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