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Abstract
Despite the historically documented regularity in human mobility patterns, the
relaxation of spatial and temporal constraints, brought by the widespread adoption of
telecommuting and e-commerce during the COVID-19 pandemic, as well as a
growing desire for flexible work arrangements in a post-pandemic work, indicates a
potential reshaping of these patterns. In this paper, we investigate the multifaceted
impacts of relaxed spatio-temporal constraints on human mobility, using
well-established metrics from the travel behavior literature. Further, we introduce a
novel metric for schedule regularity, accounting for specific day-of-week
characteristics that previous approaches overlooked. Building on the large body of
literature on the impacts of COVID-19 on human mobility, we make use of passively
tracked Point of Interest (POI) data for approximately 21,700 smartphone users in the
US, and analyze data between January 2020 and September 2022 to answer two key
questions: (1) has the COVID-19 pandemic and its associated relaxation of
spatio-temporal activity patterns reshaped the different aspects of human mobility,
and (2) have we achieved a state of stable post-pandemic “new normal”? We
hypothesize that the relaxation of the spatiotemporal constraints around key
activities will result in people exhibiting less regular schedules. Findings reveal a
complex landscape: while some mobility indicators have reverted to pre-pandemic
norms, such as trip frequency and travel distance, others, notably at-home dwell-time,
persist at altered levels, suggesting a recalibration rather than a return to past
behaviors. Most notably, our analysis reveals a paradox: despite the documented
large-scale shift towards flexible work arrangements, schedule habits have
strengthened rather than relaxed, defying our initial hypotheses and highlighting a
desire for regularity. The study’s results contribute to a deeper understanding of the
post-pandemic “new normal”, offering key insights on how multiple facets of travel
behavior were reshaped, if at all, by the COVID-19 pandemic, and will help inform
transportation planning in a post-pandemic world.
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1 Introduction
Human mobility has been repeatedly shown to be regular and predictable [1–4]. Such
regularity is the result of both internal and external constraints. These include circadian

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-024-00463-4
https://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-024-00463-4&domain=pdf
mailto:amine.bouzaghrane@berkeley.edu
http://creativecommons.org/licenses/by/4.0/


Bouzaghrane et al. EPJ Data Science           (2024) 13:24 Page 2 of 20

rhythms [5, 6], the need to eat, spatio-temporal commuting requirements [7], psycholog-
ical traits [8], social responsibilities [9], and socio-economic characteristics [9, 10]. For
example, it is easy to imagine how a parent with childcare duties and a fixed work loca-
tion is constrained to follow a regular schedule with activities that are, for the most part,
well-planned ahead of time and regular. Similarly, it is also easy to imagine how a young
urban remote worker can flexibly adjust their activities to meet their own needs; not being
limited by a fixed work location, this worker can choose to work from different locations,
adjust their schedule to run errands during regular business hours when work demands
are not intense, and follow working routines that might be synchronous with colleagues
from different time zones. Temporal mobility regularity has been shown to lead to in-
creased social contact rates [11–13] and play a critical role in disease spreading processes
[14].

In the wake of the COVID-19 pandemic, human behavior underwent significant shifts.
Governments, especially during the pandemic’s early stages, leaned heavily on non-
pharmaceutical interventions (NPI) to curb the virus’s spread. These interventions had
significant impacts on human behavior, reducing mobility levels, changing lifestyles, and
causing ripple effects on physical and mental well-being. A standout change during this
period was the large scale adoption of telecommuting by employers and the increase in e-
commerce adoption by consumers. The persistent preference for and adoption of hybrid
working models and e-commerce by employees and consumers, even after the easing of
pandemic restrictions, hint at lasting behavioral shifts [15–17]. Fundamentally, this evo-
lution reflects a relaxation of spatio-temporal constraints around several activities. In a
hybrid work paradigm, employees enjoy more autonomy to choose their preferred work
environment, be it their home, the office, or some alternative location like cafes, libraries,
or coworking spaces [18]. Further, they enjoy more flexibility in their schedules, including
when to work and on what days to commute.

The impacts of the COVID-19 pandemic on human mobility have garnered significant
attention from transportation researchers. Researchers addressed the impacts of the pan-
demic on numerous aspects of travel behavior, such as trip-making [19–21], mode use
[20, 22–24], trip purpose [19, 20, 23, 25], distance traveled [26, 27], public transit and ac-
tive transportation [28–32], commuting behavior [30, 33, 34], e-commerce [15, 35], and
time-use [36–39], among others.

However, these works have several limitations. First, majority of the research has been
myopic to the broader impacts of the COVID-19 pandemic on human mobility, often fo-
cusing on singular aspects of travel behavior. Second, this body of work has predominantly
addressed the short-term impacts of the pandemic on travel behavior, with little attention
given to potential long-term impacts, indicating our lack of collective understanding of
what the post-pandemic landscape is shaping up to be. Most critically, our current under-
standing of the impacts the COVID-19 pandemic and its associated relaxation of spatio-
temporal constraints on schedule habits remains missing. Improving this understanding
will help inform transportation planning in a post-pandemic world.

In this article, we use passive mobility tracking dataset from a panel of approximately
21,700 U.S. smartphone users, spanning January 2020 (2 months before the onset of the
pandemic) to September 2022 (14 months after widespread vaccine availability in the U.S.)
to attempt to address these limitations. First, we propose a framework to explore the im-
pacts of the COVID-19 pandemic and its associated relaxation of spatio-temporal activ-
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Figure 1 Summary of study findings

ity constraints on multiple dimensions of mobility behavior. We choose well-established
mobility metrics from the literature characterizing human activity patterns, namely fre-
quency of travel, radius of gyration, dwell-time, trip timing, spatial exploration, and spa-
tial diversity (as measured by entropy). Second, within this framework, we propose a new
metric to measure individual schedule regularity over time, contributing to the literature
on intrapersonal travel behavior variability. Finally, we build on the vast COVID-19 travel
behavior literature by investigating the long term impacts of the pandemic on travel be-
havior, providing more clarity on what a “new normal” is shaping up to be. We hypothe-
size that with the relaxation of spatio-temporal activity constraints during the COVID-19
pandemic, people will exhibit less schedule regularity post-pandemic compared to pre-
pandemic.

Figure 1 provides a comprehensive review of our key findings. Our findings present a
mixed picture; while several mobility indicators have recovered to their pre-pandemic lev-
els (trip frequency, radius of gyration, peak period demand), others have not (i.e. at home
dwell-time). We further find that while people’s explorative behavior recovered to their
pre-pandemic levels, they exhibit on average lower diversity (as measured by entropy) in
their time distribution across space compared to pre-pandemic. Finally, we find that de-
spite the loosening of spatio-temporal activity constraints during the pandemic, schedule
habits remain stronger than pre-pandemic, presenting a counterintuitive picture to our
initial hypothesis.

The rest of the manuscript is organized as follows; in Sect. 2, we summarize our data, its
pre-processing, as well as the analysis framework and approach; in Sect. 3 we present our
findings; we conclude with summarizing the study and discussing the possible broader
impacts of our findings in Sect. 4.

2 Data and methods
2.1 Data
We leverage passively collected tracking data from a panel of U.S. smartphone users who
have consented to give access to their location data. The data was provided by SimilarWeb
for research purposes and spans between January 2020 and September 2022, effectively
capturing critical long-term behavioral impacts of the COVID-19 pandemic.
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These data are not continuously tracked GPS traces, but rather inferred individual
check-ins at Points of Interest (POI). SimilarWeb uses proprietary technology from a
third-party provider to infer the location category from each of the POIs visited. Further,
to preserve the individuals’ privacy, SimilarWeb obfuscates the individuals’ inferred home
and work locations by randomly placing it within a 1000 meters radius from its detected
location. For each individual check-in at a POI, the dataset includes information about the
panelist’s arrival and departure times, the category of the location visited, the distance and
time traveled to get to said location, the distance of the POI from the individual’s identified
home and work locations, as well as its zip code, city, and Metropolitan Statistical Area
(MSA) name.

In addition to the POI check-in records, the dataset contains self-reported information
about individuals’ gender, age, race/ethnicity, household size, household income, educa-
tional level, and employment status.

One key advantage of our data is our ability to capture a continuous trajectory of indi-
viduals, instead of sparse records depending on the call activity under call detail records
data (CDR) or location-based service use for location based service (LBS) data [40, 41].
However, one main limitation of our data is the lack of information about travel modes
used for each inferred trip, preventing us from understanding the modal impacts of the
COVID-19 pandemic.

To ensure accuracy of our analyses, we undertake rigorous pre-processing to clean our
data from any inconsistencies or noise. First, we aggregate each of the POIs visited by
each individual into geographical locations based solely on their spatial proximity. This is
particularly useful considering that detected spatial coordinates of visited locations can
often be noisy [42]. We use the DBSCAN algorithm [43] to cluster the check-ins for each
individual using a maximal distance ε. We use a maximum distance ε = 50 meters and
min_samples = 1, to produce places of the approximate size of a building, consistent with
previous literature [4, 42, 44]. The result of this pre-processing clustering is an assignment
of cluster label to each inferred POI check-in, where the label refers to a geographical place
of the POI check-in record.

Second, to maintain high quality observations, we select only individuals observed for
a long period of time with small change in tracking coverage over time, consistent with
previous literature [42, 44, 45]. In our context, time coverage is defined as the share of
time one’s location is known. More specifically, we select panelists observed for at least 20
weeks between January 2020 and September 2022, and showing little variability in time-
coverage over time. We use the coefficient of quartile variation [46], to measure the indi-
vidual variability of time-coverage over time, defined as:

Q3 – Q1

Q3 + Q1
< 0.25 (1)

Where Q3 and Q1 are the 75th and 25th percentiles of the individual’s weekly time cov-
erage over time, respectively.

Our final sample includes approximately 21,700 individuals. The median individual time
coverage across the data collection span is depicted in Fig. 2. While the median time cover-
age remains consistent between 75% and 80% for most of the data collection period, there
was a notable decline in July and August 2021 due to an unexplained data collection issue.
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Figure 2 Median weekly temporal tracking coverage across the population as a function of time. A
significant drop in coverage occurs in August and September 2021

Table 1 Sample demographic characteristics compared to the US population

Data (%) US Population (%)

Female 56.0 50.8
Household Income < 50 K USD 71.1 40.4
White 66.1 72.5
College Degree or More 40.1 38.5

To maintain data integrity, we exclude the data from these two months in our analysis. Fur-
ther, we find that time-coverage quality was consistent across diverse sociodemographic
categories throughout the data collection period.

Table 1 presents a summary of the sociodemographic characteristics of our sample,
compared to the U.S. population based on data from the 2019 U.S. census. Notably, our
sample is over-representative of females, lower income households, racial minorities and
individual with at least a college degree.

We can further process this to compute individual mobility measures of interest (e.g.
distance traveled for specific purposes or locations, variability in commute time, dwell
time at locations, etc.). In the next section, we present our proposed methodology and the
mobility metrics we used to achieve the research objectives.

2.2 Framework and metrics
Travel behavior and its regularity are intricately linked to the many constraints one faces
[6, 7, 9]. For instance, transit accessibility, work schedules, and caregiving responsibilities
play critical roles in shaping one’s travel decisions (e.g. commute timing, frequency, etc.)
and their long-term regularity.

However, the COVID-19 pandemic has potentially reshaped this landscape. Beyond its
immediate effects on activity patterns, the pandemic-induced relaxation of the spatio-
temporal constraints around key activities might be a precursor to newly emerging behav-
iors emblematic of the post-pandemic “new normal”. A case in point is the growing adop-
tion of hybrid work models, which liberate individuals from traditional spatio-temporal
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Figure 3 Proposed research framework, highlighting the impacts of relaxed spatio- temporal constraints on
human mobility and its possible implications

work constraints. In fact, large shares of workers favor more flexible work arrangements
in a post-pandemic world [17, 47]. As a result of this shift, people could start exhibiting
new spatial exploration patterns and less structured activity schedules.

Our research objectives are twofold:
• First, to determine if post-pandemic mobility behaviors are different from

pre-pandemic baselines
• Second, to assess if post-pandemic mobility behaviors exhibit stability and, if not,

identify post-pandemic trends
Our hypothesis in this research is that the relaxation of spatio-temporal constraints fol-

lowing the COVID-19 pandemic have a broader influence on mobility behavior, affecting
not just activity patterns, but also spatial and schedule habits. To test this hypothesis, we
present a framework (Fig. 3) that goes beyond investigating the impact of the COVID-19
pandemic on traditionally reported mobility metrics (namely, travel frequency, distance
traveled, activity duration, and activity timing), and extends to metrics that capture spatial
and schedule habits.

In the case of activity patterns and spatial habits, build upon the existing literature, em-
phasizing the pandemic’s long-term effects and understanding what a post-pandemic new
normal is shaping up to be. Regarding schedule habits, we propose a new metric capturing
the regularity of individual schedules over time, while controlling for day-of-week char-
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acteristics. The following sections present, in greater detail, each of these dimensions and
the metrics we use to capture their evolution throughout the COVID-19 pandemic.

Activity patterns: First, the loosening of spatio-temporal activity constraints throughout
the pandemic can impact activity patterns. For example, individuals with flexible working
arrangements can decide take fewer trips or avoid commuting during peak periods. Pre-
vious work has explored the impact of the COVID-19 pandemic on many widely reported
mobility metrics including trip frequency [20], travel distance [26, 48], and time-use [36].
In this work, we characterize activity patterns by the following quantities:

• Travel frequency: We characterize travel frequency by the number of weekly trips
taken by an individual.

• Travel distance: We use the radius of gyration to characterize the typical distance
traveled by an individual [49]. The radius of gyration is defined as:

rg =

√
√
√
√

1
n

n
∑

j=1

dist(rj – rcm)2 (2)

Where rj is a two-dimensional vector of the spatial coordinates of the jth location, and
rcm is the center of mass of the locations visited by the individual, dist(rj – rcm) is the
haversine distance between the jth location and the center of mass, and n is the total
number of locations visited.

• Stay duration: We use dwell time at each POI to measure the typical stay duration of
an individual i at any visited location. Dwell-time is a key component of mobility
models [14, 50]. Further, as the pandemic has forced many people to stay at home,
especially in its early phases, we distinguish between total daily at-home dwell time
and out-of-home dwell-time to investigate any possible shifts in dwell-time across
different location types. We present results on at-home total stay duration in the main
text and include additional results on out-of-home visit dwell-time in the Appendix.

• Trip timing: We measure peak demand concentration by identifying the share of trips
during the AM peak (i.e. 6-9AM) that fall between 7-8AM.

Spatial habits: Beyond activity patterns, the relaxation of spatio-temporal activity con-
straints during the COVID-19 pandemic could also reshape individuals’ spatial habits.
While research suggests individuals balance exploring new places with revisiting known
ones [14], the pandemic’s influence on this balance is yet to be fully understood. In partic-
ular, the relaxation of spatio-temporal activity constraints might redefine how individuals
explore their surroundings. Further, while the use of geographical space tends to be un-
even, with people spending the majority of their time in a limited number of locations,
notably work and home, looser spatio-temporal constraints might alter this distribution,
possibly resulting in higher heterogeneity of use of geographical space.

We use the following measures to quantify how the propensity of exploration and ex-
ploitation:

• Spatial exploration: We use the spatial exploration rate, σp [51], which measures the
fraction of total visits to new places to capture the propensity for exploration for each
individual, defined as:

σp =
S
N

(3)



Bouzaghrane et al. EPJ Data Science           (2024) 13:24 Page 8 of 20

Where S is the number of unique locations visited and N is the total number of visits
made by the individual.

• Spatial entropy: We use entropy to measure the heterogeneity of time distribution
across geographical space. Spatial entropy has been used in previous works [52–54]
and is defined as:

Hnorm =
–

∑N
i=1 pi log(pi)
log(N)

(4)

Where pi = Ti
∑N

i Ti
is the probability of finding the individual at location i and Ti is the

total time spent at location i, and N is the total number of unique locations visited by
the individual. Lower entropy values indicate lower heterogeneity in one’s
whereabouts.

Schedule habits: Temporally, a loosening of spatio-temporal constraints could induce
people to be less habitual in their schedules from week to week. For example, an employee
with a hybrid work schedule can decide to commute to their workplace on different days
from week to week. We use the cosine similarity to calculate the similarity between any
pair of daily schedules. In this context, we describe a schedule by the distribution of time
spent across different locations. The cosine similarity is defined as follows:

Cosine(d(i,t,j), d(i,t,k)) =
d(i,t,j) · d(i,t,k)

‖d(i,t,j)‖ · ‖d(i,t,k)‖ (5)

Where:
• d(i,t,j), d(i,t,k) represent the normalized time allocation vectors for the same individual i

on day of week t (i.e., Monday, Tuesday, etc.) from distinct weeks j and k.
• d(i,t,j) · d(i,t,k) represents the dot product of vectors d(i,t,j) and d(i,t,k).
• ‖d(i,t,j)‖ and ‖d(i,t,j)‖ represent the Euclidean norm (magnitude) of vectors d(i,t,j) and

d(i,t,k), respectively.
The time allocation vectors (i.e., d(i,t,j) and d(i,t,k) in equation (5)) for an individual i are

both Li-dimensional vectors (where Li is the number of unique locations visited by indi-
vidual i, identified from the aggregating individuals’ POI locations into geographical loca-
tions, see Sect. 2.1) containing the normalized time spent in any of the different locations
on any specific day. The cosine similarity measures the cosine of the angle between the
two non-zero vectors in the Li dimensional activity location space, in this context the an-
gle between the vectors representing the allocation of time across geographical space on
two distinct days.

We evaluate schedule similarity for the same individual through pairwise daily sched-
ule comparisons to the same type of day (i.e. Monday vs. Monday, Tuesday vs. Tuesday,
etc.). Evaluating similarity in this manner controls for characteristics of specific days of
week, such as outside social constraints common to the same day of week (e.g. specific
commute schedule, recurring social commitments on specific days, care-taking responsi-
bilities, etc.).

This approach builds on the large body of literature addressing intrapersonal travel be-
havior similarity. Previous works, primarily based on self-reported travel diaries, has ex-
plored the depth of variability in travel decisions [9, 55–58], finding a significant degree of
intrapersonal variation, the extent of which depends on the nature of travel decisions [9]
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and socio-economic characteristics [59]. However, these studies overlook the likelihood
that travel habits, influenced by societal constraints, can differ based on the specific day
of the week. More specifically, they do not account for possible shared characteristics be-
tween observations on the same day of week, at most comparing weekdays to each other
and weekend days to each other [9, 58]. Accounting for day-of-week characteristics is cru-
cial in understanding the regularity of schedules, as societal obligations and constraints
are often tied to specific days. For example, a parent might have a consistent obligation
to drive their child to an after-school activity every Wednesday afternoon, while Thurs-
days might involve weekly parent-child community group meetings, leading to distinct
schedules on those days, even if they are both weekdays.

The cosine similarity has been used extensively in the human mobility literature, mea-
suring similarity in individuals’ activity spaces over time [42], clustering individuals based
on their mobility patterns [60–62], and measuring similarity of neighborhoods according
to their mobility patterns [63], among many others [64]. To ensure that our results are not
an artifact of our choice of metric, we use other metrics proposed by Lee et al. [65] and
find that our results remain consistent.

2.3 Analysis approach
On January 21, 2020, the United States reported its first COVID-19 case in the state of
Washington. By late February, concerns about community spread intensified. In response,
several states declared states of emergency in early March, a move that many states would
soon emulate. On March 13, 2020, the Federal government declared a national emergency,
mobilizing federal resources to manage the pandemic. By mid-March, many states and
local jurisdictions had initiated measures such as school closures, large gathering restric-
tions, and social distancing protocols. By the end of April and into May, while most states
still had declared emergencies and stay-at-home orders in place, several began outlining
phased reopening plans, balancing economic needs with public health concerns. By the
end of 2020, a range of vaccines had become available, marking a pivotal turning point in
the pandemic. This development heralded the start of a nationwide vaccination drive in
early 2021. By May 2021, vaccinations had become widely available in the US. By end of
2021, approximately 83% of U.S. adults had already received at least one vaccine shot [66].
Figure 4 presents key milestones throughout the COVID-19 pandemic in the U.S., includ-
ing the number of reported cases and significant markers throughout the pandemic, such
as state reopenings, vaccination rollouts, and the emergence of COVID-19 variants.

With this backdrop in mind, we investigate the impact of the COVID-19 pandemic and
its associated loosening of spatio-temporal activity constraints on activity patterns, spatial
habits, and schedule habits. To achieve our research objectives, we proceed as follows:

• To determine if post-pandemic mobility behaviors are different from pre-pandemic
baselines: We compare mobility metrics across three pivotal periods: February 2020
(representing pre-pandemic mobility), February 2021 (one year into the pandemic),
and February 2022 (two-year outlook, after wide vaccination). This allows us to
discern shifts and continuities in mobility trends over these critical junctures.

• To assess if post-pandemic mobility behaviors exhibit stability and, if not, identify
post-pandemic trends: We analyze metrics from May 2021, marking the period post
widespread vaccine availability, and compare them to May 2022. This comparison
helps decipher whether behavioral changes observed after the vaccine rollout have
persisted or are continuing to evolve.
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Figure 4 Timeline of weekly COVID-19 cases in the United States and key pandemic milestones

We compute our proposed metrics at key times throughout our data collection period,
shown with colors vertical stripes in Fig. 4 and employ 2-tailed t-tests to compare mobil-
ity metrics across key periods. By consistently comparing data from similar months across
different years (e.g., February 2020, 2021, and 2022), we aim to negate the influence of any
seasonal factors that might affect mobility, such as weather patterns, holidays, or school
cycles, ensures that any observed differences in mobility patterns can be more confidently
attributed to the pandemic’s influence. For our first objective, we use data from Febru-
ary 2020, 2021, and 2022 (shown in blue stripes). For our second objective, we use data
from February 2021 and February 2022 (shown in blue stripes), as well as May 2021 and
May 2022 (shown in green stripes). The other time periods provide us with further in-
dication on how each of the metrics evolved throughout the pandemic and their levels
post-pandemic. We should note the deliberate omission of August 2021 due to the data
coverage quality issues summarized in Sect. 2.

3 Results
Within our framework, we identified seven metrics to investigate how the COVID-19 pan-
demic and its associated relaxation of spatio-temporal activity constraints has impacted
activity patterns. The following subsections summarize the results of three categories of
metrics identified in the framework presented in Fig. 3.

3.1 Activity patterns
In this section, we present our analysis results of four key metrics identified to understand
the impact of the relaxation of spatio-temporal activity constraints through the COVID-
19 pandemic on activity patterns. We summarize the results in Fig. 5.

Figure 5a summarizes the evolution of the average number of weekly trips throughout
the COVID-19 pandemic. We observe the initial dip in the number of weekly trips be-
tween February 2020 and May 2020 from 22 trips to approximately 20.5 trips. While this
decrease might not seem as significant as what was reported in the literature [26], it reflects
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Figure 5 Evolution of activity patterns throughout the COVID-19 pandemic. (a) weekly trips, (b) radius of
gyration, (c) daily at-home stay duration between 6AM-9PM, (d) share of peak trips between 7-8AM. Error bars
represent the 95% confidence interval around the estimated population means. (N ≈ 21,700 individuals)

conditions after several states have started reopening [67]. Since then, we observe a contin-
uous increase in the number of weekly trips individuals take all throughout the pandemic.
When comparing post-pandemic conditions (February 2022) to pre-pandemic conditions
(February 2020), we observe that the number of trips has recovered to its pre-pandemic
baseline (as early as February 2021), with an average of 26.9 weekly trips in February 2022
compared to 22 weekly trips in February 2020 (p < 10–3). Further, we observe an increas-
ing trend in the number of weekly trips taken after the wide vaccine availability (May 2021
vs. May 2022, p < 10–3).

Figure 5b summarizes the evolution of the radius of gyration throughout the pandemic.
We observe a decrease in the range of the radius of gyration in the early phases of the pan-
demic (between February 2020 and May 2020), from 21.5 to 16.7 km (p < 10–3), indicating
that people have reduced their mobility’s spatial range, consistent with the observation
that people were spending most of their time at home, and when traveling, traveling to
areas close to their home location. We observe a continuous recovery of the average ra-
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dius of gyration after the initial phases of the pandemic, despite the seasonal fluctuations,
consistent with other findings in the literature [11]. In February 2021, shortly after the
beginning of the vaccine rollout in the U.S., the radius of gyration was still lower than its
pre-pandemic levels in February 2020 (p < 10–3). However, in February 2022, the radius
of gyration has recovered to its pre-pandemic level (p = 0.23). Post-pandemic, we observe
that the radius of gyration is stable between May 2021 and May 2022 (p = 0.49). In Oc-
tober 2021 (i.e. after wide availability of vaccines), we observe that people exhibit higher
radius of gyration than October 2020. Similarly, in August 2022, we notice larger radius
of gyration compared to August 2020, likely due to the recovery of out-of-home travel.
Further, we observe that the radius of gyration shows strong seasonal patterns, with sum-
mer months exhibiting higher radius of gyration levels than winter months, possibly due to
summer travels. When juxtaposed to the evolution of trip frequency during the pandemic,
we observe that even as people started more trips in 2021 compared to pre-pandemic, the
spatial extent of such trips has not expanded beyond its pre-pandemic ranges.

Next, we turn our attention to the evolution of dwell-time throughout the pandemic.
Dwell-time is a key parameter for mobility models [49, 50]; in each displacement, an agent
chooses a destination and a dwell-time from observed dwell-time distributions. Such
dwell-times have been shown to be different for different destination types [42]. Given
the COVID-19 context, we present results summarizing the evolution of dwell-times for
inferred home in the main text and include results on out-of-home dwell-times in the
Appendix. We note that our home dwell-times capture the total duration of stay at home,
as opposed to per-visit dwell-times.

First, Fig. 5c summarizes at-home total stay times, focusing only on the core active hours
of the day between 6AM and 9PM. In the early phases of the pandemic, we observe a
sharp increase in the at home daily dwell-time, from 7.8 hours to 9.6 hours (May 2020
vs February 2020, p < 10–3), mostly as a result of people spending more time at home.
This finding consistent with previous literature findings [36] and representative of the
overall observations that large shares of the population spent more time at home during
the early phases of the pandemic either in compliance with restrictive mobility measures
or in fear of the contracting the virus. While an approximate average two-hour increase
in the pandemic might seem as an underestimate, it exhibits large heterogeneity, with the
75th percentile being as much as 12 hours between 6AM and 9PM in May 2020. Unlike the
radius of gyration, daily at-home stay times never recovered to their pre-pandemic levels.
Looking in the long-term, post-pandemic at-home daily stay times remain higher than
their pre-pandemic baselines, with people spending almost one more hour ( 55 minutes)
at home in post-pandemic compared to pre-pandemic (February 2022 vs. February 2020,
p < 10–3) They also exhibit stability post-pandemic, where the average dwell-time at home
in May 2022 is 12 minutes more than the average at home stay time in May 2021, albeit
this difference is statistically significant (p < 10–3) as a result of our large sample size.

On the other hand, out-of-home visit dwell-times exhibit the opposite trend, with peo-
ple spending less time per visit at out-of-home locations in post-pandemic that never re-
covered to its pre-pandemic levels (see Appendix for details). These observed diverging
patterns in the at-home and out-of-home dwell-times could have implications on the re-
finement of mobility models [50], where the selection of sampling distribution of dwell-
times could be conditional on the destination an agent chooses.
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Figure 6 Evolution of spatial habit patterns throughout the COVID-19 pandemic: (a) exploration rate (σp), (b)
spatial entropy (between 6AM-9PM). Error bars represent the 95% confidence interval around the estimated
population means. (N ≈ 21,700 individuals)

Beyond trip frequency, distance traveled, and dwell-time, timing of trips is important in
the predictability of demand for planning purposes. We hypothesize that as people expe-
rienced looser temporal activity constraints, congestion levels during peak periods would
reduce and peak demand would flatten. To test this hypothesis, we investigate the evolu-
tion of the share of AM peak trips (6-9AM) taken between 7-8AM and summarize the re-
sults in Fig. 5d. We find that in the early phases of the pandemic, this share decreased from
approximately 52% to 43%, indicating a flattening of the AM peak travel, and consistent
with previous findings from the literature [68]. However, going beyond the early phases
of the pandemic, we find that this share recovers to its pre-pandemic levels in February
2022, with 53% of the AM peak trips occurring between 7-8AM, compared to 52% in
February 2020, although this difference is statistically significant (p < 0.05). Peak demand
patterns remain stable in the post-pandemic times, with trips occurring between 7-8AM
being 51% of AM peak demand in May 2021, compared to 53% in May 2022, although
the difference is statistically significant in our analysis (p < 0.05). Overall, the share of AM
peak trips (6-9AM) taken between 7-8AM is higher in 2021 and 2022 compared to the
early phases of the pandemic in 2020 (May, August, and October). This finding indicates
that despite initial hopes that the pandemic would result in less intense peak periods, old
demand patterns have returned to their pre-pandemic levels.

3.2 Spatial habits
In the previous section, we presented findings showing the evolution of conventional met-
rics used to understand human mobility throughout the pandemic. These metrics alone
are not enough to understand the complexities of human mobility.

In this section, we explore how the COVID-19 pandemic and its associated relaxation
of spatio-temporal activity constraints have reshaped spatial habits. Figure 6 presents our
results.



Bouzaghrane et al. EPJ Data Science           (2024) 13:24 Page 14 of 20

Figure 6a summarizes how exploration behavior has changed throughout the COVID-
19 pandemic. Before the pandemic, people explored approximately 1.96 new locations for
every 10 visits. This exploration rate dropped during the early phases of the pandemic
(May 2023) to approximately 1.84 new locations for every 10 visits (p < 10–3). Similarly to
other metrics, lower exploration is associated with people going to a limited set of loca-
tions to comply with public health measures or in fear of contracting the virus. We find
that the exploration rate has returned to its pre-pandemic levels, with people exploring 2
new places for every 10 visits, compared to 1.96 visits for every 10 visits before the pan-
demic, although this difference is statistically significant (p = 0.007), and corroborating
findings from previous research comparing exploration rates in 2021 compared to 2019
[69]. When addressing post-pandemic stability in exploration patterns, we find that post-
pandemic exploration patterns show stable patterns (May 2021 vs. May 2022, p = 0.14).
Overall, range of change in the exploration rate throughout the pandemic has not been
large, shifting between 1.85 and 2.14 new places every 10 visit. Further, exploration pat-
terns show seasonal fluctuations, with summer months showing higher explorative pat-
terns, likely due to people traveling and visiting newer places.

The distribution of time across space has been shown to be uneven, primarily because
of work and home being dominant locations in one’s life. As the spatial requirements for
work become more relaxed, it remains to be seen whether people start distributing their
time across the geographical space. As presented in the methods section, we use spatial
entropy to understand the heterogeneity of distribution of time across the geographical
space throughout the COVID-19 pandemic. Figure 6b summarizes the average spatial en-
tropy across the population throughout the COVID-19 pandemic, where higher entropy
indicates higher heterogeneity in distribution of time across the geographical space. We
find that during the early phases of the pandemic, spatial entropy has decreased by 20%
(p < 10–3), indicating the decreasing heterogeneity in one’s whereabouts. Further, well into
the pandemic, we observe that spatial entropy has not recovered to its pre-pandemic lev-
els, remaining 15% lower than its baseline value January 2020 (p < 10–3). Post-vaccination,
we find that spatial entropy has remained stable when comparing May 2021 to May 2022
(p = 0.61).

As a summary, we find that while exploration rates have returned to their pre-pandemic
baselines, there is evidence for less heterogeneity in the distribution of time across geo-
graphical space.

3.3 Schedule habits
Beyond spatial habits, understanding the regularity of routines from week to week is key
in understanding the predictability of human behavior. Within the COVID-19 context,
we hypothesized that as people experience less spatio-temporal activity restrictions, they
would tend to exhibit less similarity in their day-of-week schedules over time. Further, we
suggest that controlling for day-of-week in evaluating intrapersonal schedule variability is
critical in understanding predictability of human behavior, as social constraints are often
associated with set temporal constraints on distinct days.

Figure 7 summarizes the cosine similarity of day-of-week distribution of time and il-
lustrates that schedule habits show strengthening in the early phases of the COVID-19
pandemic (February 2020 vs. May 2020, p < 10–3), likely as a result of people spending
large shares of time at home. However, contrary to our initial hypothesis, individuals ex-
hibit stronger schedule habits in post-pandemic compared to pre-pandemic, with people
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Figure 7 Day-of-week schedule cosine similarity throughout the COVID-19 pandemic. Schedule similarity is
calculated between 6AM-9PM. Error bars represent the 95% confidence interval around the estimated
population means. (N ≈ 21,700 individuals)

showing stronger habits in February 2022 compared to February 2020 (p < 10–3). Addi-
tionally, we also find evidence for stability in schedule habits post-pandemic (May 2021
vs. May 2022, p = 0.14).

The lack of evidence for less structured schedules is surprising, as previous works find
strong evidence that workers favor more flexible work arrangements in a post-pandemic
world [47]. Our finding indicates that while people prefer flexibility, they might take ad-
vantage of it by setting an individual schedule that remains strong over time. Further, our
finding does not necessarily mean that people returned their pre-pandemic behaviors, but
show that while they might have adopted new behaviors, they exhibit strong habits in such
behaviors.

3.4 Relationship between spatial habits and schedule habits
In the previous sections, we find evidence for changes in both spatial and schedule habits
of human mobility post-pandemic. In this section, we investigate the association between
these two aspects of mobility habits (i.e. diversity in spatial habits and schedule regularity).
More specifically, we present this association at two distinct points in time, February 2020
and February 2022. Figure 8 presents the contour plots for the kernel density estimation
of the distribution of cosine similarity (schedule habits) vs. spatial entropy (spatial habits)
at three distinct levels of the probability density function.

First, regardless of the time period, we observe a negative relationship between spatial
entropy and cosine similarity. This indicates that, on average, people with higher spatial
diversity are likely to exhibit less regular day-of-week schedules across weeks. Further,
we observe higher heterogeneity in cosine similarity (schedule habits) at higher levels of
spatial entropy indicating that despite having high spatial diversity, distinct individuals can
exhibit a wide range of schedule regularity. Second, we observe a shift in the population
distribution between February 2022 and February 2020, highlighting a coupled shift in
both dimensions, with the population shifting more towards both less spatial diversity
and stronger schedule habits.
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Figure 8 Correlation between cosine similarity and spatial entropy in February 2020 (continuous) and
February 2022 (dashed line)

4 Conclusion
In this study, we contribute to the extensive body of literature aiming to understand the
impacts of the COVID-19 pandemic on human mobility behavior. Motivated by the re-
laxation in spatio-temporal constraints of key activities such as work and shopping, we go
beyond investigating the impacts of the pandemic using traditionally reported key metrics
since these metrics do not convey the full complex picture of human mobility behavior and
how it was reshaped.

Using passively tracked POI data from a panel of smartphone users in the U.S. between
January 2020 and September 2022, we propose an analytical framework that distinguishes
the impacts of the relaxation of spatio-temporal activity constraints on activity patterns,
spatial habits, and schedule habits. Within this framework, we use a suite of metrics each
designed to capture distinct aspects of human mobility. Most notably, we propose a new
metric to measure schedule habits, more specifically to measure the similarity of weekly
schedules over time, controlling for differences between different days of the week. In
doing so, we also contribute to the large body of literature on intrapersonal variability in
mobility behavior.

Our findings paint a complex picture, as summarized by Fig. 1. Our data reveals that,
while there was a significant impact on multiple aspects of human mobility during the
early phases of the pandemic, such impacts were not permanent across all explored met-
rics. In terms of activity patterns, we find that with the exception of dwell-times, key ag-
gregate mobility metrics have recovered to their pre-pandemic baselines, even exceed-
ing them by 2022 as in the case of number of weekly trips. Dwell-times have been re-
shaped, with out-of-home visit dwell-times still remaining lower than their pre-pandemic
baselines. Further, we find that despite exploration patterns being on average similar to
their pre-pandemic baselines, there is less heterogeneity in people’s distribution of time
across space. Surprisingly, our data reveals the strengthening of schedule habits in a post-
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pandemic world, challenging our initial hypothesis that people would take advantage of
looser spatio-temporal constraints and exhibit more variable schedules from week to
week. We also document the relationship between spatial and schedule habits, showing
that higher levels of spatial entropy (i.e. spatial diversity) are associated with lower sched-
ule regularity.

These findings, however, are not without limitations. First, this research is based on
data between January 2020 and September 2022, and is focused on US participants. We
strongly encourage other researchers to replicate this analysis on data from outside the
US and well before 2020 and beyond 2022 to help strengthen our findings and make them
more generalizable. Second, although we have used well-established mobility metrics in
drawing our conclusions, our analysis might still suffer from possible biases relating to
our data’s sociodemographic profile and possible uncertainties in the data collection and
location inference algorithms. Given the documented disparate impacts of the COVID-
19 pandemic across different socio-demographic groups, future research should explore
whether our findings hold across socio-demographic groups. Third, our new proposed
metric to capture differences between weekly schedules only accounts for time distri-
bution across space and does not account for activity order within the day. Future work
should expand on this metric to account for activity order, as such analysis would be rel-
evant in contexts where people maintain the same time allocation patterns but shift their
activity orders (i.e.: shifting working hours to a different time window).

Appendix

Figure 9 Evolution of out-of-home dwell-time throughout the COVID-19 pandemic. The error bars represent
the 95% confidence interval around the population mean. (N ≈ 21,700 individuals)
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