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Abstract
Modeling human mobility helps to understand how people are accessing resources
and physically contacting with each other in cities, and thus contributes to various
applications such as urban planning, epidemic control, and location-based
advertisement. Next location prediction is one decisive task in individual human
mobility modeling and is usually viewed as sequence modeling, solved with Markov
or RNN-based methods. However, the existing models paid little attention to the logic
of individual travel decisions and the reproducibility of the collective behavior of
population. To this end, we propose a Causal and Spatial-constrained Long and
Short-term Learner (CSLSL) for next location prediction. CSLSL utilizes a causal
structure based on multi-task learning to explicitly model the “when→what→where”,
a.k.a. “time→activity→location” decision logic. We next propose a spatial-constrained
loss function as an auxiliary task, to ensure the consistency between the predicted
and actual spatial distribution of travelers’ destinations. Moreover, CSLSL adopts
modules named Long and Short-term Capturer (LSC) to learn the transition
regularities across different time spans. Extensive experiments on three real-world
datasets show promising performance improvements of CSLSL over baselines and
confirm the effectiveness of introducing the causality and consistency constraints.
The implementation is available at https://github.com/urbanmobility/CSLSL.

Keywords: Next location prediction; Human mobility; Causality; Spatial consistency;
Multi-task network

1 Introduction
Human mobility modeling aims to explore the regularities and patterns of human behav-
ior [1, 2] and plays a significant role in numerous applications, such as urban planning [3],
travel demand management [4, 5], health risk assessment [6], epidemic spreading model-
ing and control [7–9], and so on. In the big data era, the accessibility to GPS, mobile phone
records, and location-based social networks (LBSNs) provides an unprecedented chance
to understand and model human mobility [2, 10].

In the research community of human mobility, physicists focus on statistical analysis
from a macroscopic perspective and have summarized empirical rules [2]. For example,
they found that, truncating the power law distribution can well fit the displacement dis-
tribution [1]; despite the significant differences in the travel patterns, a majority of users’
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mobility behaviors are predictable [11]. Computer scientists, on the other hand, prefer
to model the transition regularities from location sequences, using Markov models [12],
recurrent neural networks (RNNs) [13], etc. In summary, statistical physics study the col-
lective behavior at population level, while deep learning methods emphasize modeling
individual travel trajectories. Thus, we can expect that integrating physical domain knowl-
edge into a deep learning model encourages the model to pay attention to group behaviors
and promotes the performance of deep learning models at population level.

Here we place our emphasis on next location prediction, a vital task in human mobility
modeling at individual level [14]. A body of work leverages machine learning methods to
tackle this problem due to the sequential nature of mobility behavior. A common thread
of these studies is to efficiently capture behavior patterns from sparse data [10, 15–17].
Traditional methods mainly adopt Markov chains to model transition probability matri-
ces across locations, along with techniques like factorization [12, 18, 19] or metric em-
bedding [20]. In recent years, deep learning methods are gaining increasing attention in
next location prediction as the recurrent neural network (RNN) presents its capability
to capture sequential dependency. To model multi-scale spatio-temporal periodicity, re-
searchers designed attention or gate mechanisms and introduced time and distance inter-
val information [13, 21–24]. Also a few studies incorporate semantic information such as
location categories to cope with the data sparsity [16, 25, 26]. However, methods that cap-
ture dependencies only from location sequences are difficult to fully fit complex human
travel behaviors, especially with sparse data.

To tackle this challenge, we seek to integrate physical knowledge into deep learning
methods to enhance the capability of human mobility prediction. Specifically, we propose
two physical constraints. The first one is summarized as “when→what→where” causal
relationship. “When”, “what”, and “where” are the three core elements of human travel be-
havior and the dependencies between them can explain the motivation of location trans-
fer. For example, as shown in Fig. 1(a), people have specific demands at different times,
causing the shifts between locations. Considering causal dependencies enables more com-
prehensive modeling of human mobility. The second constraint is the macro-statistical
characteristics reflecting group behavior. Figure 1(b) illustrates the deviation of the mod-
eled displacement distribution via LSTM from the true distribution in New York City and
Tokyo, suggesting LSTM is more likely to focus on shorter trips with higher frequency.
Ensuring the consistency between the model output and the macro-statistical character-
istics is expected to improve the model’s capability to fit travel behavior. We summarize
these two constraints as causality and consistency constraints and incorporate them into
deep learning models.

To this end, we propose a Causal and Spatial-constrained Long and Short-term Learner
(CSLSL), a model integrating the decision logic and the consistency constraints of human
mobility modeling. To model the “when→what→where” decision logic, we introduce a
causal structure in CSLSL. Based on a multi-task learning, the causal structure utilizes
three similar network branches to model the regularities of time, activity, and location,
respectively. In line with the “when→what→where” logic, we explicitly build connections
between the three branches in the causal structure. As for consistency, we exploratively
propose a spatial-constrained loss to reduce the distance between the predicted and actual
locations, and indirectly ensure the consistency of the spatial density distribution. In ad-
dition, we adopt a Long and Short-term Capturer (LSC) to learn the transition patterns of
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Figure 1 Illustrations for causality and spatial consistency in human mobility. (a) An example to explain the
“when→what→where” decision logic. (b) The deviation of the modeled displacement distribution via LSTM
from the ground truth (GT) in New York City and Tokyo

different time spans. There are two units in LSC that focus on long-term and short-term
regularities respectively.

The main contributions of this work are summarized as follows:
• We propose CSLSL to integrate the travel decision logic and the macro-statistical

consistency for human mobility modeling. To our best knowledge, CSLSL is the first
model to learn the causality and consistency constraints for next location prediction.

• We introduce a causal structure that can capture not only the separate regularities of
time, activity, and location, but also the “when→what→where” causal dependencies.
In this way, CSLSL models more essential travel logic in addition to sequence
relationships.

• To ensure the consistency in spatial distribution, we propose a spatial-constrained loss
to reduce the gap between the predicted and actual destinations.

• We evaluate CSLSL on three real-world datasets to confirm the performance
improvements. We also conduct ablation studies and visualization analyses of results
such as displacement distribution to demonstrate the effectiveness of our design.

2 Related work
2.1 Next location prediction
Here we classify the approaches to the next location prediction problem into two cate-
gories: traditional and deep learning methods. Traditional methods mainly apply Markov
chain (MC) and focus on constructing a better location transition probability matrix [12,
18, 20, 27]. For instance, factorized personalized Markov chain (FPMC) combines the ma-
trix factorization technique with Markov chains to learn users’ personalized transition
matrices [12]. The limitation of the MC-based methods lies in the difficulty in capturing
long-term and high-order regularity [16, 17].

Deep learning methods have advantages of learning dense representation and com-
plex dependency. Recently, RNN-based methods show promising performance in min-
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ing sequential information. A popular scheme of deep learning methods is incorporating
time and distance intervals to assist the model in learning the spatio-temporal regulari-
ties of human mobility. Specifically, these methods integrate spatio-temporal information
into hidden state transition [28], gate mechanisms [21, 22, 29], or self-attention mech-
anisms [15, 17], and exploit spatio-temporal contexts in a implicit manner. To leverage
the spatio-temporal contexts, researchers explicitly used spatial and temporal factors as
attention weights to select the historical hidden states [24, 30]. Another scheme empha-
sizes the long-term patterns of human behavior, such as DeepMove [13] and LSTPM [23].
They introduce two different components to model long-term and short-term preferences
respectively. There is also another scheme that utilizes semantic information such as loca-
tion categories to improve the performance of location prediction [16, 26, 31]. However,
methods that focus on modeling location transfer patterns in sequences cannot effectively
capture complex human decision logic. In our work, we propose a causal structure to ex-
plicitly capture the “when→what→where” decision logic.

2.2 Time- or activity-jointed location prediction
The methods that jointly predict time or activity learn knowledge from related tasks to
improve the prediction performance of location. RMTPP [32] combines RNN and tem-
poral point process (TPP) to jointly model the time and location information. He et al. [25]
proposed a two-fold approach that predicts category with Bayesian Personalized Ranking
(BPR) technique and then predicts the category-based location. Krishna et al. [33] uti-
lized two distinct LSTM networks to predict activities and durations. DeepJMT [34] fuses
spatio-temporal information and social context to predict time and location with a hierar-
chical RNN and TPP technique. Sun et al. [35] proposed a hybrid LSTM and a sequential
LSTM with a self-attention mechanism to jointly model location and travel time. The limi-
tation of these approaches is that they attempt to implicitly and passively learn the correla-
tion between time, category, and location information, but this relationship is explicit and
can be directly exploited. In contrast, CSLSL explicitly models the causal dependencies
between time, category, and location information through two structural designs.

2.3 Statistical physics-informed human mobility modeling
Explicitly integrating knowledge of statistical physics contributes to guiding model op-
timization and improving the performance of machine learning methods. On the task of
trajectory generation, researchers introduced knowledge of statistical physics to constrain
the macroscopic performance of their models, such as the individual trajectory generation
model TimeGeo [36] and DITRAS [37], and flow generation model DeepGravity [38]. Un-
like the trajectory generation task, only a limited amount of work on individual mobility
prediction incorporates knowledge of statistical physics. Zhao et al. [30] integrated do-
main knowledge, specifically a power-law decay for distances and an exponential decay
for time intervals, into an attention mechanism to adjust the impact of historical infor-
mation on current prediction. However, deep learning-based methods focus more on fit-
ting individual behavior while neglecting group behavior constraints described by macro-
statistical characteristics, for example, the regional attractiveness of city blocks. The spa-
tial distribution of model prediction results should be consistent with the actual statistical
distribution. Predicted locations closer to the actual location are more expected. Toward
this, we propose a spatial-constrained loss function to narrow the distance between the
predicted and actual locations, thereby ensuring the consistency of the spatial distribution.
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3 Problem formulation
A person’s travel behavior can be represented as a sequence of locations, associated with
the timestamps and her user ID. In LBSN datasets, each location is also associated with
its functional category to support the analysis of user’s activity. Let U = {u1, . . . , u|U |}, L =
{l1, . . . , l|L|} and C = {c1, . . . , c|C|} denote a set of users, locations and functional categories,
respectively. Each location li is associated with its category and geographical coordinate
(ci, lati, loni).

Definition 1 (Record) Record r is a 3-tuple (ui, lj, tk), representing that the user ui visited
location lj at time tk , where ui ∈ U , lj ∈L.

Definition 2 (Individual Trajectory) A person’s trajectory is defined as a record sequence
R = {r1, r2, . . . , r|R|}, which consists of the person’s all records arranged in chronological
order. Note that the time interval between two consecutive records is heterogeneous due
to the irregular travel behavior.

Definition 3 (Session) Session S is a subsequence of records in a time slot. One user’s
trajectory R can be split into a series of sessions with various strategies. For exam-
ple, DeepMove adopts a specific time interval between two consecutive records to split
the trajectory [13]. Other strategies segment users’ trajectories using a fixed number of
records [17, 24] or a meaningful time window such as days, weeks, etc [23]. We define the
session where the prediction target is located as the short-term session Sp and the previous
historical sessions as long-term sessions {Sq}, q ∈ {1, . . . , p – 1}.

The location prediction problem is formulated as: given a record sequence of a user
Rt–1 = {r1, . . . , rt–1}, the goal is to predict where the user u is most likely to go in her next
trip. We use l̂t to denote the predicted next location. Note that the timestamp of the next
trip t is also unknown.

4 Methodology
In this section, we first analyze the causality and consistency constraints in human mobil-
ity modeling, and then elaborately introduce the design of the proposed model, Casual and
Spatial-constrained Long and Short-term Learner (CSLSL). The architecture of CSLSL is
illustrated in Fig. 2. It mainly consists of two parts, an embedding part for learning the
representations of arrival time, category, and location, from users’ recent and historical
records; and the second part for learning the regularities of mobility behavior in a multi-
task learning based causal module and making predictions.

4.1 Causality and consistency constraints
A common practice for next location prediction is to discover similar subsequences or
location transition relationships from historical records. This is accomplished by inte-
grating the context information such as distance or time intervals into attention or RNN-
centered framework [17, 22–24]. We can formulate such mainstream scheme as P(l̂t|Rt–1),
where Rt–1 is the historical record sequence. Another scheme adopts multi-task learn-
ing techniques to jointly predict next location with time or activity [34, 35], formulated
as P(l̂t , ĉt , t̂|Rt–1) = P(l̂t|Rt–1)P(ĉt|Rt–1)P(t̂|Rt–1), where we assume that the location cat-
egory can approximate the type of activity. Although these two schemes combine con-
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Figure 2 The architecture of the proposed CSLSL model. It considers both long-term and short-term travel
preferences and applies three branches with well-designed interconnection to explicitly models the
“when→what→where” decision logic

textual information to capture hidden regularities of location transition, they ignore the
causal dependencies in the context information.

As aforementioned, we regard “when”, “what” and “where” as three crucial elements to
describe human mobility [39, 40]. “When” refers to the time the trip takes place, e.g. “mid-
day”. “What” tells about the activities people participate in and also answers the reasons
for the trip, such as “having lunch”. “Where” is the destination of the trip, like “steakhouse”.
Periodic activities exist in human mobility and occur at specific times and places, such as
going to work in the morning and going to a restaurant for lunch, which reveals the correla-
tion between the three elements. When we mention a specific timestamp, we have various
activity choices. But we are accustomed to doing certain activities at certain times, such as
going to the gym in the evening. Similarly, one activity (category) corresponds to multiple
locations (POIs), while one location ID only corresponds to one activity, also reflected in
the dataset. Moreover, our target is location prediction, thus location should be the final
subtask to leverage the predicted time and activity information. Therefore, we summa-
rize a “when→what→where”, a.k.a. “time→activity→location” causal relationship, which
is in line with the coarse-to-fine logic of the human decision. The proposed scheme can
be formulated as:

P(l̂t , ĉt , t̂|Rt–1) = P(l̂t|ĉt , t̂,Rt–1)P(ĉt|t̂,Rt–1)P(t̂|Rt–1). (1)

The scheme explicitly models the dependencies between time, activity, and location, and
alleviates the difficulty of location prediction. For example, people are accustomed to go-
ing to restaurants at midday instead of bar, that is, P(ĉt = restaurant|t̂ = midday,Rt–1) >
P(ĉt = bar|t̂ = midday,Rt–1). Each individual has her personalized P(l̂t|ĉt = restaurant, t̂ =
midday,Rt–1), and the casual constrained location distribution is easier to learn than
P(l̂t|Rt–1). In CSLSL, we introduce a causal structure to implement the scheme. In ex-
periments, we also demonstrate that “time→acitivity→location” outperforms “activity→
time→location” and “time, activity, location”, which does not involve logical connections.
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Figure 3 The illustration of the LSC module. It learns
the long-term and short-term trajectory representation
which reflects a user’s travel preference

On the other side, integrating physical knowledge provides more information and prior
constraints to guide the optimization of deep learning models [41, 42]. In human mobility
modeling, one can expect that properly introducing the physical laws and domain knowl-
edge would narrow down the gap between the output of deep learning-based approaches
and the observed macro-statistical characteristics of human behavior. Due to the difficulty
in applying statistical constraints in the training of deep learning models, here we consider
the geographic spatial consistency in an indirect way. Specifically, we devise a loss function
to constrain the distance between the predicted and actual locations. That is, the closer
the predicted location is to the ground truth, the smaller loss we have. By this way, we can
indirectly ensure the consistency of the displacement distribution and the consistency of
the spatial distribution of travelers’ destinations.

4.2 Long and short-term capturer
Human travel behavior has long and short-cycle repetitive patterns, such as going to work
every day and going to the supermarket once a week. Inspired by DeepMove [13] and
LSTPM [23], we devise a Long and Short-term Capturer (LSC) to learn the behavioral
patterns in different observation cycles. In the whole framework shown in Fig. 2, we apply
three LSCs to model the time, activity, and location sequences, respectively.

Let el ∈ R
dl , ec ∈ R

dc , et ∈ R
dt and eu ∈ R

du denote the embedded representation of lo-
cation, category, time and user, respectively. Given a historical record sequence R, CSLSL
embeds each record as (el, ec, et , eu) in hidden spaces. Note that we first convert the con-
tinuous timestamp as the hour in a day th and the day in a week td to present the daily
and weekly periodicity. By doing so, we have et = eth ⊕ etd . Then these representations
in a record are concatenated together, er = el ⊕ ec ⊕ et ⊕ eu. We next split each user’s
record sequence into multiple sessions with a certain time window, like days or weeks. The
records in short-term session and long-term sessions are represented as ẽr

p = {er
1, . . . , er

t–1}
and {̃er

q} = {̃er
1, . . . , ẽr

p–1}, respectively.
Our proposed LSC consists of two capturers to learn the transition regularities in the

short-term and long-term sessions, respectively, as shown in Fig. 3. We formulate LSC as:

ht = LSC
(

ẽr
p,

{

ẽr
q
}

, h0
)

, (2)

where h0 is the initial hidden state. In the LSC structure, the short-term capturer takes
the hidden state h|Sp–1| of the long-term capturer as the initial hidden state to combine the
historical information. Because GRU is simple but efficient in modeling temporal data, we
apply a layer of GRU in both of the capturers:

hi = GRU
(

er
i–1, hi–1

)

, (3)
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where i ∈ {1, 2, . . . , |Sp–1|} for long-term capturer and i ∈ {1, 2, . . . , t} for short-term cap-
turer.

4.3 Causal structure
To model the “time→activity→location” logic relationship discussed in Sect. 4.1, we in-
troduce a causal structure based on multi-task learning techniques. As illustrated in Fig. 2,
we utilize three branches with the same architecture to model the change patterns of time,
activity, and location, respectively. Specifically, in each branch, we convey the same record
representations to the LSC module and then transfer the output hidden states to the pre-
dictor. To explicitly model the summarized causal relation in human travel behavior, we
next design two paths for information transfer between various tasks. The first path lies
between two LSC modules, passing on the task-specific hidden states. The second path
lies between two predictors. In this path, the predicted result of the upstream task is pro-
cessed by the converter and then conveyed to the downstream task. Here we use the fully
connected layer as the predictor (P) and converter(C). That is y = Linear(x) = Wx + b.

Mathematically, the branch of “time” is formulated as:

ht
t = LSC

(

ẽr
p,

{

ẽr
q
}

, 0
)

, (4)

t̂ = Linear(Pt )(ht
t
)

, (5)

where W(Pt ) ∈ R
1×|ht |, ht

t is the hidden state of the next time, and t̂ is the predicted time.
As the downstream task of “time” in causal structure, the branch of “activity” can be for-
mulated as:

hc
t = LSC

(

ẽr
p,

{

ẽr
q
}

, ht
t
)

, (6)

ct = Linear(Pc)(hc
t ⊕ Linear(Ct )(t̂)

)

, (7)

ĉt = argmax(ct), (8)

where W(Ct ) ∈ R
|et |×1, W(Pc) ∈ R

|C|×(|hc|+|et |), hc
t is the hidden state of the next activity, and

ĉt is the predicted activity. Eventually, we can formulate the branch of “location” as:

hl
t = LSC

(

ẽr
p,

{

ẽr
q
}

, hc
t
)

, (9)

lt = Linear(Pl)(hl
t ⊕ Linear(Cc)(ct)

)

, (10)

l̂t = argmax(lt), (11)

where W(Cc) ∈ R
|ec|×|C|, W(Pl) ∈ R

|L|×(|hl |+|ec|), hl
t is the hidden state of the next location, lt

is the distribution of predicted location, and l̂t is the predicted location.

4.4 Spatial-constrained loss function
As discussed in Sect. 4.1, for seeking an alignment of spatial distribution of destinations,
we propose a spatial-constrained loss function to shorten the distance from the predicted
location to the ground truth at individual level. The distance constraint can be regarded as
a self-supervised auxiliary task, integrating the geographical information and restricting
the candidate set for better next location prediction. The existing methods introduce the
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Figure 4 Structure variation. (a) Long and Short-term Learner (LSL); (b) Share-Bottom LSL (SBLSL); (c)
Multi-Experts LSL (MELSL); (d) Separate LSL (SLSL); (e) Hierarchical LSL (HLSL). Note the gate networks of
MELSL are not drawn for simplicity

distance constraints in a regression subtask, directly predicting the geographical locations
of destinations [43]. However, in the classification scheme, we must query the coordinates
of location IDs to calculate their distance. This operation is not derivable. We get inspi-
ration from REINFORCE [44], which introduces the reward in the loss function to train
a policy network, and also consider the distance error as a coefficient to weight the cross-
entropy between ground truth and the predicted location ID with their physical distance.
The spatial-constrained loss function is defined as:

Ls = –
N

∑

i=1

distance(l̂t,i, lt,i) · log
(

σ (lt,i)
)

, (12)

where N is the total number of records and σ is the softmax function.
We next employ MAE loss for time prediction and cross entropy loss for category and lo-

cation prediction. Thus we have Lt = MAE(t̂, t) =
∑N

i=1 |t̂i – ti| and L∗ = CrossEntropy(∗) =
–

∑N
i=1 log(σ (∗t,i)),∗ ∈ {c, l}. Thus, the total loss function can be written as

Ltotal = Ll + λtLt + λcLc + λsLs, (13)

where λt ,λc,λs are weights for their loss functions.

4.5 Structure comparison
There are various strategies for task combination in multi-task learning, such as share-
bottom structure [45, 46], hierarchical structure [34, 47], and multi-expert structure [46,
48]. Inspired by these structures, we propose five variants, as shown in Fig. 4, to demon-
strate the advantages of our causal structure. Note that these variants use the same basic
components as CSLSL, such as GRUs and fully connected layers.

Long and Short-term Learner (LSL) is a basic approach with only one branch to predict
location. To jointly predict “time”, “activity”, and “location”, Share-Bottom LSL (SBLSL)
introduces two additional predictors that share the same bottom LSC module with the
original one. Multi-Experts LSL (MELSL) is an advanced version of SBLSL, with a similar
structure to Mixture of Sequential Expert (MoSE) [46]. MELSL employs several GRUs
as experts to focus on different aspects of sequence dependencies and gate networks to
combine relevant aspects for each task.

Unlike the share-bottom structure, Separate LSL (SLSL) employs a separate branch for
each task and the only shared information between each task is the same record represen-
tations. Considering the dependencies between tasks, Hierarchical LSL (HLSL) concate-
nates the record embedding and the output hidden state of the upstream task as the input
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Table 1 Statistical information of the three datasets, NYC, TKY, and Dallas. The number of users,
locations, and records are collected from raw and processed data

NYC TKY Dallas

|U | |L| |R| |U | |L| |R| |U | |L| |R|
Raw 1083 38,333 227,428 2293 61,858 573,703 5894 5767 167,016

Processed 1083 4638 139,183 2293 7222 427,746 2412 5642 146,117

FPMC-D 1083 4638 94,168 2293 7222 334,561 2412 5642 100,743
FPMC-W 1083 4638 92,260 2293 7222 303,854 2412 5642 122,419
DeepMove 1061 4627 111,968 2284 7206 333,215 1193 5346 93,911
Flashback 439 4093 96,771 1451 6998 366,604 340 5434 82,287
LSTPM 579 4128 62,511 1866 7007 273,880 587 5169 55,784
GeoSAN 1073 4611 138,229 2289 7209 427,157 2300 5357 142,980
STAN 1000 4503 82,783 2200 7047 201,831 2400 5615 95,656
GETNext 1066 4621 131,920 2280 7200 414,993 – – –
Ours 1065 4635 133,944 2280 7204 422,432 1357 5428 120,531

of the downstream task. Thus the equation (3) changes to:

hk
i = GRU

(

er
i–1 ⊕ hk–1

i , hk
i–1

)

, (14)

where hk
i is the hidden state of the k-th task at i-th time step, and the equation (2) changes

to:

hk
t = LSC

([

ẽr
p,˜hk–1

p
]

,
{[

ẽr
q,˜hk–1

q
]}

, 0
)

, (15)

where [̃er
p,˜hk–1

p ] = {er
1 ⊕ hk–1

1 , . . . , er
t–1 ⊕ hk–1

t–1 }.

5 Experiments
5.1 Data description
We leverage three publicly available check-in datasets in the experiments: two datasets
from Foursquare [49] in New York (NYC) and Tokyo (TKY) and one dataset from
Gowalla [50] in Dallas. Data in NYC and TKY were collected from 3 April 2012 to 16
February 2013, and data in Dallas was collected from 4 February 2009 to 22 October 2010.
The number of users, locations, and records in three datasets are summarized in Table 1,
where |∗| denotes the number of ∗. The number of location categories |C| in NYC and
TKY are 400 and 385, while Dallas does not contain category information.

To prepare data for baselines and proposed models, we first filter out both users and
locations with fewer than 10 records, in line with previous work [13, 23]. We then merge
the consecutive records with the same user and location on the same day. The statistical
information of the raw and processed data is depicted in Table 1. After pre-processing,
the number of categories for NYC and TKY are reduced to 308 and 286. For CSLSL and
its variations, we split trajectories into sessions according to week due to the data sparsity.
In addition, we require that each session contains at least two records and a user contains
at least five sessions to guarantee a training/testing split of 8/2, following [13]. All base-
lines have their own further data preparation strategies and the model-specific dataset
information is also shown in Table 1. It’s noteworthy that, LSTPM [23] requires at least
three records in each session and Flashback [24] limits the minimum records of each user
to 100. These practices filter out more sparse data and reduce the challenge of predic-
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tion. Moreover, GETNext requires category information as input, thus it cannot work on
dataset Dallas.

5.2 Baselines and settings
Baselines. We compare CSLSL with the state-of-the-art baselines:

• FPMC [12] is a Markov-based model that uses factorization to learn individual
transition matrices.

• DeepMove [13] adopts an attention mechanism to learn long-term preference and a
GRU module to capture short-term preference.

• Flashback [24] uses spatio-temporal distances as attention weights to search the
historical hidden states for current prediction.

• LSTPM [23] considers temporal similarity and distance factor to model long-term
preferences and geographical relevance to model short-term preferences.

• GeoSAN [15] designs a geography encoder to implicitly capture spatial proximity and
introduces a loss function based on importance sampling to better use the informative
negative samples.

• STAN [17] introduces a two-layer attention architecture with spatio-temporal relation
matrices to explicitly capture the spatio-temporal correlations.

• GETNext [51] utilizes a GCN to integrate collective movement patterns and a
transformer encoder to capture transition regularities. Besides, it introduces location
categories as inputs and prediction targets.

Settings. To convincingly compare these baselines with our CSLSL, we collected the
open-source codes released by the authors and attempted to find the optimal hyperpa-
rameters in the experiments. It’s worth noting that most of the baselines only predict next
location, without category and time of visitation. Thus, we match the predicted location
ID to its category for comparison and exclude the performance comparison of time pre-
diction. Besides, we split users’ trajectories by day and week for FPMC model, referred to
as FPMC-D and FPMC-W, respectively. For CSLSL, the dimensions of representation vec-
tors el, ec, eth , etd and eu are set to 200, 100, 10, 20, and 20 for all datasets. The dimension
of the hidden state in all GRUs is set to 600. We use the Adam optimizer with the learning
rate of 0.0001, and λt , λc, and λs are set to 10.

Metrics. In the next location prediction task, what we care about is whether the actual
location is in the top N of our predictions, N = {1, 5, 10}. Recall@N is the most commonly
used metric and is equal to Accuracy@N because we don’t have false positive (FP) and
true negative (TN). The definition of Recall@N is

Recall@N =
1

|U |
∑

u∈U

|LT
u ∩LP

u|
|LT

u | , (16)

where LT
u and LP

u are the target and top N prediction location sets, respectively.

5.3 Performance comparison with baselines
The experimental results are averaged over 10 independent runs and shown in Table 2.
For each city, the results are presented in three pieces, representing the results of base-
lines (lines 1–8), variants (lines 9–14), and ablations (lines 15–18), respectively. The best
performance in each column is highlighted in bold text and the second best one is under-
lined. For NYC and TKY, we present the predicted results for categories and locations,
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Table 2 Performance comparison between baselines, CSLSL, its variants and ablations on three
real-world datasets

NYC TKY Dallas

Category Location Category Location Location

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

FPMC-D 0.217 0.510 0.631 0.173 0.424 0.526 0.462 0.623 0.688 0.176 0.408 0.503 0.086 0.204 0.261
FPMC-W 0.196 0.394 0.482 0.162 0.323 0.382 0.428 0.513 0.557 0.117 0.245 0.313 0.055 0.125 0.161
DeepMove 0.244 0.499 0.586 0.198 0.407 0.470 0.398 0.567 0.626 0.161 0.331 0.400 0.089 0.185 0.229
Flashback* 0.280 0.618 0.737 0.223 0.521 0.639 0.479 0.730 0.801 0.207 0.486 0.583 0.090 0.199 0.256
LSTPM* 0.335 0.659 0.765 0.267 0.560 0.662 0.461 0.727 0.797 0.231 0.457 0.543 0.123 0.247 0.316
GeoSAN 0.193 0.433 0.602 0.166 0.430 0.584 0.317 0.551 0.694 0.158 0.392 0.528 0.078 0.186 0.265
STAN 0.218 0.480 0.591 0.192 0.411 0.494 0.376 0.575 0.668 0.167 0.388 0.478 0.074 0.153 0.196
GETNext 0.303 0.646 0.749 0.246 0.536 0.622 0.452 0.758 0.844 0.216 0.456 0.550 – – –

LSL 0.288 0.587 0.684 0.242 0.506 0.589 0.446 0.697 0.762 0.225 0.462 0.548 0.101 0.203 0.254
SBLSL 0.290 0.595 0.682 0.242 0.488 0.571 0.446 0.769 0.851 0.229 0.460 0.545 0.107 0.194 0.234
MELSL 0.275 0.586 0.662 0.227 0.432 0.526 0.439 0.648 0.745 0.211 0.419 0.475 0.078 0.121 0.164
SLSL 0.281 0.611 0.722 0.253 0.534 0.632 0.409 0.731 0.825 0.233 0.458 0.559 0.114 0.220 0.272
HLSL 0.296 0.628 0.734 0.256 0.536 0.625 0.441 0.760 0.847 0.232 0.472 0.562 0.115 0.230 0.284
CLSL-ctl 0.315 0.647 0.745 0.257 0.543 0.636 0.472 0.780 0.861 0.227 0.472 0.560 – – –

CLSL 0.322 0.658 0.747 0.261 0.553 0.643 0.459 0.782 0.864 0.238 0.476 0.567 0.120 0.229 0.282
CSLSL-c 0.315 0.638 0.757 0.247 0.546 0.643 0.450 0.775 0.858 0.230 0.463 0.551 – – –
CSLSL-t 0.319 0.648 0.749 0.264 0.556 0.652 0.479 0.740 0.829 0.233 0.478 0.568 0.118 0.231 0.284
CSLSL 0.327 0.661 0.759 0.268 0.568 0.656 0.488 0.801 0.875 0.240 0.488 0.580 0.126 0.243 0.297

*Flashback and LSTPM filter out much more sparse users in their data preparation, reducing the challenge of prediction.

while for Dallas, we only show the location prediction results due to the lack of category
information.

From the experiment results, we can observe that the proposed CSLSL shows promis-
ing performances compared with baselines. In terms of Recall@1 in location prediction,
CSLSL achieves 27%, 37%, and 43% averaged performance improvements over these deep
learning baselines in three datasets. For Recall@1 in category prediction, the improve-
ments are 34% and 23% in NYC and TKY, respectively. Considering Recall@{5, 10} in
location prediction, CSLSL achieves similar performances with LSTPM and Flashback,
which filter more than 46%, 18%, and 57% of sparse users than we do on three datasets
shown in Table 1. These similar performances in the more challenging dataset settings
can also reflect the superiority of our model. Disregarding these two models, CSLSL still
obtains over 20% averaged improvements than the rest of deep learning baselines. More-
over, CSLSL has improved by 8.9% and 11.1% in Recall@1 in NYC and TKY compared to
GETNext, which has similar dataset statistics to ours. The poor performances of all mod-
els on the Dallas dataset may be due to the data sparseness. Even so, CSLSL can still utilize
the time-location relationship and the spatial constraints to achieve performance gains.

Among the baselines, we observe that the overall performance of location prediction on
TKY is lower than that on NYC. This is probably because the TKY dataset has a larger
number of users and locations than NYC, increasing the difficulty of mobility prediction.
However, CSLSL obtains more performance improvement on TKY than NYC for location
prediction compared with baselines. For instance, the performance of CSLSL improves
by 8.9% on NYC compared with GETNext, while the improvement is 11.1% on TKY. On
the other side, the category predictions for all models have higher accuracy on TKY than
on NYC. We may conclude that the larger performance improvement on TKY than NYC
mainly owes to the proper modeling of the dependencies.
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5.4 Performance comparison with variants
To fairly demonstrate the effectiveness of the proposed causal structure, here we develop
an ablated version of CSLSL via dropping the spatial-constraint loss, namely CLSL, and
compare it with the 5 variants discussed in the Sect. 4.5. Moreover, we also consider the
“what→when→where” relationship, thus we change the order of these three branches in
CLSL from “time→category→location” to “category→time→location” and this variant is
named CLSL-ctl. We present the results of the variants and CLSL in the second and third
pieces of Table 2. The category prediction results of LSL are obtained in the same way as
the baselines.

Compared with LSL, SBLSL has a similar performance of location prediction and
slightly improved performance of category prediction, suggesting that the shared bottom
of SBLSL has indeed learned the category transfer regularities. However, these learned
regularities make no contribution to the location prediction. Besides, the performance of
MELSL is weaker than LSL and SBLSL, which may be because MELSL does not clarify the
relationship between tasks and its experts cannot find suitable optimization directions.
The better performance of SLSL than SBLSL indicates that the separate modules to learn
transition relationships are better than the shared one. HLSL achieves the best perfor-
mance in the second pieces of Table 2, suggesting that there are dependencies between
time, category, and location, and that capturing the dependencies facilitates location pre-
diction.

The performances of these variants are weaker than CLSL, suggesting that although
these variants utilize temporal and categorical information, they cannot effectively and
autonomously capture the dependencies between time, category, and location. In con-
trast, the causal structure explicitly captures the dependencies between tasks in two ways,
thereby fully exploiting their dependencies to improve performance. Moreover, the bet-
ter performance of CLSL than CLSL-ctl is in line with expectations, because location has
stronger dependencies with category than time and category information can bring more
performance gains for location prediction. Therefore, our proposed causal structure ex-
plicitly models “time→category→location” rather than “category→time→location”.

5.5 Ablation study
We also conduct ablation studies to examine the contributions of different components in
CSLSL. The ablated models include:

• LSL: the version that only keeps the location branch.
• CLSL: the version that removes the spatial-constraint loss.
• CSLSL-t: the version that removes the time branch.
• CSLSL-c: the version that removes the category branch.
As shown in Table 2, we can find that CSLSL-t achieves better performance than CSLSL-

c, indicating the “category→location” relationship has stronger dependency constraints
than “time→location”. This result is also consistent with what we discussed in the Sect. 5.4.
The best performance of the complete CSLSL demonstrates the significance of the en-
tire “time→category→location” decision logic. Comparing the performance of CLSL and
CSLSL, we can confirm that the spatial-constraint loss function has a positive impact on
performance improvement. Moreover, LSL achieves decent performance compared with
baselines, probably because it leverages category information and the LSC module is ca-
pable of capturing the long-term and short-term preferences.
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Figure 5 Effect analysis of the causal structure. The successfully predicted locations are divided into two parts
based on whether the category prediction is accurate. The NYC dataset exhibits a higher accuracy in
predicting location as compared to the TKY dataset, while the prediction of categories for TKY is easier. CSLSL
outperforms GETNext on both datasets, and a higher degree of performance enhancement is observed on
the TKY dataset (18%) in comparison to the NYC dataset (10%)

5.6 Results visualization analysis
We conduct result visualization analysis to further understand the effectiveness of the
causal structure and the spatial-constrained loss. For the causal structure, we compare
the category and the location prediction results of GETNext and CSLSL, as shown in
Fig. 5. The successfully predicted locations are divided into two parts in the figure based on
whether the category prediction is accurate. We can observe that for CSLSL, the records
with successfully predicted both categories and locations on NYC and TKY account for
21% and 20% of all records. Compared with GETNext, CSLSL successfully predicted 10%
and 18% more locations with more accurately predicted categories on NYC and TKY, re-
spectively. This intuitively indicates that the causal structure can enhance location pre-
diction with more accurate category prediction results. Interestingly, the location can be
predicted correctly with a unsuccessfully predicted category. This is because the category
information is introduced as additional auxiliary information without imposing manda-
tory constraints on the location prediction.

To further explore the relationship between categories and location prediction, we ex-
amine the accuracy of location predictions for different categories, as depicted in Fig. 6.
The category classification is derived from the Foursquare platform. The results exhibit
varying levels of predictability for different categories. For instance, the Community and
Government category shows higher accuracy, while Retail demonstrates lower accuracy.
This disparity may be attributed to the complex relationship between categories and loca-
tions. A greater number of location options within the same category in proximity to the
user’s location would result in higher prediction difficulty. Additionally, the periodicity of
visits to different categories also affects the accuracy of predictions.

The quantity and frequency of individuals’ visited locations can reflect the predictability
of their travel behavior. Therefore, we utilize entropy to describe the patterns of individual
location visits. Entropy(u) = –

∑n
i pi log pi, where pi denotes the frequency of i-th location

and n is the total location number the user u visited. Figure 7 (a) depicts the correlation
between category entropy and location prediction accuracy, while Fig. 7 (b) illustrates
the relationship between location entropy and location prediction accuracy. The results
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Figure 6 Accuracy of location prediction across different categories: (a) 9 coarse-grained categories; (b) Top
20 fine-grained categories with the highest accuracy

Figure 7 Accuracy of location prediction under different entropy: (a) category entropy; (b) location entropy.
The blue points represent the average accuracy. The gray points reflect the accuracy distribution among
users, and their transparency is normalized based on the maximum number of users in accuracy segments.
The results reveal a negative correlation between entropy and accuracy

indicate a negative correlation between entropy and accuracy. Users with higher entropy
tend to visit more diverse locations, making their travel predictions more challenging.

Regarding the spatial-constrained loss, we examine whether the distances between pre-
dicted and actual locations are successfully constrained, and compare CSLSL with four
baselines. As shown in Fig. 8, the results show that the predicted locations of CSLSL are
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Figure 8 Distance distribution between the predicted and target location. The predicted locations of CSLSL
are closest to the true locations among these models

Figure 9 (a) Comparison of the predicted displacement with the ground truth (GT). The predicted
displacement of CSLSL is closer to the ground truth than that of GETNext. (b) Prediction error comparison of
regional attractiveness. CSLSL has a smaller prediction error than GETNext

closer to the actual locations, which indicates that the proposed loss can successfully con-
strain the distance errors. Furthermore, we inspect the constraining effect of the proposed
loss on spatial consistency. Figure 9(a) shows the comparison of the predicted displace-
ment with the ground truth. It can be seen that the predicted displacement of CSLSL is
closer to the true distribution. This is because the constraint between the predicted and
actual locations can indirectly ensure the consistency of the predicted displacements and
the ground truth. Figure 9(b) shows the prediction error of regional attractiveness. We di-
vided the geographic regions into square grids with side lengths of 500 m, and counted the
difference between the predicted and actual visits in each grid. As presented in Fig. 9(b),
CSLSL has a smaller prediction error of regional attractiveness, suggesting that the pro-
posed loss successfully constrains the spatial consistency.
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Figure 10 Analysis of parameter sensitivity. (a) The accuracy heatmap with various λt and λs . (b) The
accuracy line chart with various λs . Among these hyperparameters, CSLSL is more sensitive to λc . Despite
minor performance fluctuations, CSLSL can still effortlessly obtain an accuracy of over 0.26 on NYC and 0.24
on TKY

5.7 Sensitivity analysis
We perform sensitivity analysis on dataset NYC and TKY to examine how the performance
of CSLSL is affected by λ∗, ∗ ∈ {t, c, s}. We first vary λt and λc to analyze the effect of time
and category prediction subtasks with a fixed λs = 1. Then we fix λt and λc and vary λs

to observe the impact of spatial-constrained auxiliary tasks. Recall@1 is chosen as the
evaluation metric and the results of location prediction are averaged of three runs, shown
in Fig. 10.

From Fig. 10 (a), we can observe that the performance of location prediction is more sen-
sitive to λc than λt , reflecting that the accurate category prediction exerts more influence
on the location prediction accuracy, which is also consistent with our proposed decision
logic. In addition, the best performance on NYC is obtained with λt = 5 and λc = 10 when
λs = 1, while that on TKY is obtained with λt = 100 and λc = 50. Figure 10 (b) shows that
CSLSL reaches a more stable accuracy on NYC when λs = 5.0, while the average accuracy
is higher when λs = 10.0. The results on TKY show that when λt and λc are set to smaller
values, better performance can be achieved when λs is varied. In summary, CSLSL is ro-
bust to these parameters and does not suffer from large performance fluctuations with
parameter changes.

6 Conclusion
In this work, we propose a Causal and Spatial-constrained Long and Short-Term Learner
(CSLSL) to incorporate the individual travel decision logic and the group consistency for
next location prediction. In CSLSL, we introduce a causal structure based on multi-task
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learning to explicitly capture the “when→what→where” decision logic and enhance lo-
cation prediction by fully exploiting the temporal and categorized information. We fur-
ther propose a simple but effective spatial-constrained loss function that acts as a self-
supervised auxiliary task to incorporate geographical information and indirectly ensure
spatial consistency. We conducted extensive experiments to confirm the effectiveness of
the design. Specifically, we compared our model with seven baseline models on three
datasets, demonstrating the superior performance of the proposed model. Besides, we
conducted variant experiments and ablation experiments to validate the effectiveness of
the proposed causal structure and spatial constraint loss. Furthermore, we performed ad-
ditional visualization analyses on the prediction outcomes of the model. These included
exploring the relationship between categories and location predictions, analyzing the in-
fluence of individual behavioral diversity on predictability, and examining distance rela-
tionships and disparities in spatial distribution. Finally, we conducted sensitivity analysis
experiments on hyperparameters to examine the robustness of our model. Although we
evaluated our model on check-in data, the performance improvement was limited due
to the sparse nature of the data. We expect to experiment on dense datasets with com-
prehensive travel behavior. Such datasets would exhibit more regular patterns in human
behavior, enabling the model to more effectively utilize time and activity information to
enhance location prediction.
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