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Abstract
From small steps to great leaps, metaphors of spatial mobility abound to describe
discovery processes. Here, we ground these ideas in formal terms by systematically
studying mobility patterns in the scientific knowledge landscape. We use
low-dimensional embedding techniques to create a knowledge space made up of 1.5
million articles from the fields of physics, computer science, and mathematics. By
analyzing the publication histories of individual researchers, we discover patterns of
scientific mobility that closely resemble physical mobility. In aggregate, the
trajectories form mobility flows that can be described by a gravity model, with jumps
more likely to occur in areas of high density and less likely to occur over longer
distances. We identify two types of researchers from their individual mobility patterns:
interdisciplinary explorers who pioneer new fields, and exploiters who are more likely
to stay within their specific areas of expertise. Our results suggest that spatial mobility
analysis is a valuable tool for understanding the evolution of science.

Keywords: Science of science; Human mobility; Social dynamics; Knowledge
exploration

1 Introduction
Quantifying the evolution of scientific knowledge is crucial to understanding the past and
predicting future innovations [1], which ultimately lead to societal progress. At the fore-
front of scientific innovation are researchers recombining ideas to push the boundaries
of the known [2, 3]. With the exponential growth in the number of authors and publica-
tions [4, 5], novel methods are needed to represent and provide insights into knowledge
development.

The increased access to large-scale publication data sets has provided opportunities to
quantify the choices made by researchers and examine the factors governing the evolution
of scientific knowledge. By studying the citation patterns of researchers in their publica-
tions, studies have measured how conflicting ideas are pursued by researchers before they
converge to a common consensus [6] or give way to new ideas [7]. Other studies have
focused on identifying ‘hot topics’ in research [8], quantifying knowledge flow patterns
[9] and memory effects in the evolution of knowledge [10, 11], or predicting the ultimate
impact of a researcher [12, 13]. Similarly, keywords and phrases from publications can be
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leveraged to track the evolution of scientific ideas and fields [14, 15] or quantify how sci-
entists choose and shift their research focus over time [16, 17]. For example, the Physics
and Astronomy Classification Scheme (PACS) used in articles published by the American
Physical Society can be exploited to study the “essential tension” between exploring the
boundaries of a research area and exploiting previous work [18]. Finally, scientific credit
among researchers and their mutual scientific interest (quantified by citations between
papers and keywords, respectively) can be combined to improve the prediction of new
scientific collaborations [19].

Therefore, studying the publication trajectories of researchers can help identify the com-
plex processes underlying the evolution of science. Such trajectories are often talked about
metaphorically, for example when referring to scientific advances as ‘great leaps’ [20].
Here, we aim to explore the parallel between scientific and human mobility more for-
mally, by leveraging insights from human mobility studies. Using large-scale real-world
data on human trajectories, previous studies have indeed uncovered several laws underly-
ing human mobility. Despite heterogeneity in their movement, humans exhibit recurring
patterns in their mobility [21, 22]. These patterns have been shown to give rise to scal-
ing laws for the travel distance distribution [23]. At the macroscopic level, the resulting
flows between two locations follow a gravity model [24], mimicking the Newtonian law
of attraction between two masses at a given distance. Beyond jump distance, individuals
show reproducible properties at the whole trajectory level. For example, individuals can
be categorized into two classes, returners and explorers, depending on their propensity
to come back to the same location or explore new ones [25]. More generally, studies on
both individual and collective mobility datasets have proposed various quantitative mod-
els explaining the dynamics of human mobility [23, 26–30]. Crucially, these reproducible
patterns are not unique to human mobility [31]. Multiple studies across disciplines have
found striking similarities between human mobility in geographic space and animals for-
aging [32], insects swarms [33], and search methods in abstract environments such as
memory space [34], organizational learning [35], and cyberspace [36–38]. For example,
human mental search processes have been described by Lévy flights typical of a random
search in an unknown environment, suggesting its use as a unifying concept to materialize
the cognitive-spatial search analogy [39, 40].

In the context of scientific evolution, tools and data sources now abound for spatial rep-
resentations. Natural language processing and embedding methods with metadata from
publications such as citations, keywords, or abstracts, can be combined to exploit similari-
ties between research publications and derive a low-dimensional representation of the sci-
entific landscape. Such representations have been used to quantify the cognitive extent of
ideas explored by researchers [41, 42], describe the disciplinary structure of science [43],
predict future research topics for scholars [44, 45] or analyze and predict the evolution
over time of the research capacity and specialization of specific geographical areas [46].

In this work, we solidify these intuitions into a quantitative framework to represent sci-
entific knowledge and exploit metrics derived from human mobility to describe research
trajectories. To this aim, we leverage the unique features of papers published on the arXiv.
By utilizing embedding methods on publication metadata from arXiv pre-prints [47], we
create a lower-dimensional knowledge space that captures the essence of the scientific
landscape, by quantifying the relations between different topics and research fields. Using
the derived lower dimensional embedding we then track the mobility of disambiguated
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authors in this space using their publication records. We find that scientific exploration
shows striking similarities with human mobility in physical space. First, we show that sci-
entific mobility in the knowledge space follows a gravity model, with jumps more likely to
occur in areas of high density and less likely to occur over longer distances. Second, we
retrieve a dichotomy in exploration between interdisciplinary scientific explorers – more
likely to disrupt and pioneer new fields – and exploiters, who tend to exploit a particular
area of expertise, mirroring what is observed in spatial mobility between explorers and
returners. Finally, we discuss the usefulness of scientific mobility analyses for the study of
science and innovation, and discuss limitations and implications for future works.

2 Results
2.1 Scientific trajectories in the arXiv knowledge space
To build the knowledge space, we leverage the arXiv dataset, encompassing 1,456,403 sci-
entific articles published online between 1992 and 2018 (see Methods, Fig. S1 in Addi-
tional file 1 and ref. [48]). Our interest in this dataset is two-fold. First, it has a clear and
stable ontology for field tags, which are used by authors to specify the relevant research
area(s) covered by their articles. There is a strong incentive for authors to document these
tags as precisely as possible, in order for their article to appear in the right arXiv section
searched by the target scientific community, and in the relevant daily email digest that
interested scientists can subscribe to. Second, as a pre-print server, it has no editorial bar-
rier or publication cost, creating a low threshold for publication. This allows us to track
the publication history of an author in a fine-grained manner, at the time they are con-
sidered finished, and irrespective of their perceived novelty. As such, arXiv pre-prints can
be thought of as tracking knowledge steps to a high resolution, without requirements for
novelty thresholds to be met.

We first build a spatial representation of the knowledge space formed by arXiv pre-
prints. The structure of this space is determined by the 175 tags used by submitting au-
thors to assign scientific sub-fields to articles. Articles can be assigned with one or more
tags. For instance, an article can be tagged with Social and Information Networks (cs.si)
and Physics and Society (physics.soc-ph). An article can thus be represented as a binary
vector X = (0, 0, 1, 0, 1, . . . , 0) in the high dimensional 175 sub-fields space, with Xi = 1 if
the article is assigned with the tag corresponding to scientific field i.

Since articles rarely combine more than a few tags (see Fig. S2 in Additional file 1), the
knowledge space is sparsely populated. Moreover, some tags co-occur frequently, creating
redundant information [48]. Following these observations, we reduce the dimensionality
of this initial space by embedding it into a low-dimensional space via the tSNE algorithm
[49, 50] (see Methods). In this study, we focus on a two-dimensional embedding to match
traditional studies of human geographical mobility. In addition, we discuss the stability
of the results with other embedding approaches in the Methods section. Figure 1a shows
the resulting knowledge space, where articles are represented as points colored accord-
ing to their primary (first) field tag. We observe that articles belonging to the major fields
from arXiv cluster into distinctive regions of the space, with interdisciplinary fields such
as Quantitative Biology (q-bio) or Quantitative Finance (q-fin) located at the interface be-
tween related disciplines. In order to quantitatively validate the observed clustering, we
ran a k-Nearest Neighbors classification task on 70% of the data to measure the accu-
racy with which the field associated with a location is predicted by the most frequent field
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Figure 1 Construction of the knowledge space. a. We use the metadata from 1.45 million articles posted on the
arXiv, corresponding to the article field tags, authors, and timestamp. We build a high-dimensional 175 space
where each article is uniquely mapped through field tags corresponding to orthogonal dimensions. This
high-dimensional space is finally embedded within a 2-dimensional knowledge space using the tSNE
algorithm. Each point represents an article. Colors correspond to major academic fields in arXiv based on the
first tag (i.e primary field) of the articles. b. Confusion matrix resulting from a k-Nearest Neighbors prediction
of a location’s major field tag in the knowledge space based on the major field tags of its k = 10 nearest
neighbors. We use 70% of the data for training and the remaining 30% for testing. The values show the
proportion of predictions in the test set falling within a given category (columns) given the observed major
field (rows). “Electrical Engineering” is short for “Electrical Engineering and Systems Science”

among its k nearest neighbors (see Methods). We show in Fig. 1b the confusion matrix ob-
tained on the remaining 30% of the data. Overall, we find an average prediction accuracy
of 77.8%. We note that some interdisciplinary fields have fuzzier predictions. For example,
Quantitative Biology is often confused for Computer Science (for bioinformatics articles)
or Physics (for biophysics articles). We note that this is consistent with Quantitative Bi-
ology being located at the interface of Physics and Computer Science when investigating
the tag co-occurrence network (see Fig. 5a of [48]).

The chronological sequence of articles published by an author defines a sequence of lo-
cations in the knowledge space, tracing their scientific trajectory (Fig. 2a-b). In order to
obtain high-quality trajectories, we select a sample of 11,826 from a total of 50,402 dis-
ambiguated researchers for which we have a unique ORCID identifier, and who published
at least 10 articles. Within a trajectory, two consecutive articles constitute a jump, with a
length equal to the Euclidean distance computed in the embedding, and duration equal to
the number of days elapsed between the two articles. If the authors were randomly jump-
ing across all possible locations in the space, the jump distribution would follow a bounded
distribution around a typical, large step size (Fig. 2c, gray line), according to a pure diffu-
sive process. Instead, Fig. 2c shows that the jump distance distribution is compatible with
a power-law functional form, with a cut-off at large distances due to the finite size of the
space, differing significantly from a diffusive process. Importantly, we observe that this
feature is robust with respect to different embedding techniques (Fig. S4 in Additional
file 1). This indicates that, while the majority of jumps are small, with researchers orbiting
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Figure 2 Scientific mobility in the knowledge space. a. The sequence of arXiv pre-prints of each researcher
identifies a unique scientific trajectory in the knowledge space. b. We show two example trajectories
indicating different behaviors of researchers. c. Distribution of consecutive jump distances for authors with at
least 10 publications (N = 11,826). The dashed black line is a guide for the eye indicating a power-law
behavior. The gray line corresponds to the distribution of jump distances obtained when locations are
selected at random across all possible visited locations

relatively close to a particular research interest, a small fraction of jumps extend far into
the knowledge space, standing for researchers crossing fields. In the next section, we in-
vestigate whether simple models of human mobility can be compatible with the observed
behavior.

2.2 A gravity model of scientific mobility
The observed heavy-tail form (with a cutoff) of the jump size distribution is reminiscent
of the inverse relation with distance observed in human mobility flows between two lo-
cations. This observation led to a simple and intuitive model in human mobility studies,
the gravitation model, where the flux Fij between two locations i and j is proportional to
the population sizes at i and j and inversely proportional to the distance dij between them.
Earlier works on spatial distribution models and urban modelling [51–53] have shown that
such a model can be functionally derived from statistical mechanics insights and empiri-
cal laws such as Zipf ’s law [54]. When considering population-scale mobility in an origin-
destination setting such as ours, the gravity model naturally emerges as the expectation of
the distribution maximizing the entropy of mobility between two locations [30].

Much like the urban vs rural landscape, where populations conglomerate into a
few, dense regions corresponding to urban areas, there are denser regions in the low-
dimensional knowledge space, corresponding to more investigated areas. However, un-
like cities and administrative areas, we do not have a clear definition of boundaries in the
knowledge space. Here, we use a simple box/container model by defining a grid of size
Ng × Ng covering the knowledge space, where Ng is a parameter quantifying the resolu-
tion level, and population counts are aggregated at the grid level (Fig. 3a). The grid res-
olution influences the type of behavior we observe: while large grid cells mostly capture
long jumps and topic-switching behavior, small grid cells will capture more local jumps to
nearby topics. An overly fine grid will end up capturing jumps between very close cells in
a manner reminiscent of the ping-pong observed in mobile phone data [55]. To mitigate
this ping-pong effect, we need to assess what we consider the typical size of a region with
the same topic. For this, we assume that two consecutive articles of an author fall within
the same topic if they share at least one field tag. We show in Fig. S5b in Additional file 1
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Figure 3 A gravity model for scientific mobility. a. By dividing the projected space into a grid, we can calculate
aggregated densities and study their effect on flow patterns between grid elements. The resolution of the
grid is fixed by the number of cells along any dimension Ng . b. Fitted exponents from Eq. (1) for different grid
resolution levels Ng = 10, 25, 50, 75, 100. c. Comparison between predicted and observed mobility flows at a
grid size resolution Ng = 10

that the probability to jump to the same topic decreases non-linearly as a function of jump
distance, following a slow decrease at very small distances down to a sharp decline at a
distance of ∼ 5, until a distance of 20 where the probability saturates. We consider this
early fall at distance 5 to represent the characteristic spatial scale of a topic. We chose
grid sizes Ng that surround this threshold, while still being located at the upper end of the
“local” region of similar topic, where the probability to share a topic is close to 1. As such
we can expect that the jumps between grid cells that are measured consist of bona fide
exploration, rather than mere artificial ping-pong.

We then define a gravity model to predict the observed flow Fij between two grid lo-
cations i and j in the knowledge space, defined as the number of scientists jumping from
grid location i to location j, by using a rolling time window of 5 years:

F̃ij = G
V αs

i V αd
j

dγ

ij
, (1)

where F̃ij is the predicted flow between locations i and j, G is a normalization constant,
dij is the distance between locations i and j, and Vi and Vj (visits) are the numbers of
authors who have published an article in locations i and j during the 5 previous years. The
exponents αs, αd , and γ introduce non-linear scalings, such as crowding effects for the
number of visits, where higher densities lead to sublinear (α < 1) or superlinear (α > 1)
increase in flow.

Figure 3b shows the values of the exponents obtained by fitting Eq. (1) to the empirical
flows Fij at different resolution levels Ng (see Methods). We find a remarkable stability
across grid sizes, with αs = 0.74±0.15, αd = 1.04±0.18, and γ = 1.12±0.16 close to 1. We
also note a trend where γ decreases with increasing resolution, though within error bars.
This effect suggests a lower cost of distance for local jumps, creating a “flatter” distance
distribution when considering a higher resolution. The quality of fit is shown in Fig. 3c,
comparing predicted flows with observed flows, with a Pearson correlation value of r =
0.58, indicating that the model explains r2 = 33.6% of the variance of the mobility flows
in the knowledge space. We note that the observed correlation is larger than the ones
observed for real-world mobility (with r between 0.03 – 0.49, see [26]). Finally, we find
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that beyond tSNE, the gravity model is able to represent flows of scientific mobility for
different embedding techniques, with qualitatively similar exponents (see Figs. S7, S8 in
Additional file 1).

2.3 Scientific explorers vs exploiters
When jumping to their next article, researchers can move to a novel region of the space,
or return back a previous one. That is, in our framework researchers choose between ex-
ploring a new scientific field or exploiting the previous knowledge they built. While such
behaviors can lead to similar jump distribution patterns, they will impact more general
statistics about the full trajectory, such as the extent of spatial territory covered. Previous
studies have uncovered such a heterogeneity between individual trajectories in human
mobility patterns, highlighting a dichotomy between returners, who gravitate around a
small number of locations, and explorers, who rather move to new locations. These re-
sults have been found to hold both for spatial [25], as well as virtual [23] contexts. Here,
we explore whether such a heterogeneity exists in the context of scientific exploration.

To assess the extent of territory covered by a trajectory, we study the radius of gyration
Rg , defined as the average distance of visited locations to their center of mass (see Eq. (3) in
Methods). By limiting to the top k most visited locations, one can define the corresponding
radius of gyration Rk

g (Eq. (4)) and compare it with the full Rg to evaluate the extent to which
the trajectory returns to a few (k) locations. Figure 4a shows the comparison of the total
radius of gyration Rg and R2

g across researchers. We find that researchers can be roughly
grouped into two main classes: exploiters, whose R2

g value is comparable to Rg (points
along the diagonal), and explorers whose R2

g is considerably smaller than total Rg (points
closer to the x-axis). The two classes are more evident when considering the distribution
of S2 = R2

g /Rg , showing two peaks corresponding to the two populations of explorers and
exploiters (Fig. 4b). This bimodality disappears when considering larger values of k (Fig. S9
in Additional file 1), supporting the use of k = 2 to distinguish the two classes.

By design, the difference between explorers and exploiters will affect the research space
spanned by scientific trajectories over time. While the radius of gyration considers the
gravitation of a researcher around a particular center of attraction (the center of gravity),

Figure 4 Explorers and exploiters in the knowledge space. a. Comparison of the radius of gyration R2g , with the
center of mass computed from the 2 most visited locations, with the full radius of gyration Rg (see Methods).
We find a dichotomy between exploiters (orange) and explorers (blue), using the bisector method to classify
them [25]. b. Distribution of S2 = R2g/Rg , further highlighting the dichotomy as a bimodality of exploiters (close
to 1) and explorers (close to 0). c. Comparison of the mean squared displacement as a function of time since
the first article for explorers and exploiters



Singh et al. EPJ Data Science           (2024) 13:12 Page 8 of 20

other measures focus on the dynamics of departure from an original starting. In mobil-
ity analysis, this is typically quantified by the mean squared displacement (MSD) [56], a
quantity that tracks the average distance traveled from the starting location over time (see
Methods). The particular interest in MSD stems from the fact that simple diffusion pro-
cesses in homogeneous spaces observe a functional scaling with time, MSD(t) ∼ tβ , with
the exponent β indicating a super- or sub-diffusive process. In our case, we find that, while
both classes make jumps of similar size and duration (Fig. S10 in Additional file 1) and have
a similar sublinear MSD growth, explorers span a larger fraction of the knowledge space
early in their career, as indicated by a faster MSD growth between 5 and 15 years (p < 0.01,
Fig. 4c and Fig. S11 in Additional file 1). This difference decreases in the later phase of their
career (around 20 years), indicating that researchers tend to explore mostly in the middle
of their academic life, while senior scientists tend to exploit more their previous research.
This finding supports prior observations that scientists become less disruptive and more
critical of emerging work as they age [57].

Lastly, beyond differences in mobility patterns, we ask whether there are other charac-
teristics that distinguish exploiters and explorers. To answer this question, we perform a
logistic regression to predict if an individual researcher is an explorer as a function of sev-
eral attributes. To account for different trajectory lengths and field-specific behavior, we

Figure 5 Characteristics of explorers.We compute a logistic regression of a binary variable y indicating
whether an individual is an explorer (y = 1) or an exploiter (y = 0), for different characteristics of the
researchers. For each attribute (further defined in Methods), we show the estimate and 95% confidence
interval of the standardized coefficient of the regression, controlling for the number of articles and the main
field of interest of the researcher. The differences between the two classes are all significant with p-values
smaller than 0.05, except for citations and productivity which are non-significant (p > 0.05). Repeat locations
correspond to the proportion of jumps of size 0. Multidisciplinarity is the total number of unique field tags
used across articles, and interdisciplinarity is the average number of field tags per article. Cognitive distance is
the maximum disciplinary distance spanned by the researcher, and Field age is the minimum normalized age
of the fields across articles published by a researcher, both quantities being defined in [48]. MSD denotes the
maximummean square displacement achieved through the career of researchers. Disruptiveness is the
maximum percentile of disruptive index achieved by researchers across their articles, when compared to the
whole of arXiv. Citations correspond to the logarithm of the maximum number of citations received by the
articles of the researcher, and PageRank is the logarithm of the maximum PageRank value of a researcher
articles in the citation network. Finally productivity is the average yearly number of articles of the researcher
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control for the total number of articles published and the area of interest (Fig. 1) in which
the author has published the most. Figure 5 shows that, in line with the previous obser-
vation and consistent with their definition, explorers navigate broader regions of space,
as measured by their maximum MSD achieved throughout their career, while exploiters
tend to remain at the same location, measured by the proportion of their jumps being of
distance 0. Moreover, explorers cover more disciplines both within and across articles,
and these disciplines tend to be cognitively distant, i.e. they are far in the field tag co-
occurrence network [48]. When considering the association with specific developmental
stages of scientific fields [48], we find that explorers publish in the earlier stages of a field’s
evolution, a marker of pioneering activity and innovative work. Supporting this obser-
vation, we find a higher disruptiveness for explorers (p = 9.9e–4), a quantitative marker
of innovative works quantifying the extent to which articles citing an article of interest
also cite its sources (low disruptiveness) or not (high disruptiveness) [58], measured here
by the percentile of their most disruptive article. Finally, we observe that while explorers
and exploiters show similar productivity and local impact, measured by the maximum
citations obtained in one of their articles (p = 0.16), explorers are more central in the
global citation network, as measured by the maximum PageRank centrality across their
articles (p = 0.026). This might reflect their ability to tie down several disciplines together
and thereby access a wider span of citation pools. We note however that results for the
citation-based metrics are to be taken with care, as the citation network is only consid-
ering within-arXiv citations [47], and is therefore incomplete and subject to field-specific
habits.

3 Discussion
In this study, we show that methods from mobility analysis applied to a low-dimensional
representation of a knowledge space can help understand the scientific mobility of re-
searchers. Using data from 1.5M articles from the pre-print repository arXiv across 30
years, we find that the mobility patterns of researchers resemble those found in human
mobility studies. Flows between different regions of the knowledge space follow a gravity
model, with an inverse relation to distance. This result is not an artefact from a partic-
ular representation, as it holds across various embedding parameters and methods (see
Figs. S4, S7, S8 in Additional file 1). Furthermore, the model accuracy outperforms em-
pirical results from human mobility studies [26], showing that despite its simplicity, this
model is a promising foundation to build on future work. In addition, by analyzing indi-
vidual trajectories, we find that researchers can be categorized into exploiters, whose tra-
jectories are bound to a particular area of the knowledge space, and explorers, who jump
across boundaries and pioneer novel fields. This dichotomy is reminiscent of the “essential
tension” between tradition and innovation in scientific research, where the desire to ex-
plore new promising areas is counterbalanced by the need to capitalize on the work done
in the past [18, 59].

Here we identify this tension by uncovering two types of scientific mobility patterns
through the bimodality observed in R2

g /Rg . We found that the peak of R2
g /Rg signalling

the presence of explorers disappears with k > 2, whereas in mobility this effect happens
after k = 8 [25]. We note however that the dichotomy observed in the original paper by
Pappalardo et al. [25] disappears after k = 2 when using GPS data, which is limited to
private vehicles and only consists of a subset of all individual trips. In our case, arXiv
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represents a subset of the entire knowledge space consisting of 3 main fields (Computer
Science, Mathematics, and Physics). The fact that we find a lower k value therefore seems
compatible with this restriction, and the comparison with the real-world mobility data
(restricted GPS vs high-resolution GSM) suggests that having a wider research landscape,
for example leveraging Web of Science data, would allow future research to reach and
investigate higher values of k.

When considering the properties of scientific trajectories in the knowledge space, we
observe that the mobility patterns of explorers and exploiters show sub-diffusive regimes.
Theoretically, when considering the mobility of an individual in a homogeneous space,
such as the initial hypercube or a regular lattice, the MSD follows a linear regime if the
second moment of the step size distribution and the first moment of the waiting-time
probability distribution are finite [56]. In our case, the observed deviation from a linear
MSD (Fig. 4) may be due to the heavy-tailed waiting time probability distribution of the
two groups of researchers [56] (Fig. S10 in Additional file 1). Another possibility is that the
multi-scale nature of the knowledge space, as a complex and evolving cognitive construct,
may be responsible for this trapped-like behavior. Further investigation is needed to deter-
mine which of these approaches is more suitable for explaining the observed non-linearity
in MSD behavior.

A limitation of our analysis is that a researcher might have several active topics on which
they are working in parallel, and would therefore need to be located not just in one loca-
tion, but in several locations “at the same time”. This resembles the real-world mobility
case where an individual would have a primary and a secondary home, and would fre-
quently visit both, in contrast to moving from one location to the next. Here, we focus on
publications as a marker of the position of an author. This could result in a “ping-pong”
effect [55] where the author would frequently oscillate between two or more locations in
a manner dictated by the chronological ordering of the publications in each domain. Here
we have shown that such an effect is limited: the characteristic timescale of topic-switching
is 1.5 years, significantly larger than the inter-article time of 0.53 years (Fig S5a). Still, in
20% of cases, consecutive articles do not share a field tag, which might be indicative of a
switch of research interest, or of an active work in different topics. In the future, it would
be interesting to study the heterogeneity of mechanisms behind the exploration behavior.

We assumed stable categories of exploiters and explorers using the full trajectory of re-
searchers, yet there can be variation throughout their career. For example, we observed
aging patterns within trajectories, with MSD of explorers and exploiters showing similar
values within the first 5 years after their first publication, after which MSD values for ex-
plorers are significantly larger (Fig. 4c, Fig. S11 in Additional file 1). This could indicate that
explorers go through two phases: a first phase where they are staying within a few most
visited locations, followed by an exploratory behaviour towards other locations. Such a
behavior could be formally captured using the concept of “intermittent behavior” from
stochastic processes [60]. Future work could investigate such temporal patterns across
research trajectories, for example by using time windows or the convex hull method to
analyse dynamic profiles at a finer scale, and assess whether phases might correspond
to institutional constraints, with some environment fostering the individual development
towards more exploratory patterns.

Our framework relies on an embedding method to define the knowledge space. There
is no ground truth in the use of embedding methods, and each can bias results towards
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specific idiosyncratic properties. In our case we focused on tSNE for our analyses. The
adoption of the tSNE method has been particularly central to the field of cellular biology
for representing temporal or developmental trajectories of cell differentiation, a question
of a similar nature as ours. The use of UMAP has also been growing among biologists as
a popular alternative for a better preservation of the global structure of the data. How-
ever, Kobak and Linderman highlighted that the t-SNE and UMAP methods have com-
parable performance for preserving pairwise distances and reproducing the large-scale
structures of the initial space when choosing appropriate initializations [61]. In particular,
they showed that, when using informative initialisation methods for the algorithms, tSNE
and UMAP reach comparatively high accuracies in preserving pairwise distance (Pear-
son’s r � 0.5) and large-scale structures (r � 0.9). This motivated our choice of a PCA
initialisation for the tSNE method to produce a reliable embedding.

In addition, the tSNE representation in low dimension has been shown to be of rele-
vance to represent a knowledge space. In a recent study leveraging a 2D tSNE embedding
of 21 million Pubmed articles [62], the accuracy of a k-Nearest-Neighbors prediction in
the 2D tSNE embedding (63%) was found to be very close to the one obtained with a
768-dimensional BERT embedding (69.7%), and a 4,679,130-dimensional TF-IDF method
(65.2%). This finding reflects the high information preservation of 2D tSNE embeddings
in the context of representing scientific landscapes and the good performance of tSNE in
comparison to alternative and higher-dimensional methods. Finally, we have shown that a
variety of methods (tSNE, UMAP, PaCMap) yield qualitatively similar results over a range
of hyperparameters, both in terms of long-tailed jump distribution (Fig. S4 in Additional
file 1) and gravity model fit (Figs S7-S8). This indicates that, despite some variations com-
ing from the structure of the space itself, the general mobility patterns uncovered here are
not space representation artifacts.

In our study we make use of the human-annotated tags to position the articles within
a high-dimensional space, thereby relying on the intrinsic clarity these tags provide. In
the future, implementing dense and continuous vector-space representations for the enti-
ties, such as neural embeddings could enhance the representation of scientific articles in
a multidimensional space, offering a complementary method to our current approach in
contexts lacking such metadata. Research, including work with SciBert and BERT [63], has
indeed demonstrated the utility of these embeddings in classifying and identifying simi-
larities. In addition, the role of unsupervised pre-training in natural language processing,
especially for texts that are unclassified or not tied to specific categories, has become in-
creasingly significant. By using text such as abstracts and titles for the computation of the
embedding, these methods could not only offer future utility for datasets lacking tags, but
also allow researchers to disambiguate trajectories that have limited self-reported infor-
mation. We note however some limitations. While advanced models like deep learning
and transformer-based ones can decipher complex, non-linear data relationships, they
present interpretational challenges [64], leading to a reduction in the explainability that
our method using annotated tags offers. Moreover, while potentially gaining in predictive
power, such embeddings generally reduce very high dimensional data (eg, text, images,
etc) to not-so-low-dimensional spaces (dozens of dimensions), which would be of less in-
terest for the comparison with mobility data that is our focus here.

Our work is focused on a dataset of arXiv pre-prints. This dataset provides a high pre-
cision for the identification of subfields, which is useful for both the construction of the



Singh et al. EPJ Data Science           (2024) 13:12 Page 12 of 20

knowledge space and the computation of features such as field age [48]. Yet, it is limited in
overall size, fields covered, and incompleteness of the citation network [47]. For example,
while about 64% of all arXiv e-prints are published in a Web of Science (WoS)-indexed
journal, only 3.6% of 2010 WoS papers (all disciplines combined) were submitted to arXiv,
a proportion rising to 20% when considering Physics and Mathematics [65]. It is therefore
yet unclear how our findings generalize to other disciplines, for example when considering
the humanities or social sciences. Future work should explore the reproducibility of our
findings across larger and diverse datasets, leveraging other field identification methods,
such as the ones using Natural Language Processing [63].

When comparing explorers and exploiters in terms of research impact, we found that
while having similar levels of productivity, explorers produce more disruptive work and
enjoy a more influential position in the citation network, measured by the PageRank cen-
trality. On the one hand, this result is consistent with the observation that the diversity
in research interests is associated with increased impact, while showing no association
with productivity [66]. However, the small effect size we obtained on the local measure of
impact in the citation network (citation count) might reflect the fact that, while interdis-
ciplinary researchers achieve relatively lower impact with their publications in the short
run, they eventually outperform their specialized counterparts in long-term success, mea-
sured by funding performance [67]. This observation is consistent with our finding that
explorers produce more disruptive works and are more likely to contribute to innovative
fields, both of which might be more important selection criteria for successfully securing
funding than short term citation counts. In addition, when considering PageRank central-
ity as a measure of “long-term” impact in the citation network, i.e. the degree to which
an article is cited by other articles that are themselves central in the citation network,
we found that explorers have significantly more influential papers. This supports the idea
of a more long-term impact for exploratory behavior. We note however that the citation
network in arXiv is very sparse [47] and does not provide a comprehensive view of the
actual citation network, which would require access to a more comprehensive dataset, for
example from the Web of Science.

While our study is focused on the description of individual trajectories, most articles are
team-authored [68], and chaperoning patterns are fundamental to scientific careers [69].
Therefore, future studies could study the couplings between individual trajectories, lead-
ing to correlated patterns and ultimately collective flows. In addition, the gravity model
could be extended to incorporate variables corresponding to local attributes, such as im-
pact (e.g. through citations), field age, devoted funding, etc. These features might act as
biasing forces shaping collective flows towards certain areas of the knowledge space. On
a macroscopic level, these fields can affect mobility, in the same way that force fields af-
fect the trajectories of particles in physics. Novel methods based on deep learning, such
as a Deep Gravity Model [26], coupled with more extensive data on citations and funding,
could help extend our work. Overall, the insights gained from leveraging a mobility analy-
sis in the knowledge space could help study the effect of policies on scientific exploration
and exploitation, with applications for funding agencies and more generally the evaluation
of research.
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4 Methods
4.1 Overview of the arXiv dataset
In our study we use a previously published dataset consisting of article metadata from the
arXiv preprint repository [48].

The dataset consists of 1,456,403 articles published between 1992 and 2018, covering
mainly the fields of physics, mathematics and computer science, and to a lesser extent
Quantitative Biology, Statistics, Finance, Economy, and Engineering. We note in particular
the important rise of Computer Science articles in the past decade, with the number of
articles published bound to soon outweigh those from the physics field, which was at the
core of the early arXiv usage (Fig. S1 in Additional file 1).

When uploading an article, the submitting author selects a main, primary tag identify-
ing the core discipline, along with secondary tags if needed. In most cases, arXiv require
authors who are submitting papers to a subject category for the first time to get an en-
dorsement from an established arXiv author, as a quality control mechanism. The tags
span 175 predefined subfields, such as Quantum Algebra (math.QA) or Signal Processing
(eess.SP), all indicated on the website’s main page. There is a strong incentive for authors
to select appropriate fields, as arXiv proposes a subscription service to a daily digest email
system to automatically receive novel submitted articles containing a specific field tag. As
such, the tag system is directly tied to a relevant audience for the publishing individual,
incentivizing for an accurate self-report.

The tags have been mostly stable across the existence of the arXiv, but some tags have
been discontinued in its early years, as the classification system evolved into broader cat-
egories and subcategories (see Fig. 1 of [48]). We find 14 such discontinued tags: “adap-
org”, “alg-geom”, “chao-dyn”, “cmp-lg”, “comp-gas”, “solv-int”, “dg-ga”, “patt-sol”, “funct-an”,
“q-alg”, “bayes-an”, “acc-phys”, “ao-sci” and “mtrl-th”. These tags constitute a minor portion
of our dataset, with 7762 articles featuring at least one of them, accounting for 0.53% of
the total articles analyzed. The impacted articles always contain at least one other tag that
has not been discontinued. We therefore expect these changes to have a negligible impact
on our primary findings.

4.2 Low dimensional embeddings
To reduce the dimensionality of the initial 175-dimensional field space, we use the tSNE
algorithm, an unsupervised, parametric dimensionality reduction technique that retains
the local data structure in the latent space [49, 50]. The tSNE method captures much of
the local structure of the high-dimensional data, while also revealing global structure such
as the presence of clusters at different scales. The visualisation of the resulting embedding
of the arXiv knowledge space into a two dimensional space is shown in Fig. 1. Each point
corresponds to one of the 49,575 observed combinations of field tags within arXiv articles.
We note that permutations of tags map to the same point, so that our analysis does not
depend on the order of tags.

For the implementation of the tSNE algorithm we use the scikit-learn package in
Python [70]. The dimension of the embedded space is set to 2. The main parameters of
the embedding method, such as learning rate, number of iterations and early exaggeration
parameters are set to default values. The tSNE initialisation is set to PCA (Principal Com-
ponent Analysis), a setting known to drastically improve the recovery of both local and
global structures for tSNE [61]. In order to test the robustness of the tSNE embedding to
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varying parameters, we generated tSNE mappings for different perplexity levels p, a pa-
rameter related to the effective number of neighbors considered during the algorithm’s
optimization process, and learning rate parameters LR of the algorithm, and plotted the
pairwise distance distribution between randomly sampled points across different settings
(Fig. S3 in Additional file 1). We find remarkable stability across various parameters of
the tSNE suggested in [71], including perplexity levels, indicating that choosing different
tSNE parameters would not strongly affect the results.

Finally, in order to quantitatively assess the information loss after the dimensionality re-
duction of the initial space, we ran a k-Nearest Neighbor algorithm with k = 50 neighbors
to compute the accuracy of the 2D tSNE embedding in preserving the local neighborhoods
of the original space. We find a high average recall (overlap of nearest neighbors) of 66%.
This compares to a value of 6.2% obtained in a recent study exploring the 2D tSNE em-
bedding of 21 million Pubmed articles using k = 10 neighbors [62]. The high preservation
of neighbors we observe might be due to the quality of self-reported tags which provide a
solid ground on which to assess the proximity between two articles.

4.3 k-nearest neighbor validation of the clustering
To quantitatively validate the clustering of scientific fields observed in the knowledge
space, we ran a k-Nearest Neighbors (kNN) classification task to measure the accuracy
with which the main field associated with a location is predicted by the majority of main
fields associated with its k neighbors. To associate a location to a main field, we used the
major arXiv field associated with the first tag in the article. The association between sub-
fields and major fields can be found on the arXiv home page. We then used the knn func-
tion from the R class package, with k = 10. We built the predictor using 70% of our
data for training, and computed the confusion matrix on the remaining 30% for testing.
Finally, we computed the prediction accuracy as the proportion of locations in the test set
that have been assigned the correct major field by the predictor.

4.4 Robustness with respect to the embedding method
In order to assess the robustness of our results, we tested the impact of different embed-
ding methods, parameters, as well as subsamples of the data on the jump distribution
(Fig. S4 in Additional file 1). Beyond tSNE, we evaluated the robustness of our analysis
using PaCMAP and UMAP embeddings.

The Uniform Manifold Approximation and Projection (UMAP) [72] has its theoret-
ical foundations in manifold theory and topological data analysis. At a macroscopic
level, UMAP uses local manifold approximations and fuzzy simplicial sets to construct
topological representations of data in high and low dimensions. It then minimizes the
cross-entropy between the two topological representations to find an optimal lower-
dimensional representation. UMAP can also be understood as a k-neighbour based graph
learning algorithm that finds the best representation of weighted graphs in lower dimen-
sions.

The Pairwise Controlled Manifold Approximation (PaCMAP) algorithm [71] is also a
graph-based technique that identifies three sets of pairs namely – neighbor pairs, mid-
near pairs and further pairs. It then systematically optimizes its loss function using a cus-
tom gradient descent algorithm to find a lower dimensional representation that preserves
both local and global structures.
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We find that the jump distance distributions shows a similar long-tail decay for both
methods (Fig. S4a in Additional file 1). In addition, we find that the gravity model has
stable results in UMAP (Fig. S7 in Additional file 1) and PaCMAP (Fig. S8 in Additional
file 1) contexts, though we find an overall smaller exponent for the distance, closer to
γ � 0.5.

4.5 Fitting procedure for the gravity model
In order to fit the gravity model, we used a linear regression of log-transformed variables.
For each resolution level, we first computed for each year starting in 1997 the number of
jumps between a source cell i and a target cell j (with i �= j) and number of articles published
in each cell in the 5 preceding years. The resolution of 1 year is a sweet spot between the
typical inter-article time of a researcher (0.53 years) and the characteristic time at which
researchers switch major topics (1.5 years, see Fig. S5a in Additional file 1), ensuring that
the movement observed is not dominated by a “ping-pong” [55] between several topics the
research works in parallel, but rather bona fide scientific trajectories. In order to account
for low sample size, we used a pseudo-count of 1 added to raw visit counts: Vi ← Vi + 1.
We then computed the natural logarithm of all quantities, and used these log-transformed
values for the regression analysis. Since there is a much larger number of small flow values
compare with large flow values (Fig. 3), we used a binning technique to avoid overfitting
our model to low flow values. For this, we cut the obtained log-flow values into 100 bins
containing an equal number of points, and merged bins with the same breakpoints, result-
ing in 42 final bins. We then averaged the log-transformed features (flow, visits, distance)
within these bins, and used these average values to fit the gravity model, using the lm
function from R 4.2.2. Residuals of the model are shown in Fig. S6 in Additional file 1 and
are normally distributed.

4.6 Radius of gyration
The gyration radius has originally been used as a measure in Physics and Engineering to
describe the distribution of mass in an object or the spatial extent of a system of particles.
Adapted to the context of mobility, the gyration radius of a trajectory is computed as fol-
lows [25]. We first define the center of mass Rcm of the trajectory across unique locations
i = 0, 1, . . . , n:

Rcm =
∑n

i=1 MiRi
∑n

i=1 Mi
, (2)

where Mi is the frequency of visitation of each location i, i.e. the number of times location
i is visited by the individual, and Ri is the radius vector characterising the location in the
knowledge space with respect to the chosen center of coordinates. The radius of gyration
is then defined as the characteristic distance from the center of mass:

Rg =

√∑n
i=1 Mi(Ri – Rcm)2

∑n
i=1 Mi

. (3)
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In order to estimate the influence of a few locations over the trajectory, we define the
k-th radius of gyration by considering only the top k most visited location by an author:

Rk
g =

√
√
√
√

∑k
i=1 Mi(Ri – Rk

cm)2
∑k

i=1 Mi
, (4)

where Rk
cm is the center of mass using the top k most visited locations of an author.

4.7 Mean squared displacement
The mean squared displacement (MSD) at time t for a trajectory is defined as the deviation
of the position of a walker (in our case, an author) with respect to a reference position over
time:

MSD(t) =
〈|x(t) – x(0)|2〉, (5)

where x(t) stands for the position of researcher at time t since the first article, and x(0)
stands for the starting point of the trajectory.

4.8 Logistic regression for explorers vs. exploiters
In order to explore the characteristics associated with explorers in Fig. 5, we compute a
logistic regression with dependent variable yi, a binary variable indicating whether an in-
dividual i is an explorer (yi = 1) or an exploiter (yi = 0), and various individual features
xi. We control for the main field Fi in which the author has published (given by the most
represented field tag across their articles), as well as the number of articles Ni of the re-
searcher. The fields were encoded as factors. We used the glm function in R to fit the
model yi ∼ xi +Ni +Fi, with parameterfamily = binomial set to a logistic regression.
Regression summaries were obtained using the summ function from the jtools package
in R, with parameters scale=T to standardize the regression coefficients by scaling and
mean-centering input data, and confint=T to obtain 95% confidence intervals.

4.9 Innovation, disruptiveness and impact
To measure the innovative level of a work, we used two methods. First, we computed for
each article how “early” (in terms of developmental stage) it occurs within the fields that
it mentions. To do so, we computed the minimum rescaled time (RT) across its associated
field tags, using the method described in [48]. The rescaled time is a normalized quantity
that allows us to associate an article to a developmental stage of a field (early, peak, or late
phase) even when fields have drastically different rise and fall durations. Denoting by t the
time since the first article was published in the field, we fitted the share of articles in the
field Ĝ(t) to the equation:

G(t) =
1
β

e
–(t–α)

β e–e
–(t–α)

β (6)

using a least-squares optimization fitting procedure. After obtaining the location α and
scale β parameters from the fitting procedure, we computed for each field the re-scaled
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time:

t′ =
t – α

β
. (7)

We finally computed for each researcher the minimum RT value achieved across their
articles, defining the “Field age” feature.

Second, we used another independent method to assess the innovative potential of the
articles. This method leverages how disruptive an article is by comparing the attention it
receives compared to the articles it cites. More precisely, the Disruptive Index (DI) mea-
sures how much the citing articles following up a certain work will cite the given work and
not its sources, informing on the fact that this work has made the previous works “obso-
lete”. It has been used as a measure of innovation using patent data [73] and used in the
context of academic journals [58]. Citation data was obtained from [47]. The disruptive
index was then computed using the method from [74] for each article. Given a paper p
followed by Ns subsequent works, if Ni papers out of the Ns cite only p, Nj out of Ns cite
both p and its references and Nk out of Ns cite only its references, then the Disruptive
Index (DI) of the paper p is defined by:

DIp =
Ni – Nj

Ns
, (8)

where Ns = Ni + Nj + Nk [73, 74]. For each author, we computed the maximum DI across
their articles. Finally, we computed the percentile of the obtained value across articles to
compute the disruptiveness of an author.

To measure the impact of a work, we used two methods. First, for each author i, we
computed the maximum number of citations ĉi received by any of their articles across
their career. Since citation counts are distributed with a heavy-tailed function, we used
the transformation log(ĉi + 1) to quantify the impact. In addition, we further quantified
the importance of works citing another work by using a more global network measure: the
PageRank algorithm. It quantifies not just the local importance of a work, but its ability
to integrate the core of the citation network. We used in our case the logarithm of the
maximum Pagerank value across an author’s articles.

4.10 Cognitive distance
We observe in Fig. 5 that compared to exploiters, explorers use a larger number of field
tags per article, as well as a larger number of unique tags across their articles. However
some tags might be more closely related than others in terms of research area, which the
simple measure for linear estimate of tags used does not differentiate. To account for this
effect, we use the network based cognitive distance measure from [48], where the cognitive
distance Cij between field tags i and j is the weighted distance along the shortest path
between tags i and j in the tag co-occurrence network.
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