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Abstract
The analysis of social networks, in particular those describing face-to-face interactions
between individuals, is complex due to the intertwining of the topological and
temporal aspects. We revisit here both, using public data recorded by the
sociopatterns wearable sensors in some very different sociological environments,
putting particular emphasis on the contact duration timelines. As well known, the
distribution of the contact duration for all the interactions within a group is broad,
with tails that resemble each other, but not precisely, in different contexts. By
separating each interacting pair, we find that the fluctuations of the contact duration
around the mean-interaction time follow however a very similar pattern. This
common robust behavior is observed on 7 different datasets. It suggests that,
although the set of persons we interact with and the mean-time spent together,
depend strongly on the environment, our tendency to allocate more or less time than
usual with a given individual is invariant, i.e. governed by some rules that lie outside
the social context. Additional data reveal the same fluctuations in a baboon
population. This new metric, which we call the relation “contrast”, can be used to
build and test agent-based models, or as an input for describing long duration
contacts in epidemiological studies.
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1 Introduction
Since the advent of the Internet, the quantity of digital data describing our behavior has
inflated, offering to scientists an unprecedented opportunity to study human interactions
in a more quantitative way. This opened the field of sociology to data-analysis and from the
hard-science community, came the tacit idea that several aspects of the complex human
behavior can be modeled [1–6]. With the rapid development of mobile technologies (GPS,
Bluetooth, cellphones) a lot of effort was first put in trying to capture the patterns of human
mobility (for a review, see [7]). A more local picture of our everyday social interactions
can be obtained using dedicated proximity sensors. Following a pioneering experiment
that equipped conference participants with pocket switched devices [8, 9], the sociopat-
terns collaboration (www.sociopatterns.org) developed some wearable sensors that allow
to register the complex patterns of face-to-face interactions [10, 11]. The radio-frequency
signal is only recorded if two individual are in front of each other for a duration of a least
20 s (which is the timing resolution). We note that, from a sociological point of view, a
distance below 1.5 m covers the traditional private (<50 cm), personal (<1.2 m) and social
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(<3.5 m) zones. The goal is not only to analyze social interactions but also to understand
how information (or a disease) spreads over a real dynamical network [12–15]. Those sen-
sors were worn by volunteers in several work-related environments: scientific conferences
[10, 12, 13], a hospital ward [16], an office [15] and at school [17, 18]. As part of a UNICEF
program, they were also used to characterize social exchanges in small villages in Kenya
and Malawi [19, 20] and for ethological studies on baboons [21].

It has been known for a long time that the overall distribution of the duration of contacts
in face to face interactions is “broad” [8] and presents some “similarities” when observed
in different environments (see [22] for a short review).

However, those comparisons were performed on data taken in some similar sociological
environments, which are typically occidental, educated and often with a scientific back-
ground (in conferences or high-school). Here we wish to extend the study of face-to-face
interactions by comparing them to some very different datasets that were originally de-
signed for other aims. The fist one are the data taken in the rural Malawi village. The
second one concerns interactions among baboons in a primatology center.

Moreover, there is more information in the data than what was previously presented
[10, 11]. Indeed, one has access to the full timeline of interactions for each pair of in-
dividuals separately (what we call in the following a “relation”). This allows to study the
mean-interaction time per relation and, most importantly, deviations of the contact dura-
tion from it, which reveals the underlying relation dynamics. We will show that they are
surprisingly similar in all the settings.

After describing our data selection and methodological differences with some previous
studies in Sect. 2, we will focus on the details of the temporal interactions in Sect. 3.2
after showing rapidly that social interactions among the participants are obviously very
different in each environment. We will introduce the concept of contrast of the contact
duration (deviation from the mean) and show that the distributions are extremely similar
on each dataset and for each relation individually. In the Discussion part, we comment
on the utility of using the robust contrast distribution in improving agent-based models,
and conclude summarizing the results and highlighting some possible future extensions.
Some extra information, referred to in the text, is given in the Suplementary Information
(SI) document in Additional file 1.

2 Material and methods
2.1 Datasets
We have chosen four datasets from the sociopatterns web site, sociologically most dissim-
ilar.

1. hosp: these are early data collected over 3 days1 on 75 participants in the geriatric
unit of a hospital in Lyon (France) [16]. Most interactions (75%) involve nurses and
patients.

2. conf : these are also some early classical data from the ACM Hypertext 2009
(www.ht2009.org) conference that involved about a hundred of participants for 3
days [13] in Torino (Italy). The audience is international with a scientific
background. There exist also some data taken at another conference in Nice in 2009
(SFHH, [23]) with more participants, but we prefer to use the former which has a

1here and in the following, we will only consider complete (24 h) day periods.

http://www.ht2009.org
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number of individuals comparable to the other datasets. However we have checked
that we obtain similar results with the SFHH data.

3. malawi: these proximity data were taken in a small village of the district of Dowa in
Malawi (Africa) where 86 participants agreed to participate for 13 (complete) days.
Interestingly those data contain both extra and intra-household interactions,
although we will not distinguish them here. This community consists essentially of
farmers.

4. baboons: those data were taken at a CNRS Primate Center near Marseille (France)
where 13 baboons were equipped with the sensors for a duration of 26 days. The
goal was to study their interactions, and study how conclusions reached from
data-analysis match those provided by human observation.

With that choice, we span very different sociological environments. We have also ana-
lyzed a few other datasets collected at the SFHH conference, an office and a high-school.
They give similar results (results are shown in the SI) but we consider them as sociologi-
cally closer to the conf one. We have chosen to focus on the sociopatterns data since they
provide a consistent set taken with the very same devices, minimizing possible sources of
systematic errors.

2.2 Differences with previous studies
Previous studies considered the overall temporal properties of interactions, i.e. without
differentiating the pair of people interacting. In this work we will put accent on the tem-
poral properties of each pair separately.

Probability distribution functions (p.d.f ) are often estimated by histograms, i.e. by
counting the number of samples that fall within some bin. But for heavy-tailed distribu-
tions the size of the bins is delicate to choose. With a constant size binning, several bins
end up empty for large values. Using a logarithmically increasing binning is neither a so-
lution since it supposes that the distribution is constant on the wide range of last bins.
Following [24], we will use instead the probability to exceed function (p.t.e, also known
as the “complementary cumulative distribution function” or Zipf plot) which is computed
simply by sorting the samples and plotting them with respect to their relative frequency. In
this way, one does not need to define a binning and the distribution is easier to apprehend.

3 Results
3.1 Interactions between individuals
Since it is not our primary goal to study the social structures in those very different com-
munities, we just highlight visually some differences on Fig. 1 which shows 24 hr time-
aggregated graphs of the relations between individuals.

The graphs for the hosp and especially the conf datasets show a strongly connected core.
The malawi one is much sparser, while the baboons one is almost complete showing that
each animal interact with all the others.

Table 1 gives a more quantitative view of some of the graph’s properties. The number
of different people met per day (the degree of the graphs) is about 20 in both the hospital
and the conference environments. As is apparent in Fig. 1(c), it is much smaller in the
rural community (3). But the interaction times are longer (�25 min) which reflect different
sector of activities (agrarian and including inter-housing relations for the malawi data).

The strength of the relation represents the total time per individual spent interacting
with others per day. It is essentially the product of the mean number of people met per
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Figure 1 Aggregated graphs of interactions over one day for our 4
datasets. Vertices (red points) represent agents and there is a link
(edge) if there was at least one face-to-face interaction for more
than 20 s. The first day from the datasets is used, but very similar
results are obtained with the others
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Table 1 Properties of time aggregated graphs on each dataset per day. Uncertainties are the
standard deviations between the days. T is the number of (complete) days in the dataset. N the
number of interacting agents. 〈k〉 is the mean degree, i.e. the average number of agents each
individual interacts with during one day. 〈w〉 is the mean weight where the weights specify the total
duration of a single relation [25]. Mean strength 〈s〉 which represents the average total interaction
time per individual

Group T N 〈k〉 〈w〉 (mins) 〈s〉 (mins)

hosp 3 49±1 18±1 6±13 97±101
conf 3 100±3 20±1 2±14 46±63
malawi 12 70±4 3±1 24±37 65±74
baboons 26 13±1 11±1 8±11 87±53

day by the time spent interacting with them (〈s〉 � 〈k〉〈w〉). It varies by a factor of two
(from 45 min to 1.5 h) although the large standard-deviations indicates important daily
variations due to the heavy-tail of the distribution.

The comparison to the baboons dataset should be handled with care since there is a
much smaller number of agents (13). Since each baboon interacts essentially with each
other (Fig. 1(d)), the mean degree is bounded to 〈k〉 � N . On the other hand, their small
number possibly increases their interaction duration (〈w〉) so that the strength of their
relation is finally similar to that of the human groups.

The goal of this short section is not to dwell into the topological details of these
time evolving graphs, but to illustrate that, as expected, these heterogeneous sociologi-
cal groups show some very distinct interaction patterns between individuals.

3.2 Face to face temporal relations
We are interested in the duration of the contacts in those different networks. Figure 2
shows a classical distribution, that of the duration of contacts. We emphasize that such a
representation mixes all the interactions of all the participants in the same plot. As well
known, these distributions are “heavy-tailed”; most interactions are of short duration (at
the minute level) but some may drift up to an hour. Interactions for people in malawi tend
to last longer than for all the others. The baboons’ duration of interaction is similar to the
human ones (as noticed in [21]), although there are some sizable differences at short times,
somewhat squeezed by the logarithmic scale. Overall, although there is a common trend,
some differences appear too.

The new aspect of this work concerns the detail of each relation separately. For a given
data-taking period, each relation consists in a set of intervals measuring the beginning and
end times of the interaction at the resolution of the instruments (20 s). There is a varying
number of interactions (intervals) per relation, that we call Nint(r). In the following we
will consider the duration of the interactions that we note {ti(r)}i=1,...,Nint(r). They are thus
variable-size timelines expressed in units of the resolution step.

The number of registered interactions for a given pair depends on the total duration of
the experiments (Table 1) but we may compare them just for one day. The distribution
of this variable is shown in Fig. 3(a). It is clearly different for each group. People at the
conference tend to interact (with the same person) less often. In 65% of the cases it is only
once per day, against 25% for the hosp and malawi datasets, and 3% for baboons.
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Figure 2 Distribution (p.t.e) of the contact duration on the four datasets (all days used). There is one entry for
each contact of each pair of individuals so that both aspects are inter-mixed

Figure 3 General characteristics of temporal relations on the 4 datasets. (a) Distribution (p.t.e) of the number
of interactions per relation for one day, and (b) of the mean interaction time. To gain precision, we use the
complete datasets for the latter

The mean interaction time per relation

t̄(r) =
1

Nint(r)

Nint(r)∑

i=1

ti(r), (1)
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is shown in Fig. 3(b). Here again distributions are heavy-tailed and different. There is a
marked difference between animals and humans, the former interacting for shorter times.

We are now interested in studying the deviations of the contact duration from the mean
value for a given relation. Indeed, in physics the dynamics of a process is often revealed by
such a quantity. For instance in cosmology, one uses the “density contrast” that represents
the galactic density divided by its mean value. It is the fundamental quantity which traces
the dynamics of the underlying field (see e.g. [26]). Inspired by this example, we propose
to study what we call the “‘duration contrast”, or simply “contrast” which is the simplest
dimensionless quantity we can form to study deviations from the mean-value

δi(r) =
ti(r)
t̄(r)

, (2)

where r recalls that the quantity varies for each relation. The contrast represents our ten-
dency to spend more or less time than usual with a given individual. Note that “usual” is
meant as the mean-interaction time between the two peculiar agents (Fig. 3) and varies
for each relation. For a small number of samples, the arithmetic mean (Eq. (1)) is however
a poor estimate of the true mean-time and also strongly correlated to the individual sam-
ples. Taking the ratio leads to a very noisy estimate of the true contrast variable. In the
following we will then apply a cut to keep timelines with a sufficient number of samples.
Since the distributions are very broad we require at least Nint(r) > 50 contacts in a relation.
We will study later the effect of this cut on the results. On the complete datasets, we are
left with respectively 57, 26, 91 and 70 timelines for the hosp, conf, malawi and baboons
datasets. We show the p.t.e distributions of the contact duration contrast for the 4 groups
in Fig. 4.

The tails look now very similar up to 10 times the mean-time. The same distribution is
observed on data from another conference, an office and a high-school (SI Appendix, S2).
Thus, a (very) similar distribution is observed on 7 independent datasets.

To be more quantitative and assess the level of compatibility between the distributions,
we use a Monte-Carlo method. For each dataset, we numerically invert the empirical dis-
tribution functions (which are one minus the p.t.e’s shown on Fig. 4) to construct the
inverse cumulative function F–1. We then draw N numbers u from a [0, 1] uniform distri-
bution, transform them with F–1(u) and reconstruct the p.t.e. The procedure is repeated
100 times and all distributions are plotted on top of each other on Fig. 5.

One sees that the distributions are indeed all compatible in the 0.6 � δ � 10 range, where
the upper bound comes from the limited sample size of the hosp and conf datasets, and
the lower one from slight (but statistically significant) differences for low values. This will
be our range of interest in the following.

Since the data-taking periods are very heterogeneous (ranging from 3 days for the conf
and hosp datasets, to 12 and 26 for the malawi and baboons ones respectively) we have
split the data day by day and verified that no particular one(s) particularly affects the re-
sults (SI Appendix, S3-1). We have also removed randomly a fraction of the agents (up to
50%), i.e. we removed all relations involving those agents, which did not affect the contrast
distributions in a sizable way (SI Appendix, S3-2. Both tests confirm the robustness of the
result.
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Figure 4 Distributions (p.t.e) of the duration contrast obtained for all relations within the same group
satisfying Nint(r) > 50 in logarithmic (a) and linear scales (b). The complete datasets have been used (i.e all
days). The interaction mean-time corresponds to a value of 1. We then see for instance that the probability for
an interaction to last longer than its mean-time is around 30%, but, rarely, it can exceed 10 times the
mean-time

Figure 5 Distributions (p.t.e) of the duration contrast obtained with the Monte-Carlo method described in
the text to estimate numerically the statistical spread for each dataset. Each color represents a possible
realization of the same dataset
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Another option for studying deviations from the mean is to use the z-score

zi(r) =
ti(r) – t̄(r)

σ (r)
, (3)

where σ represents the standard-deviation of the duration values. The results obtained
with this variable are very similar to the ones with the contrast (SI Appendix, S4) and
we did not notice any difference on the tests that are presented later. Since the contrast
variable is somewhat simpler (the z-score involving second order statistics) we only focus
in the following on it.

We consider the impact of applying the Nint(r) > 50 cut. First, we note that similar results
are obtained with a lower cut value as Nint > 30 (SI Appendix, S5). We then show that we
can still reproduce the contrast distribution without any cut, using only the distributions
with the cut (Fig. 4). To this purpose we perform Monte-Carlo simulations. For a given
dataset, for each relation (without any cut), we draw Nint(r) random numbers following
Fig. 4 distribution to obtain δi=1,...,Nint contrast values. Those samples are obtained from
the distribution with the Nint(r) > 50 cut, so with precise mean values that we call μ. We
may mimic the statistical fluctuations due to any Nint(r) value, by using the ratio

δmes
i =

δi
1

Nint

∑
i δi

=
ti/μ

1
Nint

∑
i ti/μ

=
ti

t̄
(4)

since μ actually cancels out. We compare the measured contrast distribution to the one
observed on data, this time without any Nint(r) cut, in Fig. 6 for the conf dataset. We
reproduce correctly the whole contrast distribution using only the Fig. 4 one obtained with
�1% of the data (Nint > 50). Similar results are obtained on the other datasets (SI Appendix,
S6.1). This shows that the contrast distribution obtained from the large sample statistics is
sufficient to reproduce any number of interactions, including small-sample ones. In other
words, the Nint(r) > 50 cut only cleans the data without affecting the underlying “true”
contrast distribution.

To check that the contrast distribution is not artificially produced by the procedure of
dividing the timelines by their mean value, we use the hosp dataset to retrieve the set of

Figure 6 Distributions (p.t.e) of the duration contrast obtained for all relations in the conf dataset and
simulations produced using the corresponding Fig. 4 distribution (see text for details). The dip at 1 comes
from numerous cases (65%) where Nint = 1 always leads to δ = 1
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Figure 7 Distribution of the contrast duration assuming a Poisson distributed duration (in red). The
parameters are taken from the hosp dataset. The result obtained in real data is shown in black

interacting agents and their corresponding characteristics Nint(r) and t̄(r). We then draw
Nint(r) random numbers following a Poisson distribution of parameter t̄(r) and recom-
pute the contrast. The result is shown in Fig. 7 which is clearly different from the results
observed on the data.

The shape of the observed contrast distribution (Fig. 4) is nontrivial. It is neither of
exponential nor of power-law form. A stretched-exponential form is neither satisfactory.
Empirically, we could obtain a reasonable fit in the 0.6 � δ � 10 region, by combining both
a power-law and an exponential function

p(> δ) = 0.3e–0.2δ/δ1.1. (5)

The denominator is here to enhance short contrasts, while the exponential term de-
scribes the long ones. This could be an indication of the existence of two regimes, one
for short times when communications are more informative and a longer one when real
conversations form [27].

At this point, we have shown that the combined contrast duration (i.e. for all relations)
follows a very similar distribution. We now consider each relation separately and show
in Fig. 8 a superposition of the contrast duration distributions with the Nint(r) > 50 cut
(similar results are observed without it but are, as expected, more noisy (see SI Appendix,
S6.2).

They all follow rather closely the common contrast distribution. In other words, while
the choice of individuals we meet (Fig. 1), the interaction rate (Fig. 3(a)) and mean-time
spent together (Fig. 3(b)) varies strongly with the environment, the propensity to spend
more (or less) time than usual with a given individual, is remarkably similar. This points
to the idea that once a face-to-face contact is triggered it follows its own dynamics, out of
the sociological context.

For the sake of completeness, we note that we found no sizable correlations between the
contact duration within the timelines (see SI Appendix, S7). This indicates one can draw
independent samples using Eq. (5).

We also considered the inter-contact (or “gap”) time in the relations to see whether its
contrast reveals features similar to the duration ones. This is not the case as shown in
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Figure 8 Distributions (p.t.e) of the contact duration contrast for each relation with at least 50 contacts. Each
color represent a different distribution. The black line is the combined p.t.e shown in Fig. 4

Figure 9 Distributions of the contrasts of the gap-time (inter-contact duration) on our datasets. To avoid the
long night breaks, we show results for a single day

Fig. 9. The contrast of the inter-contact time thus seems to be more dependent on the
sociological context.

4 Comparison with a model
The contrast distribution can be used as a new metric when studying face-to-face temporal
graphs in order to test and improve existing agent-based models designed to reproduce
the full evolution of a set of individuals. For instance, the “force directed motion” (FDM)
model is successful in describing several key features of observed face-to-face interactions
[6]. Based on the idea of attractiveness between some agents performing a random-walk
within a bounded perimeter [4, 28], the model further includes the concept of “similarity”
between two individuals [29], known as homophily in social sciences. The similarity sij

influences the time two agents spend together and the way the random-walk is biased. The
model assumes that the contact duration between two agents is exponentially distributed
with a rate sij/μ1, where μ1 is adjusted on the data to reproduce the overall duration of
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Figure 10 Comparison of the contrast distributions obtained with the hosp dataset to the result of the
“force-directed motion” (FDM) model [6]. We used the parameters provided by the authors and their dataset
(slightly different from ours, dues to a different selection). The FDM curve is the combined result from 10
simulations

contacts. We have run the code provided by the authors with their setup corresponding
to the hosp dataset, to test the distribution of the contrast variable. Figure 10 shows that
the model distribution falls too steeply. We have tried adapting the parameters and some
parts of the code but could not find a configuration giving a better contrast distribution
(see SI Appendix, S8) .2

Modeling correctly the tails of the contact duration is also essential in epidemiological
studies since the spread of a disease happens mostly during long interactions. For a given
mean-interaction time, Eq. (5) allows to simulate a much more realistic duration of con-
tacts than a Poissonnian one. This can be used in SIR-like statistical inference, or using
agent-based models, for the precise modeling of long interactions.

5 Conclusion
We have compared face-to-face interaction data taken in some very different environ-
ments; some were recorded in a European hospital and during a scientific conference,
others in a small village in Africa. With the original intention to pinpoint differences with
the results concerning humans, we have also included data on baboons’ interactions in an
enclosure.

Although the topological structures (who interacts with whom) and the mean-time
spent together are clearly dependent on the sociological environment, it appears that the
deviations from the mean-time for each pair (do we spend more/less time than usual with
a given person) follow a very similar distribution, including for baboons. We (and ba-
boons) tend to interact most often for much less time than “usual” with a given individual
and sometimes, but rarely, much longer. What is striking is that the distribution for this
quantity, which we call the “relation contrast” looks universal. It is the same for people at
a scientific conference or farmers in a small Malawi village (and baboons in an enclosure),
see Fig. 4 (also SI Appendix, S2 for the 7 datasets).

These results suggests that, once a face-to-face contact is triggered, it follows its own
dynamics independently from the social context. This is maybe not a big surprise to a

2The authors of [6] also quote some results obtained with a hyperbolic geometry [30] but, due to the lack of public software,
we could not test it.
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sociologist in particular working in the field of Conversation Analysis [27] where it is pos-
tulated that each conversation follows some rules independently from the social context
.3 But to our knowledge, this was not noticed by physicists and may help disentangling the
topological and temporal aspects of face-to-face interactions.

The possible universality of the relation contrast must be challenged with more data.
On the animal side, one should consider groups of animals with strong social interac-
tions, that can be identified (labeled) and followed individually. Hominids, as baboons,
are known to have social behaviors close to ours, which probably explains the similarity
of the contrast distribution with the human’s one. Chimpanzee or bonobo’s data should
show similar characteristic. Concerning mammals, we could think of tracking individuals
in elephant herds or wolf packs but it’s difficult to acquire precise data in the wild. The
most promising approach concerns the study of social insect networks [31]. Details about
ant interactions is probably the most feasible since recent techniques allow to tag and fol-
low each individual separately [32]. On the human side, we need to check whether the
contrast is influenced by age. Since children perceive time differently from adults, follow-
ing the contact patterns of young children in a nursery could provide a valuable insight
into this question.
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