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Abstract
Most human activities require collaborations within and across formal or informal
teams. Our understanding of how the collaborative efforts spent by teams relate to
their performance is still a matter of debate. Teamwork results in a highly
interconnected ecosystem of potentially overlapping components where tasks are
performed in interaction with team members and across other teams. To tackle this
problem, we propose a graph neural network model to predict a team’s performance
while identifying the drivers determining such outcome. In particular, the model is
based on three architectural channels: topological, centrality, and contextual, which
capture different factors potentially shaping teams’ success. We endow the model
with two attention mechanisms to boost model performance and allow
interpretability. A first mechanism allows pinpointing key members inside the team.
A second mechanism allows us to quantify the contributions of the three driver
effects in determining the outcome performance. We test model performance on
various domains, outperforming most classical and neural baselines. Moreover, we
include synthetic datasets designed to validate how the model disentangles the
intended properties on which our model vastly outperforms baselines.

Keywords: Team performance; Graph neural networks; Graph representation
learning; Sub-graph classification

1 Introduction
What makes a team effective is a long-standing problem widely studied across disciplines
and applicative contexts. Several factors such as communication, coordination, distinctive
roles, interdependent tasks, shared norms, personality traits, and diversity are relevant
aspects shaping team performance [1–6]. Yet, our understanding of teams as evolving
systems of interacting individuals as well as the relation between team composition and
performance is still partial [7–9].

When studying teams, a key issue is combining the features (e.g., skills, socio-
demographic indicators, relations, and past experiences) of single individuals at the team
level. Straightforward solutions are offered by the so-called compositional models [10].
They rely on the assumption that each team member’s contribution is equal. As a re-
sult, attributes of single individuals are considered additive and possibly averaged in a
summary index [10]. However, this approach provides an extreme simplification of the
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dynamics at play. In contrast, in compilational models, team-level attributes are consid-
ered complex combinations of individual-level properties [10]. The intuition is that teams
could be more than the sum of their parts. Perspectives from Complexity and Network
Science offer natural frameworks to capture and investigate this direction [1–5, 11–16].
Within these approaches, teams’ performance has been linked to three effects. The first
are topological effects. The internal structure of a team, emerging from the interactions
of its members, plays a crucial role in determining performance [1–5, 17]. The second are
centrality effects. Teams’ performance is influenced by the importance/role of a team with
respect to the ecosystem to which it belongs. Indeed, collaborations (i.e., connections)
with people outside the team, sharing and advertising of one’s work are key factors that
might boost teams’ performances by leveraging popularity, rich get richer phenomena,
and providing access to relevant as well as novel information [11–13]. Centrality effects,
commonly encoded through network metrics such as degree, betweenness, and close-
ness [18], roughly capture the overall visibility of a team in the system as well as its ability
to be part of informative flows. The third are contextual effects. The success or failure of a
team can be guided by the context to which it belongs and in which it develops, regardless
of how internal or external relations are structured. For example, the number of citations
received by articles published by research teams might vary significantly across different
disciplines [19]. It depends on the context where the activity, such as a publication, takes
place.

Identifying the drivers of team performance is an important step but does not solve
the problem. Indeed, the hand-design of features that allow models to capture the com-
plex effects of such factors is far from trivial. Recent advancements in extending deep
learning architectures to graph-structured data can help us solve this challenge [20–23].
Graph Neural Networks (GNNs) offer a natural way to derive high-order representations
of interacting systems by inferring, in this application, the relevant and holistic features
of the team as a result of a learning procedure. In this regard, the interacting systems of
interest fit well in a graph-based scenario. The whole graph represents the collaborative
activity’s ecosystem, and the teams are represented by their parts (i.e., subgraphs). There-
fore, the task of modeling team performance can be rephrased in terms of designing graph
representation learning methods able to project the subgraph structures into a higher di-
mensional space, called embedding space, that a downstream classifier can subsequently
leverage to solve tasks of interest.

Learning methods on graphs have greatly improved in recent years [24]. However, the
literature on GNNs aims at developing architectures useful in learning representations for
nodes [20–22], edges [25, 26] or entire graphs [23]. Therefore, these methodologies may
not be optimal in modeling the broad spectrum of teams’ (i.e., subgraphs) peculiarities.
As highlighted in Alsentenzer et al. [27], subgraphs have non-trivial internal structure,
border connectivity, and notions of neighborhood and position relative to the rest of the
graph. Therefore, tackling the problem of subgraph embedding requires the design of ar-
chitectures able to capture graph features that may not be defined for finer and coarser
graph components such as nodes or whole graphs.

Here, we present a compilational model based on graph neural learning that captures
the dynamics that shape team performance. The model explicitly considers for topological,
centrality, and contextual effects. We summarize our contributions as follows:
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• We propose MENTOR (ModEliNg Teams Performance Using Deep Representational
Learning On GRaphs), a new three channels architecture (Fig. 1) that models team
performance by leveraging topological, centrality and contextual effects. In more
depth, this architecture features graph neural learning methods defined on subgraph
structures;

• We endow the model with two attention mechanisms that allow us to examine
targeted parts of the proposed deep architecture in more detail. A first mechanism,
defined at the node level, allows pinpointing key members inside the team. A second
mechanism, defined at the channel aggregation level, allows us to quantify the
contributions of topological, centrality, and contextual effects in determining the
outcome. These two mechanisms not only enhance the model’s expressivity but also
shed light on the inner workings of the proposed architecture, providing some degree
of interpretability;

• We test the model’s performance on various domains. Furthermore, we introduce
synthetic datasets designed to include topological, centrality, and contextual effects.
This allows us to test whether the proposed architecture can learn disentangled
representations of the intended properties. We then show how the proposed model
outperforms most classical and neural baselines on the analyzed datasets.

2 Related work
An extensive body of research has focused on the key factors that affect team performance.
Works from a range of disciplines identified features like regular communication, coordi-
nation, distinctive roles, interdependent tasks, and shared norms as the building blocks of
effective teams [1–4, 28].

Several models have been proposed and evaluated in different contexts. For example, the
seminal work by McGrath [29] introduced an input-process-output (IPO) model where
antecedent conditions and resources (i.e., input) maintain internal processes and produce
specific products (i.e., output). According to this model, the necessary antecedent condi-
tions and the processes of maintaining teams define their effectiveness. A relevant body
of literature is attributable to this paradigm and its extensions; however, it is too simplis-
tic and unable to accurately account for all the complex interactions that influence team
performance [30].

More generally, research on team composition focuses on team members’ attributes and
their combination’s impact on processes, emergent states, and ultimately performance [8].
The research on the subject can be grouped into three main areas [31]: i) studies focusing
on the features of team members, ii) studies focusing on how such features are measured,
and iii) studies that investigate alternative approaches to team composition. As part of
the last category, Kozlowski and Klein [10] described composition processes as relatively
simple combination rules aimed to shift from lower-level units (i.e., individual) to higher-
level constructs (i.e., team-level attributes). Two main general approaches are commonly
used to describe team composition. The first category considers compositional models.
As mentioned above, these assume that members are “isomorphic” and that their contri-
bution is equally weighted. Examples are models based on mean and diversity indices. The
former computes team-level scores as the mean of the individual-level attributes [32]. This
is the so-called “all-stars” approach. In fact, it implies that the best teams are those formed
by ensembles of top individuals. The latter, instead, assumes that the heterogeneity (i.e.,
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diversity) of the attributes at the lower level is crucial, and it is often operationalized with
measures like variance [32]. In general, compositional models are simplistic. They do not
capture the dynamics at play or apply to tasks/contexts where individual contributions are
less significant than teamwork. An example comes from sports, where an “all-star” team is
not necessarily the best. Furthermore, empirical findings show that team performance is
not a monotonic function of diversity [33]. The second category considers compilational
models. The overarching assumption is that team-level attributes cannot be computed
from simple statistical measures of lower-level quantities. Teamwork implies interactions
between members and, thus, between their attributes. Within this vision, teams are con-
sidered complex adaptive systems of multiple parts that continually interact and adapt
their behavior in response to the behavior of the other parts [34]. Thus, compilational
models consider complex combinations of members’ attributes such as the relative posi-
tion or status of the highest or lowest individual [8, 35] or network features that capture
the structural properties of the social connections linking members between and within
teams [17, 36]. By modeling such systems, researchers seek to understand how the ag-
gregate behavior emerges from the interactions of the parts, integrating multiple levels of
analysis to build a more thorough understanding [37].

From a methodological point of view, Machine Learning (ML) has been recently applied
to team modeling in a wide range of applicative scenarios, mainly with cross-sectional
data and hand-designed features carefully engineered by domain experts. In particular,
we refer to the example of online games [38–40] where interactions and performances of
teams are captured through real-time data collection platforms. Similar to the goals of this
work, Chen at al. [40] aimed at understanding what makes a good team in Honor Kings, a
massive online game with more than 96 million users. However, they limit their analysis
by i) focusing on specific aspects while overlooking the holistic picture underpinning team
dynamics ii) adopting hand-designed features that often fail to capture the complexity of
high-order functional relationships. All these limitations clearly pointed out how these
approaches should be refined to unravel the complex threads behind these scenarios.

Recent literature on graph representation learning shows how deep learning architec-
tures and, hence, implicit feature engineering can be achieved by designing methods that,
without hand-crafted features, capture patterns of compound interactions. In particular,
these methods deal with graph-structured input data. In more depth, several network em-
bedding frameworks were proposed to represent graph nodes as low-dimensional vec-
tors [41–44]. Such representations aim to preserve network topology structure and node
features, delivering embeddings that can be used downstream for classification, cluster-
ing, and link prediction through classical machine learning methods. In this work, we will
focus on a class of models broadly referred to as graph neural networks (GNNs) [45, 46].
GNNs perform neighborhood aggregation through a procedure called neural message-
passing [47], where the embeddings of nodes are obtained by recursively pooling and
transforming representation vectors of their neighborhood [20–23]. Despite works such
as references [48, 49], which try to outline a general unifying GNN framework for all of the
applications introduced so far, deep learning on graphs is a fast-evolving field, and many
theoretical results still need to be proven. A fair amount of recent research [23, 50, 51]
involves shedding light on GNNs expressivity, with particular focus on understanding: (a)
the relation between the depth of a GNN architecture and over smoothing [52–54], (b) the
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interplay of positional and structural effects [55, 56], (c) the difference between homophily
and heterophily in graphs [57, 58].

Most of the introduced literature on GNNs focuses mainly on node-level or graph-level
tasks [21–23]. As we will explain later, team modeling involves a subgraph learning prob-
lem. Subgraph embedding tasks using GNNs are still an underexplored area of research,
with SubGNN model [27] being the most notable exception. Similar to the framework that
we propose, SubGNN tackles the problem of embedding general subgraphs by specifying
three channels designed to capture distinct aspects of subgraph structures. However, be-
ing SubGNN a model built disregarding domain knowledge on team performance, this
architecture overlooks several of the effects outlined in Sect. 1 as we will show in Sect. 5.3.
Within this view, to the best of our knowledge, our work represents the only Graph Neu-
ral Network model explicitly built to learn disentangled team representations aggregated
through attention mechanisms.

3 Model
This section introduces the proposed model, MENTOR, built by leveraging and extending
recent graph representation learning techniques [22, 23, 59]. The model features three
main components, which are then aggregated through a soft-attention mechanism [60]
that provides expressivity and some degree of interpretability. The model’s outcome aims
to capture the performances reached by teams when living in a graph scenario. In this
case, teams are represented by subgraphs, and the whole graph represents the ecosystem
in which they work.

In the following sections, we will interchangeably use the terms subgraph and team.

3.1 Target definition
We formally address the problem of modeling team performance as a classification prob-
lem. More precisely, we focus on team performance related to the observed scenario. The
most prominent information regarding the teams’ outcome, e.g., revenue, public success,
ranking position, etc., is summarized in three performance classes, ci: low, middle, and
high. We remark on how this partition results from quantiles of ranking variables that
make the three classes ordered, unusually to what happens in a common classification
task.

3.2 Problem formulation
Let G = (V , E) denote a graph where V and E represent the set of nodes and edges. Each
node can be characterized by a set of features xi ∈ R

l , i = 1, . . . , |V |, where |V | is the num-
ber of nodes and l denotes the dimensionality of a node’s original attributes. As detailed
below, we will focus on directed graphs (and hence, undirected graphs can easily be re-
covered as a special case). Moreover, let Si = (VSi , ESi ) be a subgraph of G (i.e., VSi ⊆ V and
ESi ⊆ E) endowed with a discrete label ySi . Let S = {S1, S2, . . . , Sn} be a set of subgraphs of
interest; our framework allows us to model scenarios in which elements of S may have
overlapping nodes. More formally, given Si = (VSi , ESi ), Sj = (VSj , ESj ) ∈ S , we could have
that VSi ∩VSj �= ∅. In addition, subgraphs may contain nodes not connected to other nodes
in the same subgraph. In other words, some nodes may belong to a team while completely
disconnected from other team members (i.e., subgraphs can have more than one compo-
nent). This occurs specifically in the case of the Dribbble dataset (only for a small fraction
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Figure 1 MENTOR. The architecture of our model is based on the usage of three channels: topology (T),
centrality (C), and contextual (L). Each channel returns a corresponding embedding vector for each subgraph
Si . The outputs of the three channels are then merged by means of an attention mechanism that estimates
the importance of a specific effect

of teams, see Sect. 4). Here, team membership is not directly encoded within the connec-
tivity structure but is conveyed via additional information. In addition, let us observe that
some nodes may not belong to any team, i.e., vk /∈ VSi where i = 1, . . . , n.

Given S , we aim at designing a framework able to generate a d-dimensional embedding
vector zSi ∈ R

d for each Si ∈ S by training a supervised neural model. The final layer of
the proposed model consists of a classifier f : S → {1, 2, . . . , C} mapping each subgraph Si

to an inferred label f (Si) = ŷSi .

3.3 Proposed model
Figure 1 is the overview of our proposed framework. We design a three-channel archi-
tecture capable of modeling topological (T), contextual (L), and centrality (C) effects in-
troduced in Sect. 1. Distinct channels independently process each subgraph Si to extract
different subgraph representations and map Si to an embedding space: [zT

Si
‖zL

Si
‖zC

Si
] ∈ R

3d .
Downstream, a soft-attention mechanism [60, 61] merges the three components through
the estimation of their contribution (in terms of a probability distribution, i.e., {γT ,γL,γC})
to the supervised representation of the subgraph. Analytically, the three channels are
merged as follows:1

zSi = γT zT
Si

+ γLzL
Si

+ γCzC
Si

, ∀Si ∈ S , (1)

where
∑

i={T ,L,C} γi = 1. In conclusion, the last layer of the architecture computes label
probabilities, i.e., f (zSi ) = [cL, cM, cH ].

This framework allows us to obtain an expressive model that captures a vast spectrum
of network effects. We remark how each channel features a preprocessing phase where
the input is parsed into specialized data structures. Besides, a computation phase learns a
mapping function to embed arbitrary subgraph structures into continuous vector repre-
sentations.

1A skip connection between the three-channel representations and the post-attention representation guarantees more
stability to the model.
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Figure 2 Isolation procedure. Graphical illustration of the isolation procedure of the subgraphs Si and Sj from
G, performed by the topology channel. During this phase, the shared member v is duplicated in order to be
present in both S̃i and S̃j subgraphs

Inspecting equation (1), we observe how the formulation of our model enforces an ad-
ditive structure of the different channels, giving straightforward interpretability on how
different effects are composed.

In conclusion, we highlight how most of the experiments in GNNs literature apply graph
convolutional layers to undirected graphs [20–22, 27]. However, in team performance ap-
plications (and more in social research), it is common to encounter scenarios where the
direction of the edges conveys crucial information. Therefore, while building the model,
we informed the message-passing procedures of the directionality of edges by allowing the
set of different graph convolution directions. Specifically, we have incorporated a hyper-
parameter that determines the directionality of message-passing during the graph con-
volutional operations. This hyperparameter, optimized on the validation set, allows for
message aggregation to be performed either from “source to destination” or from “desti-
nation to source”. For more detail, see Additional file 1 S1.1.

3.3.1 Topology channel
Specific patterns of cooperation may heavily influence team performance. We capture
these effects by engineering a branch of the model’s architecture that focuses only on in-
teraction patterns captured by the topological structure of each team.

Preprocessing—We design an embedding channel that studies the internal interactions
of teams in isolation. In practical terms, we decompose G in a set of non-overlapping
S̃i subgraphs (i.e., ES̃i

∩ ES̃j
�= ∅, ∀i �= j = 1, . . . , n.) obtained by detaching subgraphs Si, i =

1, . . . , n, from the whole graph (see Figure 2). Let us remark on how this isolation procedure
discards all nodes not part of a team. Moreover, nodes that belong to multiple teams are
replicated into identical disconnected copies to obtain non-overlapping subgraphs.

Computation—The isolated subgraphs are mapped to low-dimensional continuous rep-
resentations exploiting a mixed graph convolutional architecture. Firstly, a single graph
attentional layer2 (GAT) [22, 62] transforms the node features X into higher-level repre-
sentations h(1) by pooling information from nodes’ 1-hop neighborhood and by learning
a self-attention mechanism [22, 61]. Together with embeddings h(1), the learned layer re-
turns attention coefficients, αvu, that indicate the importance of node u’s features to node

2We implement this convolutional layer by using GATv2 [62] which fixes several issues of the original GAT layer [22].
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v, if they are connected. In more detail:

h(1)
v = αvvWxv +

∑

u∈N (v)

αvuWxu, (2)

αvu =
exp(a† LeakyReLU(W[xv||xu]))

∑
j∈N (v)∪{v} exp(a† LeakyReLU(W[xv||xj]))

, (3)

where a ∈R
2r and W ∈R

r×l are learned quantities, || is the concatenation operator, † rep-
resents transposition and N (·) represents the neighborhood of a given node. The inspec-
tion of attention coefficients allows us to understand whether some nodes play a crucial
role in the classification task, especially in scenarios where the topological structures may
not feature sparse patterns to leverage (Additional file 1, S1.2 shows an example of the
importance of this level of explainability).

Secondly, the next three layers that complete the topology channel are a modified version
of GIN convolution [23]. In more detail, the classical formulation of GIN convolution is
extended to accommodate the attention coefficients estimated in the previous layer:

h(k)
v = θ (k)

(

(1 + ε) · h(k–1)
v · αvv +

∑

u∈N(v)

h(k–1)
u αvu

)

, (4)

where h(k)
v , k ∈ {2, 3, 4}, is the feature vector of node v at the k-th iteration/layer and θ

represents a feed-forward neural network (i.e., an MLP). After k iterations, we learn a
representation of the node h(k)

v that captures the structural information within its k-hop
internal network neighborhood.

Finally, the nodes’ embedding vectors are aggregated at the team level:

zT
Si

= AGGREGATE
({hv : v ∈ VSi}

)
(5)

The choice of the AGGREGATE function can be element-wise max-pooling, mean-
pooling, or add-pooling.

Recent literature on graph representational learning highlights how GNNs are prone
to oversmoothing issues, i.e., stacking together many layers of graph convolutions results
in low variability and similar node level embeddings [52–54, 63]. In the proposed model,
we mitigate this problem by performing convolutions on subgraphs in isolation, prevent-
ing message-passing operations from being performed on possibly too wide areas of the
graphs. Moreover, since the final goal of the channel is to obtain an embedding at the sub-
graph level by aggregating node-level representations, over-smoothing at the node level
is not a crucial issue.

3.3.2 Centrality channel
We capture centrality effects by considering each team as a single entity. We model a team’s
interactions with the external environment by looking at each team’s links with others in
the ecosystem where it belongs.

Preprocessing—We collapse each team Si into a single hypernode whose connectivity
structure is obtained by rearranging and merging inbound and outbound edges of each
node v ∈ Si. We derive a new graph H = (V ′, E′) where the node v′

i ∈ V ′ embodies the i-th
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Figure 3 Hypernodes creation. Graphical illustration of the preprocessing phase of the centrality channel:
subgraphs Si and Sj of G are collapsed to the hypernodes v′

i and v′
j . Edges in the new hypergraph are

weighted according to the connectivity structure of the original graph G

subgraph Si of the graph G (see Figure 3). Let us highlight how edges eij ∈ E′ are endowed
with a weight wij ∈N. The weights are defined by counting how often nodes belonging to
subgraph Si connect to nodes belonging to subgraph Sj. Analytically:

wij =
∣
∣{euv ∈ E|u ∈ Si, v ∈ Sj}

∣
∣

In this stage, the hypernodes’ features are set considering the teams’ original sizes. Note
that if some node does not belong to any team, it is considered an extra hypernode in H .

Computation—As regards the architectural aspect, we employ the modified version of
GIN illustrated in equation (4). In more detail, we model the structural information of a
3-hop weighted network neighborhood by means of three convolutional layers, where the
attention coefficients α are replaced with the current weights w. These hypernode-level
iterations deliver embeddings zC

Si
related to subgraph Si.

3.3.3 Contextual channel
Contextual effects in a graph-structured environment tell us that nodes at close distances
(in terms of hops) likely feature similar underlying characteristics. Also, in this case, we
consider teams as a single entity, assuming that members inside the team feature a zero
distance.

Preprocessing—In this channel, we exploit the formulation of the hypergraph H intro-
duced in the preprocessing chapter of Sect. 3.3.2. In more detail, hypergraph H is pop-
ulated by the hypernode teams and our goal is to obtain the contextual embeddings zL

Si
,

∀v′
i ∈ V ′|Si ∈ S .
Computation—A drawback of recently developed graph convolutional architectures

[21–23] is their inability to model contextual traits of nodes in the broader context of
the graph structure [56, 59]. For example, suppose two nodes belong to different areas
of the network (i.e., they are many hops apart from the graph diameter) but have topo-
logically the same (local) neighborhood structure. In that case, they will have identical
embedding representations [56, 59]. For this reason, we decide to exploit the P-GNN [59]
approach for computing position-aware node embeddings. The standard convolutional
methods aggregate features from the node’s local network neighborhood while P-GNN
involves using some anchor-sets Ai, subsets of nodes of the graph (see Fig. 4) as reference
points from which to learn a non-linear distance-weighted aggregation scheme.
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Figure 4 Anchor-sets. Graphical illustration of the anchor-sets Ai generated by the P-GNN algorithm to
potentially cover the entire volume of the graph H

By exploiting this convolutional layer, we encode the global network position of a given
node. More precisely, P-GNN returns an embedding vector zL

Si
∈R

s, where s is the number
of anchor sets. We then adapt the contextual embedding to be d-dimensional through a
linear transformation. Moreover, we decide to learn contextual representations without
considering nodes’ attributes. We remark on how the regular P-GNN architecture requires
computing the shortest path matrix of the modeled graph. As soon as the network grows
in the number of nodes to be modeled, the computational requirements of this method
(even with the proposed approximated version) scale quadratically. Structuring the input
as a hypergraph, as proposed earlier, helps mitigate such computational requirements by
greatly reducing the number of nodes and, therefore, the number of shortest paths to be
computed. Concluding, the architecture features two layers of P-GNN.

3.3.4 Aggregation mechanism
Before feeding the embedding delivered by the three channels into the aggregation mech-
anism, each zj

Si
is normalized as follows:

zj
Si

=
zj

Si

max(‖zj
Si
‖2, ε)

, j ∈ {T , P, C} (6)

According to the equation (1), we insert an attention mechanism that boosts model ex-
pressivity while quantitatively estimating how different effects compose. The three output
embeddings are then merged to estimate the importance of a specific effect conditioned
on 1) the single observation and 2) the modeled dataset.

The final embedding is then obtained by a soft-attention mechanism inspired by Yujia
Li et al. [60]:

zSi =
∑

j∈{T ,C,L}
γ

j
Si

zj
Si

, (7)
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where γ
j
Si

is the attention coefficient and is computed as:

γ
j
Si

=
eθgate(zj

Si
)

∑
k∈{T ,C,L} eθgate(zk

Si
)
, (8)

where θgate represents a 2-layer MLP.

4 Data
To assess our framework’s capabilities, we perform extensive experiments on synthetic
and real-world datasets. Our work focuses on modeling team performance; however, it
is important to stress how a clear-cut notion of team performance is not always identifi-
able and may be an object of debate. Moreover, given the heterogeneity of the scenarios
we address, encoding the problem into the graph structure may be context-dependent.
Therefore, to obtain the datasets listed below, we formulate several working hypotheses
followed by different pre-processing steps.

For details about the synthetic datasets, we refer the reader to Additional file 1 (S2),
where we illustrate how they contribute to the systematic development and validation of
the model. The artificial datasets have been designed to evaluate the proposed architec-
ture’s proficiency in capturing simple mechanisms linking networks’ topology with teams’
success.

4.1 Real-world datasets
We study real-world datasets spanning a spectrum of contexts, from casts of movies to
data scientists working together to solve a predictive task. Real-world datasets feature
numerous node attributes, and the final target may not be solely a function of the graph
connectivity structure. We highlight how the raw data was pre-processed and provide
more details in Additional file 1, S2.2.

IMDb—The Internet Movie Database (IMDb) contains detailed information about
movies and their casts. Here, we sample films produced after 2018 (included), obtain-
ing an undirected graph of 4802 nodes and 25632 edges. The connectivity structure of
the graph encodes the cast (actor/actress, director, producer, composer, etc.) co-working
in different films. In this dataset, team membership is defined by co-starring in the same
film and directly encoded in network connectivity. The sample considered features 586
teams. The movie’s cast is represented as a clique, and cast components working in mul-
tiple films serve as bridges in the graph connecting different cliques. Labels in this dataset
are defined by discretizing into three classes (using quantiles) the absolute income of films
released in a predefined time window.

Dribbble—Dribbble is a social platform that allows users to organize themselves in teams
to create and share digital art through so-called shots (i.e., posts). Here, we consider 5196
users (i.e., nodes) and 304315 directed edges. The graph features 769 possibly overlapping
teams. The connectivity structure of the graph encodes the “follow” interactions featured
in a static snapshot of the Dribbble.com social network. In this dataset, team membership
is defined by grouping together single user publishing contents for a shared “team” and,
therefore, not directly encoded in the graph connectivity structure. As a result, a small
fraction (7.5%) of the teams are represented by multiple graph components (i.e., some
users are disconnected from the team). Labels are determined by discretizing into three
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classes (using quantiles) the number of likes received by creative content in a predefined
time window.

Kaggle—Kaggle is a competition platform for predictive modeling where individual
users or teams can participate to solve a task and be consequently ranked relative to the
others. Here, we consider 4183 users and 17789 directed edges. Nodes are partitioned into
1013 variable size overlapping subgraphs, and the global connectivity structure is built
based on a static snapshot of Kaggle.com “follow” network. Moreover, being the “follow”
network poorly populated, we add an extra connectivity structure based on co-working,
similar to IMDb. In this dataset, team membership is explicitly provided by the platform.
Labels are defined by discretizing into three classes (using quantiles) the average ranking
position of the teams in a predefined time window.

5 Experiments
5.1 Learning setup
We apply a train/test split on team labels for all the considered datasets using a ratio
of 80/20. On each model run, we perform a Bayesian hyper-parameter search proce-
dure [64, 65] by evaluating the validation performance of the model through a 5-fold vali-
dation using the Optuna optimization library [66] (monitoring the val loss as optimization
objective function). The space of hyper-parameters we swept is quite large, and detailed
information about the procedure can be found in Additional file 1, S4. To assess the stabil-
ity of the proposed architecture to various tasks, we kept architectural hyper-parameters
(i.e., the number of convolutional layers in each channel) fixed. This allows us to gauge the
performance of our model “out of the box” with combinations of hyper-parameters that
may be sub-optimal.

The model is trained using the Adam optimizer [67]. Moreover, to achieve better gen-
eralization and more stable results, we use the Stochastic Weight Averaging ensembling
technique [68]. During the development of the proposed architectures, we encountered
several instability issues related to the training procedure. We fixed such issues by adding
to the model a skip layer [69] (see Fig. 1).

5.2 Baselines definition
To thoroughly assess the architecture’s performance, we test the model against several
classical machine learning algorithms that serve as baselines. In more depth, we com-
pare the proposed model against logistic regression (LR), support vector machines (SVM),
random forests [70] (RF), boosting methods [71] (XGBoost) and multi-layer perceptron
(MLP). As for the graph neural network side, we test the SubGNN model, which is the most
significant contribution to handling subgraph structures. Moreover, we point out how the
single channels of our model can each serve as a baseline (based on popular graph neu-
ral network algorithms, more details in Sect. 5.4). An additional baseline can be gleaned
from Table 1, where we also present the class distribution for each dataset. This table also
illustrates the performance achievable by a majority classifier.

Let us remark how, in classical machine learning methods, feature engineering and ag-
gregation function specification need to be defined. Classical ML algorithms heavily rely
on tabular data, domain knowledge, and hand-engineered features. When working with
subgraphs, several features are defined directly on the graph structure, whereas others are
defined at the node level. For node-level features, an aggregation function (i.e., max, min,
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Table 1 Accuracy on real-world datasets. Standard deviations are provided from runs with seeds
from 1 to 10

Dataset IMDb Dribbble Kaggle

Datasets #teams 586 769 1013
#classes 3 3 3
#nodes 4802 5196 4183
#edges 25632 304315 17789
Class distr. 33/33/33 33/45/22 33/33/33

Classical ML LR 64.0± 5.0 63.2± 2.5 47.3 ± 2.5
SVM 63.3± 5.2 63.6± 2.8 46.7± 1.5
RF 63.2± 3.8 64.4± 3.9 47.0± 2.1
XGBoost 64.2± 4.0 64.6± 3.3 46.5± 2.1
MLP 64.2± 3.8 65.6± 4.5 47.2± 1.5

GNN SubGNN 63.3± 3.1 62.1± 4.1 –
MENTOR—T 66.9± 7.1 62.1± 4.1 45.1± 1.8
MENTOR—C 51.7± 4.5 63.0± 3.8 46.6± 2.1
MENTOR—L 50.0± 3.7 45.2± 2.4 45.4± 2.7
MENTOR 69.1 ± 4.6 66.1 ± 3.2 45.3± 3.3

mean, sum) must be specified to obtain the required subgraph representation in tabular
format. The list of features used for these models is reported in Additional file 1, S3. The
analysis incorporates a mix of features specific to both the dataset and the domain, as well
as various network metrics. To account for centrality effects, classical baseline features like
degree, betweenness, and PageRank centrality are included. Meanwhile, the clustering co-
efficient and network density are provisional indicators for capturing contextual effects.
Lastly, we adopt assortativity as a surrogate measure for understanding topological influ-
ences.

5.3 Performance comparison
We evaluate and compare the test performances of the models following the learning in-
structions explained in Sect. 5.1. In particular, we run each model by defining ten random
seeds (from 1 to 10) and obtaining different train/validation/test splits. This setting al-
lows us to test the generalization power and robustness concerning the randomness of
the various methods.

Results are shown in Table 1. In Additional file 1, S3 we report the models’ performance
according to the AUROC metric. On IMDB classical machine learning methods show
comparable performances while our model outperforms them by 5.1%. On Dribbble, the
proposed framework outperforms all baselines by 2.7% on average. The results on Kaggle
show an overall poor performance where the best model’s logistic regression reaches an
accuracy of only 47.2%. The results of all the models suggest that the information avail-
able about the dataset may not be sufficient or not well-defined to solve the current task.
We remark how, for the Kaggle dataset, embedding teams using SubGNN is not feasible.
The training procedure requires the input graph to be fully connected. This is one of the
limitations featured by SubGNN that we address in proposing our MENTOR.

The confusion matrices in Fig. 5 show how the model often fails in classifying the middle
class, which acts as a “bridge” between the boundary labels. This is somewhat expected
since labels for real-world datasets are obtained through a discretization using quantile
partitioning. Therefore, classes can be poorly separated at cut-off values by design. On
the contrary, the model rarely confuses the high class with the low class and vice-versa
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Figure 5 Confusion matrices on real-world datasets. The confusion matrices on real-world datasets: (a) IMDb;
(b) Dribbble (c) Kaggle. The results refer to the configuration corresponding to the seed which returns the
highest accuracy

(it never happens for the Dribble dataset), correctly guessing with high accuracy in the
boundary classes (about 92% for IMDb dataset).

5.4 Ablation study
We perform ablation studies to understand whether the specific channels of the architec-
ture can capture the effects they were designed for. In particular, we compute the model’s
metrics by turning off all the channels but one and compare the results with the whole
architecture. As mentioned above, the single channels of our model can be seen as fur-
ther benchmarks of the proposed architecture against graph neural network baselines (i.e.,
GIN [23], GAT [22], P-GNN [59]). The different preprocessing phases redesign the in-
put graph in two main structures: 1) subgraphs in isolation (topology); and 2) subgraphs
condensed into hypernodes (centrality and contextual). This setting allows the topology
channel to embed subgraphs by classifying isolated substructures as standalone graphs.
The centrality and contextual channels leverage node-level learning architectures applied
on the pooled original graph (where nodes encode subgraphs). As shown in Table S1, the
removal of certain channels can lead to an increase in performances with respect to the
3-channel setting; however, these percentage increases are not striking (1% max.). This
result is very comforting, considering that in a real-world scenario, the effects that drive
the analyzed system are not known a priori.

Since each channel performs well with respect to the effect it is designed to capture
while performing poorly in the residual scenarios, single-channel embeddings are likely
to be uncorrelated. This feature should boost the reliability of attention coefficients, high-
lighting the non-overlapping contribution of different effects to the outcome.

5.5 Model findings
5.5.1 Analysis of attention on different channels
The attention mechanism of the 3-channels setting allows quantifying the contribution
of each effect in determining the outcome, fostering some degree of interpretability in an
otherwise black-box model. Moreover, contributions of various channels can be visualized
by resorting to ternary graphs. In our case, the ternary graph is populated with points,
i.e., teams, whose location on the plot is given by attention weights of the three channels.
Furthermore, by adding a 2D kernel density estimation, we try to address the problem of
overplotting (i.e., many points over-imposed on the same plotting area).
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Figure 6 The attention coefficients and Gini index on real-world datasets. (a)–(c) The attention coefficients
explained in Formula (8) are visualized using ternary graphs; (d)–(f ) The distribution of the Gini index related
to nodes’ importance inside the teams. All the results refer to the configuration corresponding to the seed,
which returns the highest accuracy

The aggregation mechanism exposes distributions of attention coefficients obtained
in Figs. 6(a)–(c). The findings show a diversified concentration of attention coefficients
among different datasets and mostly no contribution from the contextual channel. In
IMDb, topological effects seem to drive the classification task strongly. We note how, be-
ing teams defined as cliques in IMDb, it is reasonable that nodes’ attributes are key factors
in determining team performance. In Dribbble, attention coefficients are evenly split be-
tween topology and centrality effects. This suggests that a team’s connections outside its
workplace boost chances of reaching the target audience, a critical factor given that Dribb-
ble is a social media platform. In Kaggle, the centrality effect dominates the others, sug-
gesting how co-working and shared ideas play an important role in determining a team’s
performance.

The attention mechanism defined at the node level in the first graph convolutional layer
of the topology channel can pinpoint key nodes inside the team. This feature provides
further insights that allow us to interpret the model’s results. We first test the effectiveness
of this mechanism by designing a toy problem (for more details, see Additional file 1, S1.2).
We then use node-level attention coefficients to spot “superstar” effects. In other words,
we try to understand whether, in some teams, predictions are mostly driven by a unique
node. We define the importance of each node as the sum of all the incoming attention
coefficients according to the equation (3), i.e.:

Iv =
∑

j∈M

αjv, (9)
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Figure 7 Attention coefficients of the topology channel. (a) The values of the nodes’ attributes of a team on
Dribbble; (b) The attention coefficients that the GATv2 layer returns at the topology level for a team on
Dribbble

where M denotes nodes connected by a directed edge pointing towards v .3

Now that we have defined a metric to gauge a node’s importance in a team, we are in-
terested in understanding whether these contributions are evenly distributed inside the
teams. We address this question by computing the Gini index of nodes’ importance. The
Gini Index is a measure of statistical dispersion whose application has grown beyond so-
cioeconomics applications and reached various disciplines of science [72–74]. Crucially,
the advantage of the Gini index is that it summarizes inequality in value distributions with
a single scalar that is relatively simple to interpret. In more detail, the index takes values
between 0 and 1, with 0 representing scenarios where all nodes feature equal importance
and 1 in scenarios where there is only one very important node.

5.5.2 Analysis of attention on different nodes
We compute the Gini index for each team and show the distributions of such scores us-
ing histograms in Figs. 6(d)–(f ). The distributions suggest no dataset features teams with
absolute inequalities (Gini values in the left neighborhood of 1). However, values around
0.5 can highlight subgraphs where node importance is skewed towards a few nodes. In
Fig. 7, we show an example of a team with a Gini index of 0.52. The team analyzed belongs
to the Dribbble dataset and is a high-performing team. We see how attention coefficients
highlight user 766 as an important one. Crucially, this user seems to play an important
role within the team despite not being the most “skilled” user: the non-one-sided connec-
tivity pattern, together with their attributes, makes them important. Therefore, our model
may be able to spot influential nodes by combining complex patterns encompassing both
attributes and topology. On the Kaggle dataset, we show how mainly homogenous contri-
butions take place.

3We remark that the directionality of the message-passing procedure represents a hyper-parameter of the proposed model.
In equation (9), we assume convolutions are done in a target-to-source fashion. If instead convolutions are switched to
source-to-target, the indexes in Eq. (9) need to be switched.
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In conclusion, it is important to mention how the reliability of these findings increases
with model performance (the higher the performance, the more reliable the attention co-
efficients). This consideration particularly holds for the Kaggle dataset, on which perfor-
mance results were not satisfying.

6 Discussion
As already introduced in Sect. 5.4, we observe how the proposed architecture can con-
sistently leverage the attention mechanism and the preprocessing steps to focus on the
meaningful effects driving the system. In more detail, even if we specify an architecture
largely overparameterized where most parameters don’t contribute to solving the final
problem, the model can avoid over-fitting and generalize correctly to unseen data. It is
important to stress how architectural parameters, such as the number of convolutional
layers in each channel, were not objects of the hyperparameter optimization procedure.
On the one hand, choosing a tailored final model layout would probably enable us to push
model performances further. On the other hand, we wanted to show that the proposed
architecture could be robust even if overparameterized and with too many convolutional
layers. The final results highlight how the proposed architecture can be used out of the box
on different datasets. It is worth acknowledging that the proposed architecture results in
a more computationally heavy framework than simpler models. However, this complexity
brings significant advantages in terms of interpretability. Through the utilization of atten-
tion coefficients, defined both at the team and at the node level, the architecture provides
intricate yet valuable insights into the data it processes. These coefficients not only shed
light on how the model arrives at its predictions but also offer a way to disentangle the
contributions of different features, thereby increasing our understanding of the underly-
ing system.

It is important to highlight how, in many contexts, it is not easy to develop a clear and
well-defined notion of team performance. Furthermore, the performance might be in-
fluenced by many exogenous and external factors that might be hard to capture. Never-
theless, as reported in the Additional file 1, the experiments on synthetic data show us
that when the target quantity is directly a function of network properties, the model can
correctly learn the underlying mechanisms. Therefore, definitions of performance in real
scenarios closely related to network effects will likely be modeled more accurately by the
proposed architecture.

Lastly, let us remark on how edges in the input graph should encode interactions and
social proximity between agents in a complex system. Considering that we try to model
team performance by leveraging different network effects, we implicitly assume that edges
convey predictive signals. These kinds of information are probably contained in high-
resolution and privacy-sensitive databases of face-to-face interactions and private mes-
saging logs, which are not freely available for research purposes in most cases. When using
social networks, we instead use “follow” relations to encode nodes’ interactions. This type
of interaction may be seen as “socially weak” and not conveying strong enough signals to
predict team performance.

7 Conclusion
We presented MENTOR, a framework for modeling team performances through neural
graph representation learning techniques. MENTOR provides a tool to embed subgraphs
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belonging to a larger network, leveraging concepts rooted in compilational models. We
proposed different preprocessing steps and structural model features (i.e., 3-channels)
to identify topological, centrality, and contextual effects. Those effects are then aggre-
gated using a soft-attention mechanism that provides both expressivity and interpretabil-
ity. In addition, the attention mechanism inside the topology channel provides further
insights into nodes’ importance inside the teams. We applied the model to 3 real-world
datasets representing team dynamics in a graph-structured system. MENTOR outper-
forms the classical machine learning methods and the current neural baselines on real-
world datasets, except for the Kaggle case. We stress how, in contrast with current neural
baselines, MENTOR delivers straightforward interpretability using attention coefficients.
This information can be useful in detecting the factors that affect performances in refer-
ence scenarios and the influence that the members of the teams exert when collaborating.
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