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Abstract
The wealth of text data generated by social media has enabled new kinds of analysis
of emotions with language models. These models are often trained on small and
costly datasets of text annotations produced by readers who guess the emotions
expressed by others in social media posts. This affects the quality of emotion
identification methods due to training data size limitations and noise in the
production of labels used in model development. We present LEIA, a model for
emotion identification in text that has been trained on a dataset of more than 6
million posts with self-annotated emotion labels for happiness, affection, sadness,
anger, and fear. LEIA is based on a word masking method that enhances the learning
of emotion words during model pre-training. LEIA achieves macro-F1 values of
approximately 73 on three in-domain test datasets, outperforming other supervised
and unsupervised methods in a strong benchmark that shows that LEIA generalizes
across posts, users, and time periods. We further perform an out-of-domain
evaluation on five different datasets of social media and other sources, showing LEIA’s
robust performance across media, data collection methods, and annotation schemes.
Our results show that LEIA generalizes its classification of anger, happiness, and
sadness beyond the domain it was trained on. LEIA can be applied in future research
to provide better identification of emotions in text from the perspective of the writer.

Keywords: Emotion detection; Natural language processing; Social media; Transfer
learning

1 Introduction
Automatic identification of emotion in text is a valuable tool to study affect through social
media and other text digital traces [1]. Word-based methods enabled the study of mood
expressions on Twitter [2] in relation to daylight oscillations [3] and of collective emotions
in social resilience [4]. Rule-based methods allowed the quantification of emotion conta-
gion on Twitter [5] and the dynamics of emotions after affect labeling on social media [6].
More advanced classification methods trained on labeled data in various languages have
been used to test the effect of air pollution on happiness in Weibo posts [7], to study the
expression of emotions on Twitter about Black Lives Matter [8], and to validate social me-
dia emotion macroscopes against survey data [9, 10]. Beyond research, emotion detection
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from social media text has clinical potential to identify users at mental health risk [11] and
can help platforms to detect abusive language [12].

Despite its potential, the use of emotion detection from social media text faces impor-
tant challenges. Dictionary methods applied to social media text provide user-level met-
rics that are weakly correlated with answers to affective questionnaires [13]. Furthermore,
dictionary-based emotion analysis methods have weak correlations with population-level
emotion prevalence [14], but the same study shows that more advanced supervised meth-
ods bear promise to capture well-being. One of the sources of problems with the appli-
cation of social media text to study emotions is the sensitivity of methods to particular
domains. For example, [15] applied out-of-the-box sentiment analysis in a benchmark
of different domains and found how methods are very sensitive to the medium and text
source. This is part of a general problem in which language model performance degrades
with distribution shifts [16], weakening the validity of emotion detection from text in out-
of-domain (OOD) settings.

A source of error in emotion detection in social media is the way in which training labels
are produced. While the target of applications is often to infer a subjective emotional state
of the author of a social media post, the labels of training data are frequently produced by
readers and not the authors of the post. The use of crowdsourcing can contribute to this
problem, which can be alleviated by gathering several annotations per text but always car-
rying the potential noise source of readers not understanding the emotional state of writ-
ers. For example, a comparison between reader and writer annotations shows that they
disagree 25% of the time [17]. To avoid this problem, experience sampling can be used to
generate self-annotated emotion labels. For example, [18] gathered anxiety scores at the
time when individuals posted tweets and compared self-reported anxiety with emotion
text analysis. The results are correlations of at most 0.24, calling for studies that can lever-
age large datasets to identify emotional states more accurately. One must note, however,
that we cannot assume that self-reported emotion labels are perfectly predictable from
social media text, with only the natural language processing models as the missing piece.
The upper limit on the performance of an emotion identification method is likely to be
below 100%, as for example, well-being indicators correlate with each other correlations
of approximately 0.84, which can be achieved with modern language models [19].

New platforms to share emotional experiences with other users offer the possibility to
gather large-scale datasets with emotion self-annotations. Vent is an example that offers a
particularly good source of self-annotated data, as the dataset available for researchers has
millions of posts [20] and the design of the platform is precisely to share emotions rather
than a smaller functionality as in other platforms. Recent research on Vent has shown the
difficulty to predict Vent precise mood labels from text [21], but it is still left to explore
how Vent can be used to infer more coarse emotion labels that can match discrete emotion
classes from psychological research. In this work, we focus on a subset of Vent tags that
can be mapped to standard emotional states, with the goal of training a better and more
robust emotion detection model that can be applied to other text sources, especially from
other social media. In the following, we present the design and development of LEIA,
followed by an empirical analysis in a benchmark of in-domain and out-of-domain tests.
We further analyze examples of classification errors and outputs of LEIA to understand
its limitations and paths for improvement.
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2 Related work
Emotion classification models mainly follow feature-based or neural approaches. Feature-
based methods [22] employ handcrafted features built from resources such as emotion
lexica. Neural approaches often rely on pre-trained representations such as word embed-
dings and contextual language models (LMs). The use of transformer-based LMs has been
shown to yield state-of-the-art performance on natural language processing benchmarks.
For emotion classification, recent research works have achieved better performance using
pre-trained LMs [23–25].

Learning representations for affect A number of existing works learn representations for
affective tasks. DeepMoji [26] is a neural network trained for predicting emoji in tweets us-
ing a large distant-labeled dataset considering 64 emojis as labels. Sentiment-specific word
embeddings [27] encode sentiment information into the vector representation of words
for sentiment analysis. Sentiment-aware language representation learning (SentiLARE)
[28] incorporates part-of-speech and word polarity to enhance representation learning
of a contextual language model for sentiment analysis tasks. Another effective strategy in
several natural language processing tasks is to pre-train transformer models on a large
collection of text and then fine-tune the model for other downstream tasks [29], includ-
ing tasks in the social media domain [23, 25]. In this strategy, the adaptation step often
relies on the masked language modeling objective where random tokens are masked and
the model is trained to predict the masked tokens. Alternative masking strategies have
been proposed to improve the pre-training task either by masking important words [30]
or masking words relevant for a given downstream task. Recently, emotion masked lan-
guage modeling (eMLM) was proposed in [31] to preferentially mask emotion words for
contextual language representation learning. Similar to SentiLARE, eMLM also relied on
existing lexical resources by masking emotional words more frequently when training a
Bidirectional Encoder Representations from Transformers (BERT) model from scratch,
yielding improvements in downstream affect-related tasks. Motivated by these results, we
employ eMLM in the design of LEIA as we explain below.

Fine-tuning strategies and model generalization Supervised models can show a perfor-
mance drop when faced with domain shifts, i.e. when they are applied to text from a do-
main that is not the same as the domain of their training data [16]. A recent result in
computer vision [32] showed that this performance gap across domains can be mitigated
with a fine-tuning strategy that first performs linear probing to align the features of the
prediction head with the pre-trained base model and then fine-tuning all model parame-
ters. This approach is similar to those proposed in [33] and provides a further theoretical
basis as well as empirical validation. Linear probing is a non-destructive and computation-
ally cheap approach that freezes the parameters of the base model and only updates the
parameters of the prediction head during training. In this work, we consider this strategy
in the context of text classification for the identification of emotion.

Emotion classification datasets Supervised models are trained and evaluated against
emotion text datasets that are either constructed by manual labeling or automatically
by using additional data sources and structures. Manually-labeled datasets are usually
comparatively small while automatically-constructed datasets are built by identifying
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emotion-bearing patterns of expression such as hashtags in the case of Twitter. The an-
notation of emotion datasets can also be divided into reader-labeled and writer-labeled
datasets. Reader-labeled datasets are assigned labels by the annotators post-hoc based on
their perception of the emotions expressed by a given content. On the other hand, writer-
labeled datasets are usually self-annotated by the writer of the message to reflect their
emotion.

Most of the existing work on emotion classification has drawn on manually anno-
tated, automatically constructed, and reader-labeled datasets. Recently, large-scale writer-
labeled datasets have been introduced [20, 34] and they are yet to become part of the
benchmarks of emotion detection tasks. A notable example is the Vent dataset [20], which
is produced by a specialized social media platform with the goal of encouraging people to
write about their feelings and provide a tag. The quality of the self-annotated emotion data
drawn from Vent was examined and led to the conclusion that the tagged emotional ex-
pressions are indicative of emotional content [35]. Furthermore, the distinction between
reader-labeled and writer-labeled datasets was analyzed in [21] with the findings indi-
cating that classifying the emotion labels of these datasets is a hard task when consid-
ering all available labels in the platform. As supervised methods tend to perform better
than unsupervised ones and gathering manual annotations is time-consuming and ex-
pensive, this kind of self-annotated datasets offers a potential alternative beyond indirect
self-annotations within the text as in Twitter hashtags.

3 Experimental setup
We illustrate our experimental setup in Fig. 1. Next, we describe this setup more in detail
starting with the datasets for training and evaluating our models, followed by details on
the implementation of our proposed models and baselines.

3.1 Datasets
The Vent dataset consists of 33 Million posts from the Vent social media app [20]. Each
post is annotated by its author with an emotion tag as a way to express their emotional
state to others. While the dataset has 705 emotion tags, many are temporary tags about
seasonal events that do not express a clear emotional state and the most frequent tags

Figure 1 Overview of data sources, training steps, models, and evaluation tests
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Table 1 Mapping of Vent categories to emotion labels

Label Vent emotion tags

Sadness Lonely, Sad, Miserable
Anger Angry, Annoyed, Frustrated, Furious
Fear Anxious, Stressed, Afraid, Nervous, Worried
Affection Affectionate, Loving, Caring, Adoring,

Cuddly, Supportive, Passionate, Infatuated
Happiness Happy, Excited

are used on the vast majority of posts. Since Vent was designed to provide a nuanced
expression of emotions rather than text classification, we mapped Vent emotion tags to
a list of emotional states consistent with individual emotions from the affective science
literature [36]. This way, we map emotion tags with words close in dimensional models
of emotion [37] into the same label, for example, mapping the tags angry and annoyed
into the same label of Anger. The precise mapping can be found in Table 1. Four of these
emotion labels map to linguistic classes that have been consistently identified in emotional
expression in text [38]: Sadness, Anger, Fear, and Happiness. We added a fifth category
Affection, which occurs more frequently than Happiness and shows a social orientation of
the expression of positive emotions on social media.

We pre-process the Vent dataset to generate a cleaner dataset of posts in English that
were labeled by their authors with one of the tags of Table 1. We remove non-English posts
using three language identification tools.1,2,3 For a post to be included in our analysis, at
least two out of the three methods had to agree on detecting it as in English. After that,
we remove duplicates and tag memes (invitations for a challenge to answer a question),
following the approach in [35]. We remove posts with less than three words, excluding
placeholders for links and user mentions in the word count. We also normalize the text
by replacing multiple whitespaces with a single occurrence. We remove tab, new line and
carriage return characters as well as Hypertext Markup Language codes. The resulting
dataset contains more than nine million posts with metadata including the emotion labels,
pseudonymized user ids, and timestamps when the post was written.

In-domain evaluation datasets An overview of this study can be seen in Fig. 1, including
data sources and data splits for in-domain evaluation. We split the pre-processed Vent
dataset into a training/development/test split with three disjoint test datasets to assess the
capability of the model to generalize emotion identification. The random test set contains
a uniformly random selection of 10% of all posts in the Vent dataset. The user test set
consists of all posts written by a random sample of 10% of the users. This way, no post
in the training set has been written by any of the users in the user test set. The temporal
test set contains the last 10% of the posts according to their timestamp, thus allowing
us to evaluate the model with future data with respect to its training set. We additionally
extracted another 10% random set from the remaining posts as a development set to guide
model design before the final run of all tests. All these subsets are disjoint and the three
tests allow us to evaluate if and how the model generalizes across posts, users, and time.
The resulting exact counts of posts and emotion labels in all splits can be found in Table 2.

1https://fasttext.cc/docs/en/language-identification.html.
2https://github.com/adbar/py3langid.
3https://github.com/google/cld3.

https://fasttext.cc/docs/en/language-identification.html
https://github.com/adbar/py3langid
https://github.com/google/cld3


Aroyehun et al. EPJ Data Science           (2023) 12:52 Page 6 of 21

Table 2 Frequency of occurrence of the labels on the data splits of the Vent dataset after
pre-processing. The proportion of the total number of instances within the sample is in parenthesis

Train Development User Test Temporal test Random test

Sadness 1,712,985 (27%) 199,890 (28%) 262,999 (27%) 293,993 (30%) 264,906 (27%)
Anger 1,517,282 (24%) 147,778(21%) 224,997 (23%) 205,598 (21%) 226,068 (23%)
Fear 1,341,624 (21%) 138,929 (20%) 198,264 (21%) 185,461 (19%) 201,563 (21%)
Affection 979,019 (15%) 144,175 (20%) 161,018 (17%) 191,022 (20%) 158,017 (16%)
Happiness 795,363 (13%) 74,369 (11%) 118,290 (12%) 91,127 (9%) 116,647 (12%)

Total 6,346,273 705,141 965,568 967,201 967,201

Out-of-domain evaluation datasets To evaluate if models learn about emotional expres-
sion beyond the domain of Vent as a social platform, we include five OOD datasets with
emotion labels and texts associated with the emotions. The OOD datasets are the follow-
ing:

• enISEAR [17] is a dataset of emotional event descriptions in English using the
International Survey on Emotion Antecedents and Reactions (ISEAR) approach [39]
via crowdsourcing. Annotators generated event-focused emotion descriptions using
the template: “I felt [emotion] when/because [situation]”. While the study included
annotations by readers, we only use the annotation of the author of the text to
evaluate models. The dataset consists of 1001 instances for seven emotions, four of
which match our emotion labels to provide an out-of-domain test. We design the task
as a prediction of the text in which we have replaced the emotion word with the
placeholder mask, which is a special token common in language models to denote a
missing word. enISEAR is generated by asking participants to describe an
emotion-inducing situation, a design that limits its external validity with respect to
social media but that has the highest standard of internal validity with text
annotations produced in a controlled setup. We consider enISEAR as the
out-of-domain dataset most relevant to test the psychological validity of the emotion
detection of models, while other datasets from social media are necessary to evaluate
models in other domains once this psychological validity level is clear.

• GoEmotions [24] is a corpus of English comments extracted from Reddit with manual
annotations for multiple emotions. It is a reader-labeled emotion dataset with labels
assigned when at least three annotators gave the same label to a comment. For our
out-of-domain test, we include the subset of the test split with a single label from
among the Ekman category of the dataset, thus having Sadness, Anger, Fear, and Joy as
a general positive emotion label.

• TEC [40] is a corpus of tweets posted between Nov. 15, 2011 and Dec. 6, 2011 with
self-label for emotions using emotion-word hashtags. The hashtags serve as the
emotion label for classification and are removed from the tweet texts. We sample 10%
of the dataset at random as our out-of-domain test set. Since the hashtags are
assigned by the authors of the tweets, the dataset can be considered labeled from the
perspective of the writer.

• Universal Joy [34] is a collection of anonymized public Facebook posts in 18 languages
labeled with five emotions: anger, anticipation, fear, joy, and sadness. The labels are
derived from the Facebook “feelings tag” provided by the writers of the posts. We use
the English subset of the test set for our analysis.
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Table 3 Frequency of occurrence of the labels on the test sets of out-of-domain datasets

Dataset Sadness Anger Fear Happiness Total

enISEAR 143 143 143 143 572
TEC 765 305 499 1627 3196
GoEmotions 259 520 77 1598 2454
Universal Joy 128 58 11 384 581
SemEval 312 511 165 706 1694

• SemEval [41] is a collection of tweets in three languages from 2016 and 2017 collected
from Twitter using emotion keywords as queries. Subsequently, matching tweets were
annotated by crowdworkers for emotion intensity, valence, and basic emotion classes.
This dataset was the benchmark data for the competition about affect detection in
SemEval. Here, we use the test data by including only instances with a single label that
correspond to one of the labels in our model.

Note that for the OOD datasets (GoEmotions, TEC, Universal Joy, and SemEval), we
use only the test sample for OOD evaluation and exclude other training or development
samples. We do this to provide an evaluation that can be compared to previous and future
supervised methods that use the training samples.

Based on our selection criteria, we find only 11 tweets with the Affection label in the
SemEval dataset. So, we consider Happiness and Affection to be the Happiness emotion
label, which limits the nuance in which we can assess classifications within positive emo-
tions in out-of-domain settings but still enables a wider differentiation between general
positive emotions and three negative emotions. Descriptive statistics of the counts and
proportions of labels in the five datasets can be found in Table 3.

We use the in-domain and OOD datasets to evaluate the performance of models in our
experimental setup. We calculate the macro-averaged F1 score over all emotion labels and
report results with the F1 score of each of the emotion labels, as their frequencies greatly
differ in several of the datasets we use for evaluation.

3.2 Models
Model design and pre-training Pre-trained language models have shown state-of-the-
art performance on many natural language processing tasks. We expect language models
pre-trained on social media data to perform better on the Vent dataset. In preliminary
experiments using performance on the development set, we test three pre-trained mod-
els based on the Robustly optimized BERT approach (RoBERTa) architecture and pre-
training: Roberta-base [42], Twitter-RoBERTa [23], and BERTweet-base [25]. BERTweet-
base had the best performance on the development set and thus we chose to continue our
work with BERTweet-base and its large version, BERTweet-large, in all our experiments.
BERTweet-base and BERTweet-large are transformers model pre-trained on 850M tweets
with 12 and 24 layers, respectively. BERTweet-base has a maximum sequence length of 128
(sub)words while BERTweet-large has a maximum sequence length of 512 (sub)words [25].
Before training a classifier on the training set, we pre-train BERTweet-base (BERTweet-
large) on the text of Vent posts in the training set ignoring all emotion labels. We perform
task-adaptive pre-training [29] by preferentially masking emotion words using eMLM. We
use the emotion terms in the emotion lexicon introduced in [43, 44] as it is one of the most
extensive emotion lexicons available. We set the probability of masking emotion words to
0.5 following previous work [31]. We train with the eMLM objective for 100K steps using
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the AdamW optimizer [45], a learning rate of 5 ∗ 10–5, and a batch size of 128. We name
the resulting models LEIA-LM-base and LEIA-LM-large, i.e. the result of our pre-training
of BERTweet-base and BERTweet-large respectively. On an NVIDIA RTX8000 GPU, pre-
training takes approximately a week for the base model and a month for the large model.

Model fine-tuning with labeled data We implement a multiclass classifier for the five
emotion labels: Anger, Fear, Sadness, Happiness, and Affection. We train classifiers start-
ing from LEIA-LM-base and LEIA-LM-large using a two-step approach. First, we perform
linear probing to initialize the classifier head and then full fine-tuning of the model. For
linear probing, only the classifier head is randomly initialized and trained on the training
dataset while the remaining model parameters are fixed. This initial step can be seen as
a way to align the features of the prediction head and the base model to minimize fea-
ture distortion [32]. In the subsequent full fine-tuning step, the prediction head is initial-
ized from the parameters learned from the initial linear probing step. We also fine-tune a
BERTweet-base and a BERTweet-large model without the eMLM step. To improve model
generalization, we average model weights [46] of the two model variants (one with eMLM
and one without eMLM) for each of the base and large architectures. The resulting mod-
els are respectively named LEIA-base and LEIA-large. We show the performance of the
intermediate model variants on the in-domain and OOD test sets in Tables 9 and 10 in the
Appendix. For the linear probing step, we use a learning rate of 5 ∗ 10–4 and train only the
classifier head while the other layers are frozen for 1000 steps. For fine-tuning, we set the
learning rate to 10–5 with a constant learning rate schedule, embedding dropout of 0.1,
weight decay factor of 0.01, and a label smoothing factor of 0.1. We train for 5 epochs us-
ing AdamW optimizer with an effective batch size of 256 and a maximum sequence length
of 128. We jointly optimize a supervised contrastive loss and a cross-entropy loss [47].
The supervised contrastive loss ensures that the model captures the similarity between
examples within a class while contrasting them with examples from other classes. This
approach has been shown to aid model generalization. Following prior work [47], we set
the weight of the contrastive loss to 0.9 and the temperature parameter to 0.3. The fine-
tuning process takes approximately 24 hours for the base-sized model and 60 hours for
the large-sized model on an Nvidia RTX8000 GPU with 48 GB memory.

Baselines As baselines, we use the popular Linguistic Inquiry and Word Count (LIWC)
dictionary approach [48], the NRC emotion lexicon [43, 44], and a Naive Bayes Support
Vector Machine (NBSVM) as a supervised baseline. For the LIWC approach, we map the
score for the relevant LIWC categories to emotion labels as follows: emo_anger to Anger,
emo_anx to Fear, emo_sad to Sadness, and emo_pos to Happiness. For NRC, we com-
pute the frequency of emotion words corresponding to the emotion categories we con-
sider normalized by the length of the text. We did not find a category that can be mapped
to Affection in the LIWC and NRC categories, thus considering only 4 classes for the
dictionary-based baselines. We convert the multiclass result of LIWC and NRC to a bi-
nary classification task for each emotion label using the “one-vs-rest” setting. For Sadness
category as an example, we consider instances within the Sadness category as having a
label of 1 if the frequency of occurrence of words in the Sadness category normalized by
the length of the text is greater than 0. All other examples are assigned a label of 0.
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We use NBSVM [49] as a supervised baseline. NBSVM is a strong baseline for text clas-
sification that uses Naive Bayes features for unigrams as input representation. We use the
implementation in Ktrain [50] with a vocabulary size of 64K.

Polarity benchmark The discrete emotions that we consider can be grouped by valence
into positive polarity (happiness and affection) and negative polarity (anger, fear, and sad-
ness). We examine the effectiveness of post-processing the prediction from our models
into a polarity classifier by taking the sum of the probability for happiness and affection as
the positive polarity score. We then compare this strategy to two well-known approaches
for polarity classification of online content: LIWC and VADER [51]. We use the Tone score
from LIWC and the compound score from VADER as the polarity score, respectively. For
each method, we compute the Area Under the Receiver Operating Characteristics Curve
(AUC) for the prediction of positive/negative polarity.

Comparison with GPT models Large generative models provide the opportunity for the
classification of emotions in social media text in emotion classes as our models, but rate
limits and pricing hinder an exhaustive evaluation with our full Vent test datasets, which
contain nearly 3 million posts. To provide a comparison against OpenAI’s GPT-3.5 and
GPT-4 models, we design an additional in-domain analysis based on a random sample of
1000 posts from each emotion category in the user test split of the Vent dataset. For an out-
of-domain comparison, we ran both GPT models over the full test samples of the OOD
datasets. We prompt GPT models with instructions to output only one of the emotion cat-
egories for each input text via the OpenAI chat/completions endpoint with a temperature
of 0. For cases, where the model did not return the expected output we repeatedly prompt
the model to output one of the emotion categories. In addition, we limit the number of
output tokens to 3 (the maximum number of tokens required by the Generative Pretrained
Transformer (GPT) tokenizer to cover all emotion categories).

4 Results and analysis
In this section, we report the performance of LEIA-base and LEIA-large in both in-domain
and out-of-domain scenarios. We include the macro-F1 score and bootstrapping confi-
dence intervals obtained from 10,000 bootstrap samples. We provide an error analysis
on a sample of incorrect model predictions. We end by assessing the salient features on
selected examples of model predictions.

In-domain results Table 4 shows that LEIA-base and LEIA-large outperform all models
in all three Vent test samples, achieving a Macro-F1 of about 73 on random posts, text
from unseen users and different time periods. Model performance is comparable across all
three test sets, which indicates that its F1 score is not achieved by exploiting biases of user
activity or high-volume time periods. The dictionary approaches have the lowest macro-
F1 scores, being significantly outperformed by LEIA-base and LEIA-large. The supervised
approach of NBSVM achieves macro-F1 scores of about 60 but is still substantially and
significantly outperformed by LEIA-base and LEIA-large.

Figure 2 shows a breakdown of F1 per emotion class in the in-domain test samples.
LEIA-base and LEIA-large show consistently high F1 score for all emotion classes. This
shows that the general performance of LEIA-base and LEIA-large is not as a result of
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Table 4 Macro-F1 scores on the Vent test sets. 95% Confidence interval in square brackets
(computed over 10,000 bootstrap samples). For LIWC and NRC, we only consider 4 out of 5 labels and
perform binary classification for each label using the “one-vs-rest” setting

LIWC NRC NBSVM LEIA-base LEIA-large

User 32.88 [32.79, 32.96] 32.91 [32.85, 32.97] 60.15 [60.05, 60.25] 72.92 [72.82, 73.02] 73.37 [73.28, 73.46]
Temporal 34.64 [34.55, 34.72] 33.07 [33.01, 33.12] 60.52 [60.42, 60.63] 73.03 [72.95, 73.11] 73.43 [73.34, 73.53]
Random 32.84 [32.74, 32.94] 33.02 [32.95, 33.08] 60.26 [60.16, 60.36] 73.02 [72.94, 73.12] 73.57 [73.48, 73.66]

Figure 2 Results within the Vent dataset in the three test samples. Error bars show bootstrap 95% confidence
intervals and may be too small to be visible due to the large sample sizes

bias from higher performance on majority class. The only class that has a slightly lower
F1 is Fear, but LEIA-base and LEIA-large still outperform all other methods on it. One
observation is that NBSVM also performs slightly worse for Fear than for other emotions
in contrast with LIWC, which obtains a comparatively better performance than NRC in
the Fear category.

Out-of-domain results Our out-of-domain benchmark shows that LEIA can detect emo-
tional states in other types of text and social media platforms beyond Vent. Table 5 shows
the Macro-F1 scores for the five out-of-domain test sets. LEIA-base and LEIA-large have
significantly higher F1 scores than all other methods when evaluated on 4 out of the 5
OOD datasets. The NBSVM has a comparable performance in the GoEmotions dataset,
where the F1 of NBSVM and of LEIA-base are not significantly different. We also observe
that a larger model does not necessarily lead to better performance on OOD datasets,
as LEIA-large only shows a substantially different performance on the enISEAR dataset.



Aroyehun et al. EPJ Data Science           (2023) 12:52 Page 11 of 21

Table 5 Macro-F1 scores on out-of-domain datasets. 95% Confidence intervals in square brackets
(computed over 10,000 bootstrap samples)

LIWC NRC NBSVM LEIA-base LEIA-large

Universal Joy 23.45 [19.97, 27.29] 28.98 [26.15, 31.99] 41.70 [37.36, 46.08] 54.18 [48.79, 59.88] 54.17 [48.68, 59.84]
GoEmotions 45.81 [42.72, 48.63] 32.68 [31.18, 34.25] 48.23 [45.85, 50.59] 46.31 [43.98, 48.72] 45.75 [43.45, 48.09]
TEC 36.02 [34.02, 37.99] 33.92 [32.65, 35.27] 39.07 [37.28, 40.92] 43.87 [42.05, 45.61] 44.12 [42.34, 45.89]
SemEval 66.72 [64.61, 69.1] 49.86 [48.27, 51.4] 68.77 [66.29, 71.25] 71.68 [69.18, 74.19] 70.04 [67.48, 72.52]
enISEAR 23.51 [19.43, 26.89] 42.72 [40.26, 44.89] 55.33 [51.22, 59.41] 70.37 [66.63, 74.01] 79.94 [76.69, 83.14]

Figure 3 F1 score for each label for the out-of-domain datasets. Error bars represent confidence intervals
computed using bootstrapping with replacement. Missing bars correspond to F1 of 0

Figure 3 shows the F1 score for each class on the OOD datasets. In general, LEIA often
outperforms baselines across labels. LEIA is significantly better than the baselines for Hap-
piness and Sadness in the Universal Joy and TEC datasets, for all emotions in the enISEAR
dataset, and for all emotions except Fear and Sadness in the SemEval dataset. On the GoE-
motions dataset, LEIA is tied with NBSVM as the best method to detect Anger as F1 score
is not significantly different. The Fear class evaluation poses some challenges in this OOD
evaluation since evaluation samples for this class can be very small (e.g. 11 posts in Univer-
sal Joy and 77 in GoEmotions). In the case of Fear, LIWC performs significantly better than
the supervised approaches on GoEmotions, SemEval, and TEC. Recall that the dictionary
approach is based on a binary classification setting which is easier than a multiclass clas-
sification setting. Despite this, the performance of the dictionary approach is significantly
lower for Happiness. This trend is similar to the performance observed on the in-domain
test sets.
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We can conclude that LEIA shows a good generalization beyond the domain it was
trained on, first by achieving very high performance in enISEAR, the test closest to psycho-
logical methodology, but also achieving good performance for datasets that include posts
from other social media such as Twitter and Facebook. The lower performance recorded
for Fear on the out-of-domain test sets is not surprising as the model performance on
this category tends to be lower on the in-domain test sets too. LEIA achieves a consis-
tently high score for Happiness on the out-of-domain test sets despite the fact that it is
one of the least frequent categories in the training set. This suggests that it constitutes an
easier category for the model to recognize across domains than more nuanced negative
emotions.

Comparison with GPT-3.5 and GPT-4 models Table 6 shows the performance compar-
ison of LEIA-base, LEIA-large, GPT-3.5, and GPT-4 on a sample of 1000 examples for
each emotion category drawn from the user test split of the Vent dataset. LEIA-base and
LEIA-large perform better on all emotion classes of the Vent dataset than GPT-3.5 and
GPT-4. We show the performance comparison on the out-of-domain datasets in Table 7.
The F1 score per emotion category on each dataset is in Fig. 5 in the Appendix. GPT-3.5
and GPT-4 perform better than both LEIA-base and LEIA-large on the OOD datasets.
Our results are consistent with recent findings showing that smaller models tailored for
specific tasks perform better than large generative models such as GPT-3.5 and GPT-4,
especially when evaluated against datasets that are unlikely to be part of the training data
of GPT models [52, 53]. A visible trend from Table 7 is that GPT-3.5 and GPT-4 models
show higher performance on datasets on which LEIA-base and LEIA-large show relatively
higher performance and vice-versa. This may point to the level of difficulty of some of the
OOD datasets. Although GPT-3.5 and GPT-4 models perform better than our models
on the OOD datasets, we do not know whether this performance is clearly a capability of
the model or due to data contamination as these models are trained on massive datasets
which may include benchmark datasets [54]. Moreover, it has also been documented that
it is challenging for large language models to infer mental state from textual data [55].
As noted by the authors of [53], an avenue for future work is to explore approaches that

Table 6 Comparison of LEIA-base, LEIA-large, GPT-3.5, and GPT-4 on a random sample of Vent user
test split consisting of 1000 examples per emotion category

LEIA-base LEIA-large GPT-3.5 GPT-4

Affection 74.48 [72.30, 76.57] 75.67 [73.56, 77.72] 41.38 [38.09, 44.69] 37.43 [34.02, 40.78]
Anger 72.92 [70.76, 75.01] 72.98 [70.87, 75.00] 61.79 [59.16, 64.26] 66.82 [64.42, 69.17]
Fear 69.01 [66.59, 71.35] 70.26 [67.89, 72.55] 51.55 [48.53, 54.55] 60.86 [58.17, 63.48]
Happiness 77.69 [75.52, 79.77] 77.58 [75.38, 79.64] 67.69 [65.60, 69.77] 68.70 [66.61, 70.77]
Sadness 67.28 [65.00, 69.47] 68.00 [65.73, 70.22] 59.94 [57.79, 62.11] 64.00 [61.82, 66.18]

Average 72.28 [71.04, 73.50] 72.90 [71.67, 74.11] 56.47 [55.07, 57.90] 59.56 [58.20, 60.92]

Table 7 Macro-F1 of LEIA-base, LEIA-large, GPT-3.5, and GPT-4 on the out-of-domain test sets

LEIA-base LEIA-large GPT-3.5 GPT-4

Universal Joy 54.18 [48.79, 59.88] 54.17 [48.68, 59.84] 52.89 [47.8, 58.33] 56.43 [51.94, 60.9]
GoEmotions 46.31 [43.98, 48.72] 45.75 [43.45, 48.09] 59.06 [56.44, 61.67] 56.45 [53.97, 58.95]
TEC 43.87 [42.05, 45.61] 44.12 [42.34, 45.89] 52.66 [50.7, 54.59] 54.82 [52.96, 56.71]
SemEval 71.68 [69.18, 74.19] 70.04 [67.48, 72.52] 80.13 [77.9, 82.31] 81.72 [79.57, 83.81]
enISEAR 70.37 [66.63, 74.01] 79.94 [76.69, 83.14] 84.96 [81.96, 87.77] 89.97 [87.47, 92.32]
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Table 8 Area Under the Receiver Operating Characteristic Curve (AUC ROC) for polarity classification
on the out-of-domain datasets

enISEAR Universal Joy GoEmotions TEC SemEval

LIWC 0.829 [0.810, 0.852] 0.680 [0.650, 0.721] 0.826 [0.814, 0.842] 0.677 [0.661, 0.692] 0.881 [0.868, 0.892]
VADER 0.852 [0.829, 0.875] 0.678 [0.637, 0.725] 0.880 [0.875, 0.885] 0.651 [0.633, 0.664] 0.905 [0.898, 0.911]
LEIA-base 0.983 [0.975, 0.988] 0.883 [0.856, 0.912] 0.820 [0.806, 0.832] 0.684 [0.674, 0.701] 0.920 [0.911, 0.931]
LEIA-large 0.989 [0.986, 0.992] 0.861 [0.834, 0.883] 0.817 [0.798, 0.835] 0.641 [0.626, 0.652] 0.894 [0.885, 0.904]

combine large generative models with smaller domain-specific models that can be applied
efficiently and at scale.

Polarity classification benchmark Results on the out-of-domain datasets can be found in
Table 8. On 4 out of the 5 out-of-domain datasets LEIA-base and/or LEIA-large perform
better than the dictionary baselines: LIWC and VADER. LIWC and VADER show better
performance only on the GoEmotions dataset. Comparing LIWC and VADER, we find
that VADER performs better than LIWC on enISEAR, GoEmotions, and SemEval while
LIWC is superior on Universal Joy and TEC.

Error analysis We examine a random sample of 50 incorrect predictions from the user
test split (10 per label) of the Vent dataset. We find that majority of errors in the sample
can be categorized into the following cases:

1. Messages conveying an expectation of a positive outcome while the self-assigned
label has negative valence (e.g., I need a good online game). These cases represent
situations where the text is very similar to positive texts but subtle signals point
toward negative states.

2. Expressions of both positive and negative emotions at the same time. These are
assigned a single label by design but other labelling schemes could cope with mixed
emotions.

3. Use of figurative expressions such as humor or sarcasm that the model does not
recognize.

4. Very short posts that do not contain indications about the emotional state of the
author (e.g., going for a coffee) where additional context is required.

5. Few instances where we find the model prediction more plausible than the assigned
label.

As an additional form of error analysis, we assess whether our grouping of Vent tags into
emotion categories shown in Table 1 is realistic. For this, we examine the variation of
recall across tags within each emotion category. We compute the recall for each tag from
the prediction of one of our models, LEIA-base, on the user test split of the Vent dataset.
We consider the prediction a hit for a given tag when the model makes the correct emotion
prediction and a miss otherwise. We find that the recall for each tag within each group is
comparable ranging from about 0.6 to 0.8, which suggests that our grouping is reasonable.
The details of the recall score for each tag are in Fig. 6 in the Appendix.

Feature attributions We examine the salient features that contribute to the predictions
made by LEIA-base on a set of examples from the enISEAR dataset. We apply the Local In-
terpretable Model-agnostic Explanations (LIME) method for model interpretability [56],
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Figure 4 LIME explanations showing the feature importance for LEIA-base prediction on four examples taken
from the enISEAR dataset. The mask token is <mask >, shown with vertical lines in the figure

an attribution method for identifying salient features as n-grams of the classified text. Fig-
ure 4 shows four examples, one for each class of emotions in the enISEAR test set. The
first column shows the model confidence scores for each class supported by LEIA-base
and the text is colored according to which words contribute to the prediction.

We observe that for the first example, the model incorrectly predicts Affection as the
most likely label where the true label is Happiness, which is an error of a weaker kind since
enISEAR does not have an Affection label and both emotions are close in terms of valence.
The second highest class is Happiness and the prediction is positively based on words ex-
pressing high arousal and valence (e.g., “incredible”) and negatively based on the word
“worrying”. In the second example, the model also seems to use relevant words linked to
each other (e.g., “children” and “lied”) to make the correct prediction. The model correctly
predicts Sadness for the third example building on negative words, including terms linked
to property damage that caused an emotional loss. We observe that the scores for fear and
sadness are very close and much higher than for other classes. This seems plausible as the
first sentence in this example could be a fearful situation. The model prediction is Hap-
piness in the fourth example instead of Fear, which was the true label. Even though the
prediction relies on relevant features, the model seems to lack the commonsense knowl-
edge that cycling down a mountain can be scary and not necessarily a pleasant experience.

The last two cases suggest that the emotion tag for some of the posts is used as the main
medium to express the emotion, leaving the text to add other information. This is one of
the limitations of using Vent as a training dataset, as labels are part of the communication
and may sometimes be complementary or otherwise to the posts.

5 Discussion
We present LEIA, a language model in two sizes (LEIA-base and LEIA-large), that lever-
ages approaches for adapting pre-trained language models for emotion identification. We
show that using an emotion lexicon with task-adaptive pre-training, in this case focusing
on emotion words, is effective for improving model performance using BERTweet-base



Aroyehun et al. EPJ Data Science           (2023) 12:52 Page 15 of 21

and BERTweet-large language models. LEIA generalizes beyond Vent posts as it shows
better performance on texts written by users not included in its training data and future
time periods. It achieves a balanced performance across emotion labels despite their im-
balance in training data and this performance is also seen on out-of-domain texts for the
considered emotions except for Fear. These results are in part possible thanks to focusing
on a small set of emotions suggested by psychological research, as classifying the larger set
of mood labels in Vent [21] is a substantially harder task we did not tackle here. Also, the
Vent dataset, which despite being generated on a platform not as large as common ones
in research, e.g. Twitter and Reddit, has a sufficiently large scale that enables the models
to learn a broader range of emotional expressions.

The performance of LEIA-base is comparable to LEIA-large across tests in our bench-
mark with one notable exception: LEIA-large is substantially better for the enISEAR
dataset. This dataset is especially important given the psychological methodology used
to generate it, which allows us to compare the results of machine learning methods with
self-reported labels in a controlled setup. LEIA’s performance in enISEAR is especially
high, reaching F1 of 70 for LEIA-base and 79 for LEIA-large, showing a high level of psy-
chological validity, especially when compared to other methods in the benchmark that
achieve at most 55. LIWC and NRC generally achieve low F1 in all tests except SemEval,
which grants two notes. First, SemEval was generated by searching tweets with emotion-
bearing terms, easing the task for dictionary approaches when classifying emotions based
on similar word lists. Second, LIWC and NRC were not designed as an emotion classifi-
cation method at the scope of a social media post. LIWC is a more general text analysis
method that should be applied to longer texts and not necessarily for classification. We
added LIWC and NRC to contrast with common methods applied in the field, but our
comparison overstretches the applications for which these resources were designed.

On a sample of 1000 examples drawn from the user test split of Vent, LEIA-base and
LEIA-large surpass the performance of GPT-3.5 and GPT-4. On the OOD datasets, GPT-
3.5 and GPT-4 perform better than LEIA-base and LEIA-large. This finding is in line with
existing findings that show that smaller domain-specific models perform better than larger
general-purpose generative models. One issue with assessing the real capability of large
language models is the possibility of data contamination where benchmark datasets can
potentially be part of their training data. Large language models are often accessible via
Application Programming Interfaces (APIs) which make it easy in practice to use with its
attendant cost. However, rate limits and financial costs make it a less attractive option to
apply at scale. This is even complicated by the need to make repeated calls to the API when
the model does not follow the instructions provided in the prompt. LEIA-base and LEIA-
large are openly available and can be run efficiently at scale when needed. Our models
also provide an additional benefit, access to the confidence of the model predictions. This
can benefit downstream analyses or can be useful to know when to rely on the model
prediction. This is currently not possible by prompting existing large generative models.

Limitations While we show that our proposed models are effective, our experiments
span two model sizes with the same architecture. Future research should conduct exper-
iments on other pre-training approaches beyond masking as well as more efficient train-
ing techniques. In addition, we rely mostly on hyperparameter settings in the literature
and optimizing them could lead to better performance. However, this is computationally
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expensive and there might be unfavorable trade-offs between model performance and re-
sources. Another limitation is our focus mainly on English posts, providing no evidence
here of the potential of this approach for other languages. Furthermore, we study five emo-
tion labels guided by psychological research, but several competing representations mod-
els for emotion are available. Humans are able to classify a larger number of basic emotions
and can also quantify emotions in dimensional spaces, two open areas that can be explored
with more nuanced labeling schemes. While self-annotated datasets have the potential to
become the new gold standard beyond crowdworkers, the labeling scheme of the Vent
dataset is designed as part of its interface rather than as a psychometric measure applied
privately and not visible on the platform. This is still closer to general emotion expres-
sion than automatic labeling with emoji or hashtags, but models like LEIA-base or LEIA-
large can be substantially improved with psychological methods like experience sampling
[18] and with validated psychological scales to measure emotions in dimensional spaces
[57, 58]. This would have the added value of being applicable to studying more nuanced
emotion dynamics that need dimensional measurements and not just classification, for
example using social media data [6, 59, 60].

Broader impact and ethical considerations This work shares the same ethical concerns
with other emotion recognition systems as highlighted in [61]. Emotion detection models
should be used responsibly and special care should be taken when they are applied in new
scenarios, not only because of their possible lower performance but also due to possible
different privacy expectations with respect to emotions. We must note that we have no
way of estimating the demographic diversity of Vent users and it is very likely that the
model misses idiosyncrasies of emotional expression in minority groups and in cultures
not represented in the dataset. We acknowledge that we only consider one type of model
evaluation focusing on accuracy while there are several aspects such as bias, fairness, and
robustness that should be considered before a model is used in practice, especially when
guiding any decision-making.

6 Conclusion
LEIA is an emotion detection method that achieves a balanced performance across emo-
tions and generalizes across posts, users, and time. It shows satisfactory performance in
out-of-domain tests, especially when compared to self-annotated texts produced with psy-
chological methods. Beyond our validations, the language models within LEIA can be used
as pre-training resources for future applications that employ annotated data in other do-
mains, for example for tweets in particular contexts.

We named LEIA after Princess Leia from Star Wars, following the tradition of emo-
tion method names set out by LIWC [62] (pronounced Luke, as in Luke Skywalker), and
VADER [51] (as in Darth Vader). These three methods have a similar purpose but very dif-
ferent approaches that align with concurrent developments in text analysis. We published
openly our models in HuggingFace (https://huggingface.co/LEIA) including both the clas-
sifier LEIA-base (LEIA-large) and the corresponding emotion-aware language model with
the hope that they can be used in future work in emotion detection from text.

https://huggingface.co/LEIA
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Appendix
Comparison of intermediate models Recall that we average the parameters of two model
variants. A BERTweet-base model fine-tuned on the labeled Vent training set and a
BERTweet-base with eMLM pre-training before fine-tuning to derive LEIA-base. We fol-
low the same approach for BERTweet-large to derive LEIA-large. Here, we compare the
performance of each of these models on in-domain and OOD test sets. Results in Table 9
show that LEIA-base and LEIA-large have the highest average rank across in-domain test
sets. We also see a similar pattern in Table 10 for the OOD datasets. This suggests that
taking an average of model parameters contribute to the generalization of LEIA-base and
LEIA-large. In addition, the eMLM pre-training step is also effective given that the mod-
els with this pre-training step rank second across both in-domain and out-of-domain test
sets.

Comparison of LEIA-base, LEIA-large, GPT-3.5, and GPT-4 on the OOD datasets Fig-
ure 5 provides the detailed F1 score per emotion category on each of the OOD datasets
for LEIA-base, LEIA-large, GPT-3.5, and GPT-4.

Recall per Vent tag within each emotion category In order to assess whether our grouping
of Vent tags into emotion categories shown in Table 1 is realistic, we compute the recall
for each tag from the prediction of one of our models, LEIA-base, on the user test split.
Figure 6 depicts the recall for each group. Overall, we find that the recall for each tag within
each group is comparable ranging from about 0.6 to 0.8. This suggests that our grouping
is reasonable.

Table 9 Comparison of performance of intermediate models on in-domain test sets

User Temporal Random Average
rank

BERTweet-base 72.82 [72.72, 72.91] 72.85 [72.77, 72.95] 72.92 [72.81, 73.0] 3.00
BERTweet-base+eMLM 72.87 [72.79, 72.97] 72.91 [72.82, 73.00] 73.00 [72.92, 73.09] 2.00
LEIA-base 72.92 [72.82, 73.02] 73.03 [72.95, 73.11] 73.02 [72.94, 73.12] 1.00

BERTweet-large 73.03 [72.94, 73.11] 73.00 [72.91, 73.12] 73.19 [73.09, 73.28] 3.00
BERTweet-large+eMLM 73.19 [73.11, 73.28] 73.14 [73.05, 73.23] 73.37 [73.27, 73.46] 2.00
LEIA-large 73.37 [73.28, 73.46] 73.43 [73.34, 73.53] 73.57 [73.48, 73.66] 1.00

Table 10 Performance comparison of intermediate models on out-of-domain datasets

Universal Joy GoEmotions TEC SemEval enISEAR Average
rank

BERTweet-base 52.40 [47.01, 57.99] 47.16 [44.74, 49.61] 43.68 [41.90, 45.41] 69.70 [67.14, 72.25] 67.23 [63.30, 71.06] 2.60
BERTweet-base+eMLM 52.07 [46.85, 57.61] 46.26 [43.89, 48.66] 42.43 [40.64, 44.16] 70.45 [67.90, 72.97] 74.79 [71.24, 78.22] 2.00
LEIA-base 54.18 [48.79, 59.88] 46.31 [43.98, 48.72] 43.87 [42.05, 45.61] 71.68 [69.18, 74.19] 70.37 [66.63, 74.01] 1.40

BERTweet-large 51.87 [46.77, 57.32] 45.51 [43.14, 47.94] 44.08 [42.28, 45.85] 68.75 [66.20, 71.31] 80.49 [77.18, 83.72] 2.40
BERTweet-large+eMLM 52.28 [47.01, 57.79] 46.94 [44.58, 49.31] 43.78 [41.98, 45.57] 69.02 [66.47, 71.55] 80.09 [76.77, 83.37] 2.00
LEIA-large 54.17 [48.68, 59.84] 45.75 [43.45, 48.09] 44.12 [42.34, 45.89] 70.04 [67.48, 72.52] 79.94 [76.69, 83.14] 1.60
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Figure 5 Comparison of F1 score for each label on the out-of-domain datasets between LEIA and GPT
models. Error bars represent confidence intervals computed using bootstrapping with replacement

Figure 6 Recall for each emotion tag within our categorization based on the predictions of LEIA-base.
Emotion tags are in increasing order of occurrence
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29. Gururangan S, Marasović A, Swayamdipta S, Lo K, Beltagy I, Downey D, Smith NA (2020) Don’t stop pretraining: adapt
language models to domains and tasks. In: ACL, pp 8342–8360

30. Levine Y, Lenz B, Lieber O, Abend O, Leyton-Brown K, Tennenholtz M, Shoham Y (2021) PMI-Masking: principled
masking of correlated spans. In: ICLR

31. Sosea T, Caragea C (2021) eMLM: a new pre-training objective for emotion related tasks. In: ACL, pp 286–293
32. Kumar A, Raghunathan A, Jones RM, Ma T, Liang P (2022) Fine-tuning can distort pretrained features and

underperform out-of-distribution. In: ICLR
33. Howard J, Ruder S (2018) Universal language model fine-tuning for text classification. In: ACL, pp 328–339
34. Lamprinidis S, Bianchi F, Hardt D, Hovy D (2021) Universal joy a data set and results for classifying emotions across

languages. In: Proceedings of the eleventh workshop on computational approaches to subjectivity, sentiment and
social media analysis, pp 62–75

35. Malko A, Paris C, Duenser A, Kangas M, Molla D, Sparks R, Wan S (2021) Demonstrating the reliability of self-annotated
emotion data. In: Proceedings of the seventh workshop on computational linguistics and clinical psychology:
improving access, pp 45–54

36. Ekman P (1999) Basic emotions. In: Handbook of cognition and emotion, pp 45–60
37. Scherer KR (2005) What are emotions? And how can they be measured? Soc Sci Inf 44(4):695–729
38. Pennebaker JW, Boyd RL, Jordan K, Blackburn K (2015) The development and psychometric properties of liwc2015.

Technical report
39. Scherer KR, Wallbott HG (1994) Evidence for universality and cultural variation of differential emotion response

patterning. J Pers Soc Psychol 66(2):310
40. Mohammad S (2012) # emotional tweets. In: SemEval, pp 246–255
41. Mohammad S, Bravo-Marquez F, Salameh M, Kiritchenko S (2018) SemEval-2018 task 1: Affect in tweets. In: SemEval,

pp 1–17
42. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: a robustly

optimized bert pretraining approach. arXiv preprint. arXiv:1907.11692
43. Mohammad S, Turney P (2010) Emotions evoked by common words and phrases: using Mechanical Turk to create an

emotion lexicon. In: NAACL HLT workshop, pp 26–34
44. Mohammad SM, Turney PD (2013) Crowdsourcing a word-emotion association lexicon. Comput Intell 29(3):436–465
45. Loshchilov I, Hutter F (2019) Decoupled weight decay regularization. In: International conference on learning

representations. https://openreview.net/forum?id=Bkg6RiCqY7
46. Wortsman M, Ilharco G, Gadre SY, Roelofs R, Gontijo-Lopes R, Morcos AS, Namkoong H, Farhadi A, Carmon Y,

Kornblith S et al (2022) Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. In: International conference on machine learning, pp 23965–23998. PMLR

47. Gunel B, Du J, Conneau A, Stoyanov V (2021) Supervised contrastive learning for pre-trained language model
fine-tuning. In: International conference on learning representations. https://openreview.net/forum?id=cu7IUiOhujH

48. Boyd RL, Ashokkumar A, Seraj S, Pennebaker JW The development and psychometric properties of liwc-22
49. Wang S, Manning C (2012) Baselines and bigrams: simple, good sentiment and topic classification. In: ACL, pp 90–94
50. Maiya AS (2022) ktrain: a low-code library for augmented machine learning. J Mach Learn Res 23(158):1–6
51. Hutto C, Gilbert E (2014) Vader: a parsimonious rule-based model for sentiment analysis of social media text. In:

Proceedings of the international AAAI conference on web and social media, vol 8, pp 216–225
52. Rathje S, Mirea D-M, Sucholutsky I, Marjieh R, Robertson C, Van Bavel JJ (2023) GPT is an effective tool for multilingual

psychological text analysis. PsyArXiv preprint https://osf.io/preprints/psyarxiv/sekf5/
53. Ziems C, Held W, Shaikh O, Chen J, Zhang Z, Yang D (2023) Can large language models transform computational

social science? arXiv preprint. arXiv:2305.03514
54. Jacovi A, Caciularu A, Goldman O, Goldberg Y (2023) Stop uploading test data in plain text: Practical strategies for

mitigating data contamination by evaluation benchmarks. arXiv preprint. arXiv:2305.10160

http://arxiv.org/abs/arXiv:1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=cu7IUiOhujH
https://osf.io/preprints/psyarxiv/sekf5/
http://arxiv.org/abs/arXiv:2305.03514
http://arxiv.org/abs/arXiv:2305.10160


Aroyehun et al. EPJ Data Science           (2023) 12:52 Page 21 of 21

55. Sap M, Le Bras R, Fried D, Choi Y (2022) Neural theory-of-mind? On the limits of social intelligence in large LMs. In:
Proceedings of the 2022 conference on empirical methods in natural language processing, pp 3762–3780

56. Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In: KDD,
pp 1135–1144

57. Watson D (2000) Mood and Temperament. Guilford, New York
58. Posner J, Russell JA, Peterson BS (2005) The circumplex model of affect: an integrative approach to affective

neuroscience, cognitive development, and psychopathology. Dev Psychopathol 17(3):715–734
59. Pellert M, Schweighofer S, Garcia D (2020) The individual dynamics of affective expression on social media. EPJ Data

Sci 9(1):1
60. Eichstaedt JC, Weidman AC (2020) Tracking fluctuations in psychological states using social media language: a case

study of weekly emotion. Eur J Pers 34(5):845–858
61. Mohammad SM (2022) Ethics sheet for automatic emotion recognition and sentiment analysis. Comput Linguist

48(2):239–278
62. Chung CK, Pennebaker JW (2012) Linguistic inquiry and word count (liwc): pronounced “luke,”... and other useful

facts. In: Applied natural language processing: identification, investigation and resolution, pp 206–229. IGI Global.
https://doi.org/10.4018/978-1-60960-741-8.ch012

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.4018/978-1-60960-741-8.ch012

	LEIA: Linguistic Embeddings for the Identiﬁcation of Affect
	Abstract
	Keywords

	Introduction
	Related work
	Learning representations for affect
	Fine-tuning strategies and model generalization
	Emotion classiﬁcation datasets

	Experimental setup
	Datasets
	The Vent dataset
	In-domain evaluation datasets
	Out-of-domain evaluation datasets

	Models
	Model design and pre-training
	Model ﬁne-tuning with labeled data
	Baselines
	Polarity benchmark
	Comparison with GPT models


	Results and analysis
	In-domain results
	Out-of-domain results
	Comparison with GPT-3.5 and GPT-4 models
	Polarity classiﬁcation benchmark
	Error analysis
	Feature attributions

	Discussion
	Limitations
	Broader impact and ethical considerations

	Conclusion
	Appendix
	Comparison of intermediate models
	Comparison of LEIA-base, LEIA-large, GPT-3.5, and GPT-4 on the OOD datasets
	Recall per Vent tag within each emotion category

	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


