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Abstract
Susceptibility to infectious diseases such as COVID-19 depends on how those
diseases spread. Many studies have examined the decrease in COVID-19 spread due
to reduction in travel. However, less is known about how much functional geographic
regions, which capture natural movements and social interactions, limit the spread of
COVID-19. To determine boundaries between functional regions, we apply
community-detection algorithms to large networks of mobility and social-media
connections to construct geographic regions that reflect natural human movement
and relationships at the county level in the coterminous United States. We measure
COVID-19 case counts, case rates, and case-rate variations across adjacent counties
and examine how often COVID-19 crosses the boundaries of these functional regions.
We find that regions that we construct using GPS-trace networks and especially
commute networks have the lowest COVID-19 case rates along the boundaries, so
these regions may reflect natural partitions in COVID-19 transmission. Conversely,
regions that we construct from geolocated Facebook friendships and Twitter
connections yield less effective partitions. Our analysis reveals that regions that are
derived from movement flows are more appropriate geographic units than states for
making policy decisions about opening areas for activity, assessing vulnerability of
populations, and allocating resources. Our insights are also relevant for policy
decisions and public messaging in future emergency situations.
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1 Introduction
1.1 Motivation
Coronavirus disease 2019 (COVID-19) has caused over 1,100,000 deaths and more than
100 million infections in the United States and over 6.9 million deaths and more than
750 million cases worldwide [17, 61]. Although vaccines help mitigate the harmful ef-
fects of the disease, in 2020 and early in 2021, non-pharmaceutical interventions (NPIs)
were the primary method to protect individuals from exposure to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19. These interventions
included formal shelter-in-place rules and guidelines, facility closures, limited seating in
restaurants, reduction of interactions through physical distancing (i.e., ‘social distancing’),
and travel-restriction policies to reduce mobility and transmission [20]. Such NPIs were
generally effective [57].
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In the United States, policies that invoke NPIs are typically administered at the state
level. This has resulted in friction in local communities that seek to impose different (and
often more stringent) standards than other areas of their state [3, 16, 29, 42]. To avoid
spillovers of COVID-19, people were strongly advised (or even required) to stay within
a local region for their daily activities [18, 41, 69]. However, when a local region (e.g., a
metropolitan area) spans multiple states or experiences different risk levels than the rest
of a state, it may be subject to conflicting policies and guidelines. To obtain administrative
units for which it is reasonable to apply homogeneous NPI policies, we seek to construct
regions that capture core geographies of social and movement behavior. We expect the
spread of COVID-19 across these regions to be less pronounced than its spread across
states [68, 77].

1.2 Background and related work
The objective of defining ‘functional’ geographic regions that may not follow administra-
tive boundaries is not new [14]. It has deep theoretical roots in regional science, economic
geography, and human geography [48, 60, 62]. Defining regions that are based on news
markets, vacation trips, telecommunications, commutes, and migration [13, 33, 36, 54]
has been a common practice for decades [25, 26, 33, 39]. More recently, trips from mobile
phones and Global Positioning System (GPS) traces, flights, and social-media relation-
ships have been used to define regions [12, 35, 43, 47, 49, 51, 60]. Regardless of the data
source, such constructed regions have rarely been implemented in practice for policy pur-
poses.

The COVID-19 pandemic has elicited new arguments for the use of functional regions
for policy implementation [1, 6, 15, 32] and new computational experiments to delin-
eate such regions and test whether or not their internal populations experience similar
COVID-19 case rates over time. Hou et al. [43] divided two Wisconsin counties into re-
gions using the WalkTrap community-detection algorithm on SafeGraph mobility data.
These regions yielded effective boundaries for COVID-19 transmission, with about half
of the infections occurring within the regions. Using SafeGraph trip data in California,
Chang et al. [18] derived effective regions using a method that was based on minimum
k-cuts. In another recent paper, adams et al. [1] defined mobility regions in Colorado us-
ing movement data. They concluded that their constructed regions often aligned with the
regions in Colorado’s county-based ‘jurisdictional zones’ for COVID-19 policy adminis-
tration, but with misalignments that may be useful to evaluate potential changes to these
regions. Buchel et al. [15] derived regions from SafeGraph data (at the level of census
block groups in the U.S.) by detecting communities with modularity maximization. They
observed that these regions often cross state borders.

Several researchers have observed that functional regions often persist substantially
over time. Using Facebook movement patterns in the United Kingdom, Gibbs et al. [32]
detected regions using the InfoMap community-detection algorithm. They found that re-
gions evolved with time but did not change significantly after local authorities invoked
NPIs. Using the same data set, Schindler et al. [67] derived communities that generally
followed administrative regions but were smaller during periods with travel restrictions.
In a study of commute-based regions in Austria, Iacus et al. [44] observed similar within-
region rates of COVID-19 infections from week to week, including weeks with lockdown
events.
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Some models to forecast disease incidences in different geographic areas, such as the
GLobal Epidemic and Mobility (GLEaM) model [8], incorporate commuting and flights
to simulate connectivity between spaces that are not geographically adjacent. In the con-
text of COVID-19, the GLEaM model has been used to estimate retroactive pathways of
transmission that occurred before testing strategies were in place [24].

1.3 Capturing geographic disease dynamics
To assess the ability of functional geographic regions to capture cohesive areas with high
COVID-19 case rates, it is desirable to know the transmission patterns of SARS-CoV-
2. However, modeling the transmission of COVID-19 infections in networks of individ-
uals is complicated by asymptomatic transmissions and other factors [5]. Phylogenetic
strains of SARS-CoV-2 indicate that the virus’s subsequent mutations, such as the Delta
variant, initially tended to stay within concentrated geographic regions [38]. However, as
mutated variants of SARS-CoV-2 propagated, geographic transmission paths became too
widespread to pinpoint.

Contact-tracing technologies that record geographic traces of infected individuals [27]
have had mixed results because of underdeveloped technologies, uneven participation lev-
els from individuals, and lack of administrative organization and oversight [42]. Despite
a lack of information on the precise spatial transmission of SARS-CoV-2, one can assess
how different sets of regional boundaries act as informal barriers to disease transmission.
We posit that regions that one obtains from human behavior may help explain the spa-
tiotemporal landscape of COVID-19 case rates (as in [43]).

1.4 Our approach
We investigate the extent to which boundaries that are based on five different human-
network regions are able to ‘contain’ COVID-19 cases more effectively—with lower
COVID-19 case rates and smaller case counts between regions—than state boundaries
in the coterminous United States. We construct the human-network regions by detecting
communities in five county-level networks (commutes, GPS-based trips, migration, Twit-
ter connections, and Facebook friendships). The state boundaries correspond to the 48
coterminous states and Washington, D.C., yielding 49 total entities. Our results include
(1) descriptive statistics of COVID-19 dynamics (cases, mutual case rates, and case-rate
differences) between and within different types of regions, (2) a comparison of actual
COVID-19 dynamics in our constructed regions and states to those of a random model
of geographically-contiguous regions, and (3) an examination of temporal coordination
within regions using Granger causality.

We expect to obtain large case rates within our functional geographic regions, with
low transmission activity across regional boundaries. We also investigate whether case
rates are more homogeneous within regions than between regions. Because cohesive
metropolitan areas often straddle borders, we posit that the region boundaries that we
construct from human-mobility dynamics will capture natural disease-transmission bot-
tlenecks more effectively than social-media-based regions or administrative boundaries
such as states.1

1Commutes and GPS traces directly indicate movement, whereas social-media networks encode proclivities to spread
information. However, because social-media relationships are often correlated with networks of movement [73], data from
them may still provide a heuristic indication of appropriate boundaries.



Andris et al. EPJ Data Science           (2023) 12:60 Page 4 of 22

By determining functional geographic regions for the management of the spatial trans-
mission of a disease, we suggest flexible alternatives to using states as administrative units
for policy implementation (as also articulated in [18]). Because these proposed alternatives
are based on human behavior, they can help limit disease transmission while permitting
some natural activity (such as social visits and travel).

1.5 Outline of our paper
Our paper proceeds as follows. In Sect. 2, we discuss the COVID-19 case data sets that we
use in our study, our human-behavior networks, and our methods of analysis. In Sect. 3,
we describe our results, which detail the types of regions that have the least COVID-19
spread across boundaries, and obtain a set of consensus regions. In Sect. 4, we summa-
rize our work, discuss the implications of our work in the context of implementing re-
gions for public policy, and describe limitations of our work. In the Appendix, we give
more information about the similarities between networks, the similarities between their
associated regions, and the results of various community-detection methods. We also
show maps of our regions. We provide an online tool to explore consensus regions at
https://doi.org/10.6084/m9.figshare.14071439.

2 Data and methods
2.1 Data sets and data preparation
We construct regions from five data sets that encode different types of interactions be-
tween people in the 3108 counties (i.e., nodes) of the coterminous United States. From
each of these data sets, we construct an associated weighted network. We also use an un-
weighted county-adjacency network Ga and associate COVID-19 case data with the edges
of Ga. We treat the five networks that we use to create the regions as independent vari-
ables, and we treat the COVID-19 data on the edges of Ga as an outcome variable. We
only consider COVID-19 case data across counties that are geographically adjacent.

See Fig. 1 for a schematic illustration of our approach.

2.1.1 Movement and social-network data
In each of the five human-behavior networks, a node represents a county and an edge sig-
nifies some type of mobility or social-media connection between two counties. In Table 1,
we summarize basic statistical properties of these networks and the county-adjacency net-
work. In each of the human-behavior networks, we weight the edges by the number2 of in-
teractions between people in pairs of counties. The edge weights are sums of bidirectional
flows (for movement networks) or connections (for social-media networks) between two
counties. We allow self-edges, which we weight based on the number of interactions with
origins and destinations in the same county. Our Twitter and Facebook networks do not
include all counties, as some counties’ populations do not have associated accounts or
activity on these networks.

We obtain commute data from the U.S. Census LODES3 data set of residence–workplace
characteristics for the year 2015 [76]. Each flow represents commutes from home to work

2For all data except for Facebook friendships, the edge weights are positive integers. For the Facebook friendship network,
the edge weight between two counties is the Social-Connectedness Index (SCI) between those counties. The SCI is the
number of Facebook friendships between the accounts in two counties divided by the product of the numbers of accounts
in those counties [7].
3The acronym LODES stands for LEHD Origin–Destination Employment Statistics, and the acronym LEHD stands for
Longitudinal Employer–Household Dynamics.

https://doi.org/10.6084/m9.figshare.14071439
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Figure 1 Schematic illustration of our approach to obtain human-network regions through network
partitioning. Each network-partitioning method has an input of (A) a network of movement flows or
social-media connections between U.S. counties. We apply a community-detection algorithm to determine
(B) a set of distinct regions. We use (C) a network Ga of county adjacencies and (D) distinguish edges between
regions (Eb , in yellow) from edges within regions (Ew , in black). (E) We then weight all edges by COVID-19 case
counts, mutual case rates, and case-rate differences. (F) We measure these values both between regions (in
yellow) and within regions

Table 1 Basic statistics of our networks for the coterminous United States

Network Time period Nodes (n) Edges (e)
(undirected)

Sum of the edge
weights (×106)

Commutes 2015 3108 105,702 142.47
Facebook Undisclosed 3102 4,812,753 16,812.8
Migration 2013–2017 3108 213,059 43.88
Trips January–February 2020 3108 2,126,578 2669.2
Twitter 2014–2015 3085 267,712 5.39
States (by county) 2018 3108 9120 N/A

at the census block level. We obtain migration data from American Community Survey
(ACS) estimates of county-to-county migration flows for a 5-year period (2013–2017) [75].
The flow estimates approximate the annual numbers of movers between counties for the
5-year period of the data.

We obtain GPS trace data for January and February 2020 from SafeGraph [66]. The ori-
gins of the mobile-phone traces are census block groups,4 and the destinations are points
of interest (PoIs) at which travelers end a trip. We track the origin county (i.e., the county
that contains the census block group) and the destination county of each trip. (We do not
track intermediate counties.) Each trip is associated with a flow from one county to an-
other (or is an internal trip within a county). We use data from 1 January 2020 through 29
February 2020 because they are recent months with business-as-usual (and pre-pandemic)
movement landscapes.

4A census block group is an areal unit that the U.S. Census uses for demographic data.
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To obtain social-media regions, we use data from Facebook and Twitter (which is now
called X). We use Facebook’s Social-Connectedness Index (SCI), which is the number of
Facebook friendships between accounts in two counties divided by the product of the
numbers of accounts in those counties [7]. The Twitter data consists of accounts with re-
ciprocal mentions (i.e., ‘co-mentions’) between 1 January 2014 and 31 December 2015.
We obtained reciprocal account pairs from geolocated tweets that we collected using the
Twitter Streaming API [74]. Although co-mentions do not imply personal ties between
Twitter users, reciprocal mentions between two accounts do indicate personal communi-
cations and possible interpersonal relationships [49].

In Table 6 in the Appendix, we indicate the correlations between the human-behavior
networks.

2.1.2 Assigning COVID-19 cases using a county-adjacency network
We obtain COVID-19 case counts from The New York Times COVID-19 API [59]. We
use data from the week ending 31 May 2020 through the week ending 1 May 2022. To
determine the case rates per county, we obtain 2018 population data by county from the
U.S. Centers for Disease Control and Prevention (CDC) [17].

To examine local SARS-CoV-2 transmission, we create a county-adjacency network Ga.
The nodes of Ga are the individual centroids of the 3108 counties in the coterminous
United States. Each undirected edge of Ga connects geographically-adjacent counties (i.e.,
counties that share a physical boundary). There are 9120 edges in total. We represent
COVID-19 cases between adjacent counties by calculating case counts (C), mutual case
rates per 1000 individuals (CR), and case-rate differences (CD). We assign these values to
each edge of a network as follows. The case count C of a pair of counties (i.e., nodes) is
the sum of their numbers of cases. The mutual case rate CR of two counties is equal to the
sum of the case counts of the counties multiplied by 1000 and divided by the sum of their
resident populations. The case-rate difference CD between two counties is equal to the
difference between the individual case rates of those counties. We put more credence into
mutual case rates and case-rate differences than into case counts because (1) cases are
population-dependent and (2) our case counts can overcount cases. Placing case-count
data on edges counts COVID-19 cases multiple times when a node participates in multi-
ple edges.

We use all 3108 counties in the coterminous U.S. as nodes when constructing regions.
However, when we examine the COVID-19 statistics of these regions, we omit five coun-
ties (New York, Queens, Kings, Bronx, and Richmond) that correspond to the five bor-
oughs of New York City, as these counties are not included in The New York Times COVID-
19 data set. These nodes participate in only seven total edges, so we omit them in our
statistical calculations.

2.2 Constructing regions
2.2.1 Regional delineation using community detection
We detect communities in each of the five human-behavior networks. A ‘community’ of a
network is a dense set of nodes that is connected sparsely to other dense sets of nodes [58].
We obtain different numbers of regions and different community assignments of counties
for different community-detection methods. We use community detection to obtain hard
partitions, so we assign each county (i.e., each node) in a network to exactly one commu-
nity.
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Table 2 Basic summary statistics of our constructed regions. We give the number n(r) of geographic
regions, the maximized modularity Qmax , the total length d of the internal boundaries, the number
Eb of edges between regions, the number Ew of edges within regions, and d/Eb

Region type n(r) Qmax d (in km) Eb Ew d/Eb

Commutes 75 0.95 55,501 1714 7406 32.63
Facebook 33 0.87 33,587 1166 7954 28.98
Migration 28 0.80 30,413 1080 8040 28.42
Trips 52 0.91 42,951 1339 7781 32.37
Twitter 26 0.74 29,674 1299 7821 23.27
States 49 N/A 36,400 1261 7859 29.14
Geographic randommodel 44 N/A N/A 1338 7782 N/A

The values of Ew and Eb for the geographic random model are means of 1000 network instantiations.

We measure the quality of our network partitions by calculating the modularity [28, 64]
of these partitions. The modularity of a partition of a network is Q =

∑
�(e�m – b�

2). The
quantity e�m is the fraction of a network’s total edge weight that connects communities
� and m, and b� =

∑
m e�m is the fraction of the total edge weight that is in or attached

to community �. The maximum value of modularity quantifies the amount of compart-
mentalization of a network [28, 64]. One expects Q to be large for a network partition
with few edges or small total edge weight between its communities. We examine five dif-
ferent community-detection algorithms. We use the Louvain locally greedy method for
modularity maximization [11], an old greedy method for modularity maximization [21],
InfoMap [65], and WalkTrap [63] in the software package igraph (version 1.3.5) in the R
computing environment [22]. (In igraph, the methods have the names cluster_louvain,
cluster_fast_greedy, cluster_infomap, and cluster_walktrap, respectively.) We also use the
REDCAP algorithm, which partitions a network into communities using a spatial mini-
mum spanning tree [37]. Our main results use communities from the Louvain method,
as this method yielded the largest values of maximized modularity Qmax. We show these
modularity values in Table 2. We summarize our community-detection results for all five
approaches in Table 9 in the Appendix.

2.2.2 Geographic random regions
To supplement our comparison of the five human-network regions to states, we construct
1000 sets of geographic random regions. Each set has 44 polygons. The number 44 is the
closest integer to 43.83, which is the mean number n(r) of regions of the human-network
regions and the states. See Table 2 for all values of n(r). To construct these regions, we
first select 44 county centroids (i.e., nodes of the county-adjacency matrix Ga) uniformly
at random from the set of counties. We then generate a Voronoi diagram from these 44
county centroids; this diagram covers the coterminous U.S. with 44 Voronoi polygons. We
assign county centroids to the same region if they are in the same Voronoi polygon. We
repeat this process 1000 times (i.e., for 1000 sets of 44 randomly-generated centroids).
This yields 1000 sets of geographic random regions; in each set, each node belongs to one
of the 44 regions. We report mean values of our calculations across these 1000 networks.

2.3 Methods for statistical analysis
2.3.1 Statistics and permutation tests for COVID-19 cases
We report statistics for case counts C, case rates CR, and case-rate differences CD for the
five human-network regions, the states, and the geographic random regions. We then per-
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form permutation tests in which we shuffle the edge labels (i.e., whether they are within-
region edges or between-region edges) uniformly at random. For each permutation and
for the real data, we then sum the case values (either C, CR, or CD) over the within-region
edges. We run the permutation test 1000 times and thereby produce a distribution of sums
for within-region edges. We compare this distribution to the actual sum of case values for
within-region edges. We perform a separate permutation test for each of the three types
of case values and for each region type.

2.3.2 Granger-causality tests for case rates
We examine Granger causality to assess whether or not the time series of COVID-19 case
rates of a county successfully infers the time series of COVID-19 case rates of adjacent
counties. A Granger-causality test produces a p-value for the null hypothesis that the
COVID-19 case rate of a county does not improve inference of the COVID-19 case rate
of an adjacent county using lagged values of the case rates. Because many public tracking
services of COVID-19 data employ 7-day moving averages (e.g., the Georgia Department
of Public Heath [31] and The New York Times [59]) and the CDC reports case data and
related data in weekly intervals [17], we use a lag of one week.

Disease transmission can occur in either direction (or in both directions) between adja-
cent counties, so we calculate Granger causality twice for each pair of counties by switch-
ing the dependent-variable and independent-variable roles of the two time series in a test.

We perform our analysis in Esri ArcGIS and the R statistical computing environment.

3 Results
3.1 Constructed regions
We use the Louvain method [11] of maximizing the modularity objective function to de-
tect communities and create regions in our five human-behavior networks. Of these five
networks, the commute network yields the most regions (with n(r) = 75 regions), and the
Twitter and migration networks yield the fewest (with 26 and 28 regions, respectively). See
Table 2 for basic statistics of our networks, Fig. 2 for visualizations of state and human-
region boundaries, and Fig. 1 for an illustration of our pipeline to examine case counts,
case rates, and case-rate differences between and within regions. The commute network
and GPS-trip network result in the largest values of maximized modularity Qmax. We
also detect communities in the networks from the geographic random model. In the ge-
ographic random model, there are 1000 different sets of regions, with 44 distinct regions
in each network. For this model, we report mean values of the numbers of edges between
and within regions.

We use the county-adjacency network Ga to track when pairs of adjacent counties are
assigned to the same region and when they are assigned to different regions. We denote
the total number of edges that cross between two regions by Eb, and we denote the to-
tal number of edges that remain within a region by Ew. (The sum of Eb and Ew is 9120.)
Because the geometry (specifically, the area and shape) of the regions and the numbers
n(r) of regions are different in each network, some sets of regions provide more oppor-
tunities for crossings. The number n(r) of regions correlates both with the length d of
the internal boundaries and with the number Eb of between-region crossings. The Pear-
son product-moment correlation coefficients are f (Eb, d) ≈ 0.986, f (Eb, n(r)) ≈ 0.999, and
f (d, n(r)) ≈ 0.997. The ratio d/Eb is the length (in kilometers) of the internal boundaries
per between-region crossing. We calculate that d/Eb is roughly 30 kilometers (see Table 2).
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Figure 2 State boundaries and five human-region boundaries in the coterminous United States. We
algorithmically detect the human-region boundaries from human-behavior networks using the Louvain
method [11] of modularity maximization. We show the numbers of regions in parentheses

3.2 COVID-19 cases between and within regions
We discuss mutual case rates (which we denote by CRb for between-region edges and
by CRw for within-region edges) and case-rate differences (which we denote by CDb for
between-region edges and by CDw for within-region edges) on edges. We report case rates
as cases per 1000 individuals.

3.2.1 Region-type variation in case counts, case rates, and case-rate differences
We first measure the COVID-19 case counts between regions (Cb) and within regions
(Cw). We expect to obtain larger case counts for region types (e.g., migration regions)
with larger regions. The commute regions, Twitter regions, and migration regions have
the largest differences between within-region case counts and between-region case counts
(see Table 3), suggesting that these types of partitions effectively demarcate locations with
large case counts. The commute regions have the largest within-region case counts, fol-
lowed by the Twitter regions and then the migration regions. The case rates between re-
gions (CRb) are lowest for the commute and trip regions (indicating a low penetration of
cases per capita across the boundaries) and are highest for the Facebook and migration
regions. The case rates within regions (CRw) are highest for commute and trip regions,
and they are lowest for the Facebook regions.
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Table 3 Mean values of COVID-19 case counts (Cb and Cw ), case rates (CRb and CRw ), and
case-rate differences (CDb and CDw ) between and within regions, along with the differences (�C,
�CR, and �CD) in these values. The difference is positive when a between-region value is larger,
and it is negative when a within-region value is larger. The rightmost column is an odds ratio. The
case data spans the week ending 31 May 2020 through the week ending 1 May 2022. The values of
the COVID-19 case data are means of the weekly values. It is desirable for case rates (respectively,
case-rate differences) to be large (respectively, small) within regions and to be small (respectively,
large) between regions

Region type Cb Cw �C CR∗
b CR∗

w �CR CDb CDw �CD (Cb/Cw )
(Eb/Ew )

Commutes 2525 3464 –939 17.19 17.36 –0.17 8.62 7.40 1.21 3.15
Facebook 3478 3260 218 17.69 17.27 0.42 8.87 7.45 1.42 7.27
Migration 2162 3439 –1277 17.31 17.33 –0.02 9.79 7.34 2.44 4.69
Trips 2532 3418 –886 17.25 17.34 –0.09 8.58 7.47 1.11 4.32
Twitter 2329 3445 –1116 17.20 17.35 –0.14 10.21 7.21 3.00 4.13
States 3041 3327 –286 17.19 17.35 –0.16 9.10 7.40 1.71 5.71
Geographic randommodel 3322 3282 40 17.32 17.33 –0.01 7.53 7.65 –0.12 5.89

* Case rates per 1000 individuals.

The case-rate differences within regions (CDw) are smallest for commutes and second
smallest for states (see Table 3), indicating that counties in the same region for these two
types of networks have similar case rates. For case-rate differences between regions (CDb),
where larger values indicate more case-rate heterogeneity, we find that the migration re-
gions and states (followed by the commute regions) are the most effective demarcators.
The Facebook and trip regions are the least effective human-network partitions with re-
spect to CDb. The large differences in case rates across states seemingly suggest that states
are more effective partitions than we posited initially. The geographic random model has
the least pronounced differences in COVID-19 case counts, case rates, and case-rate dif-
ferences between versus within regions, indicating that the regions in the geographic ran-
dom model do not effectively demarcate different regions of COVID-19 cases.

3.2.2 Odds ratios for case counts
The COVID-19 case count on an edge (which we denote by Cb for between-region edges
and by Cw for within-region edges) is sensitive to the number of potential case crossings
between regions. To account for this, we calculate the odds ratio (Cb/Cw)

(Eb/Ew) to estimate the
ratio of the case count between regions to the case count within regions. The odds ratio
conveys the likelihood that cases cross regions. This ratio is largest for the Facebook re-
gions, second largest for the geographic random model’s regions, and third largest for the
states. By contrast, commute and trip regions have the smallest ratios (see Table 3). These
results illustrate that human-movement regions are the most effective of the examined
regions. Moreover, the regions that we create using migration data or even Twitter co-
mentions are more successful than states at delineating areas with large COVID-19 case
counts.

3.2.3 Statistical tests
We now test for statistical significance in COVID-19 case counts, mutual case rates, and
case-rate differences. Our permutation tests indicate that almost all sets of regions have
larger case counts within regions (Cw) and smaller case-rate differences within regions
(CDw) than one would expect if we had assigned the labels ‘within region’ and ‘between
region’ to edges without considering geography (see Table 4). The values of Cw are largest
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Table 4 Results of permutation tests across region types for expected and actual COVID-19 case
counts, case rates, and case-rate differences

Region type Exp. Cw Actual Cw Exp. CRw Actual CRw Exp. CDw Actual CDw

Commutes 3287 3464*** 17.328 17.360** 7.632 7.404***
Facebook 3287 3260 17.328 17.274 7.631 7.449***
Migration 3287 3439*** 17.328 17.330 7.632 7.343***
Trips 3287 3418*** 17.328 17.341· 7.632 7.468***
Twitter 3287 3445*** 17.328 17.348* 7.631 7.210***
States 3287 3327*** 17.328 17.350** 7.632 7.396***
Geographic randommodel 3287 3322*** 17.328 17.320 7.632 7.530***

Significance levels: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; and ‘·’ 0.1

Table 5 Results of our Granger-causality and Kolmogorov–Smirnov (KS) tests

Region type CRw Pct. Sig. (p < 0.001) CRb Pct. Sig. (p < 0.001) KS Test, D-Statistic

Commutes 46.32% 30.82% 0.0233***
Facebook 46.62% 44.62% 0.0015
Migration 44.97% 54.95% 0.0026
Trips 45.28% 53.48% 0.0013
Twitter 45.51% 50.53% 0.0128***
States 45.83% 48.80% 0.0003

Significance levels: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; and ‘·’ 0.1

within commute regions, second largest within Twitter regions, and third largest within
migration regions. The values of the within-region case rates CRw are most significantly
different from the distribution from the permutation test for commute regions and then
states, Twitter regions, and trip regions. For the regions in the other networks, we do not
observe a significant deviation from distributions from the permutation tests. The geo-
graphic random regions have the largest within-region case-rate differences CDw. This
is unsurprising, as we created these regions randomly instead of from human-behavior
data. Of the human-network regions, the Twitter and migration networks yield the small-
est within-region case-rate differences. Therefore, for these regions, adjacent counties in
the same region tend to have similar case rates.

Our results illustrate that states may be somewhat effective at delineating regions based
on COVID-19 case rates. Our tests of statistical significance also illustrate that commute
regions effectively delineate regions and that states and Twitter regions perform better
than we expected.

We now describe the results of our two Granger-causality tests [71] for each pair of
counties. In these tests, we consider only case rates, as we want to capture population-
normalized waves of COVID-19. Whenever both tests are significant for a pair of adjacent
counties, we conclude that there is evidence of Granger causality of potential disease trans-
mission between them. Effective regions have few statistically significant Granger causal-
ities for between-region (CRb) pairs and many statistically significant Granger causalities
for within-region (CRw) pairs.

In Table 5, we show the percentages of county pairs with a Granger-causality p-value of
at least 0.001 for both within-region pairs and between-region pairs. At the 0.001 signifi-
cance level, 30–50% of the between-region pairs are significantly coordinated temporally
(i.e., they are Granger causal in at least one direction) and about 45% of the within-region
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Figure 3 We construct consensus regions in the U.S. using an unweighted combination of the states and the
regions that we obtain from four human-behavior networks. We do not include the Facebook regions in the
consensus regions because they are not effective at demarcating COVID-19 cases. These consensus regions
indicate areas of strong within-region connectivity and weak between-region connectivity. (We computed
the depicted regions using Louvain modularity maximization in the software package GEPHI (version
0.10.0) [9])

pairs are significantly coordinated temporally (see Table 5). All types of regions have a
similar number of pairs of counties that are coordinated temporally.

We use a Kolmogorov–Smirnov (KS) test [55] to produce a D-statistic, which we use to
evaluate whether or not differences are significant. We find that pairs of counties in the
commute regions and Twitter regions are significantly coordinated temporally.

3.3 Consensus regions
To develop policy, it is useful to have a single set of regions to enable the implementation of
stay-at-home orders and other mobility-related NPIs that are consistent with the severity
of local outbreaks. Our method to obtain consensus regions (see Sect. 2) results in 31
regions and a maximized modularity of Qmax ≈ 0.92 (see Fig. 3). In the depicted consensus
regions, the state boundaries are often preserved; this is convenient administratively.

To allow policy makers to explore multiple scenarios for their communities, we have de-
veloped an online tool5 that creates on-the-fly regions for state, commute, migration, and
trip networks (because these networks produce the most effective COVID-19 regions in
our study). Users can change the relative weightings of these input networks to customize
regions. They can also download images of the resultant regions and export data (which
indicates the region assignments of all counties).

4 Conclusions and discussion
We used human-mobility networks and social-media networks to construct functional
geographic regions, which capture natural movements and social interactions. We then

5It is available at https://doi.org/10.6084/m9.figshare.14071439.

https://doi.org/10.6084/m9.figshare.14071439
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evaluated how effectively state boundaries and these regions capture natural boundaries
in the geographic spread of COVID-19 infections. We found that states, which were the
predominant regions for administering policies for COVID-19 mitigation, yield less ef-
fective boundaries than the regions that we constructed from a commute network. We
also found that states are more effective than the regions that we constructed from social-
media networks and more effective than a random model of geographically-contiguous
regions.

It is reasonable that the regions from the commute network are effective. Human-
mobility regions are anchored by metropolitan areas. This yields strong connections in
urban centers and suburbs, with weaker connections in exurban areas. Consequently,
mobility-based functional regions tend to have many COVID-19 infections within regions
and relatively few cases between regions. This conclusion reflects well-known regional-
science principles that commuters and movers tend to follow an urban hierarchy with an-
chor cities and peripheries [34, 39, 45]. A regional approach is helpful for examining the
spread of diseases (such as COVID-19) that have scant geographic transmission statistics.
Based on our findings, we suggest that it is important to explore consensus regions that are
derived from human-behavior networks as ad hoc administrative areas for making policy
decisions for COVID-19 and other infectious diseases.

Applying policies and messaging to county-based regions instead of states poses an ad-
ministrative burden that requires coordination and cooperative legislating. Nevertheless,
during the COVID-19 pandemic, U.S. governors created multi-state regions [53, 70] and
local authorities in the United Kingdom enacted specialized policies at local levels, rather
than at the national level [32]. There are also county-level coalitions in economic develop-
ment (e.g., the longstanding 420-county Appalachian Regional Commission [4]), and the
U.S. federal government issues severe weather warnings (e.g., tornado, fire, storm, hur-
ricane, and wind advisories) at the county level. Local-level operations have also yielded
improvements in a variety of health systems. For instance, several years ago, the U.S. Organ
Procurement and Transplantation Network implemented county-level liver-transplant re-
gions that are based on supply-and-demand optimization as an improvement over state-
level regions [30]. Functional regions may also be useful for examining the practicality of
proposed inter-county alliances. In our work, for example, we did not find any regions
that resemble the proposed region of Greater Idaho [19]. Instead, our regions illustrate
that counties in Oregon have few existing connections to counties in Idaho.

When implementing regions in health-related situations, it is important to consider lo-
cal variations. Administrative and household-level responses to COVID-19 varied across
U.S. states. For example, testing rates for SARS-CoV-2 infections were different in dif-
ferent states [72]. There were also stark differences in vaccination rates across areas for
both political and accessibility reasons [78]. Notably, vaccine-uptake rates were lower for
socially vulnerable populations (as defined by low socio-economic status, household com-
position, a lack of access to healthcare, and disability status) [10]. Mobility behavior during
lockdowns also depends on factors such as socioeconomic status [52].

Our work has a variety of limitations, and it is important to highlight several of them. A
key shortcoming is that our human-behavior data are not up to date. Our data were col-
lected prior to the COVID-19 pandemic. Our mobility and social-media data predate the
pandemic, so they may be misaligned with actual movement and information exchanges
between counties. For instance, the migration data are from the period 2013–2017, the
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Twitter data are from 2014–2015, and the mobility data are from January and February
2020. Another shortcoming is that conducting our research at the county level entails a
mismatch in granularity across the United States. Some counties have millions of resi-
dents and encompass large geographic areas, and other counties have few residents. Ad-
ditionally, because it is difficult to detect the spatial transmission of SARS-CoV-2, we used
rates in adjacent counties as a proxy for geographic transmission. However, we lack evi-
dence of actual contagion events across these areas. Inevitably, one can also emphasize
methodological limitations, such as in the choices of community-detection methods and
other computations. For example, we made subjective choices of descriptive and inferen-
tial statistics, and one can certainly calculate other statistics to attempt to capture varia-
tions within and across regional boundaries.

In future work, we hope to account for heterogeneities in COVID-19 responses and NPI
administration. We also plan to incorporate the temporal dynamics of spreading processes
that arise from local and seasonal events—such as spring breaks from school, holidays,
and large festivals [23, 56]—that we did not capture in our analysis. Events such as the
lifting of lockdown policies are also important. Directly after a lockdown, increased hu-
man movement often is not associated with an increased spread of infections [2]. Indeed,
functional geographic regions that one derives using data during lockdown periods have
smaller areas than regions that one derives from data that one captures after lockdowns
are lifted [67]. Extensions of our analysis can incorporate localized spikes in movements
and differences across time to capture seasonal changes in regions. As suggested in [32],
using data with finely-grained time resolution (such as real-time data) may help capture
the flexibility and elasticity of boundaries.

It is also important to consider the spatial resolution of social-media data and other ‘non-
traditional’ sources of disease-spread data [50]. We performed our analysis at the county
level, but a similar analysis at other scales (such as the neighborhood scale) likely would
yield different results. Constructing functional geographic regions on different scales may
reveal how regions change, agglomerate, shrink, and expand with time.

Appendix
A.1 Measuring similarities between the input networks and between the

resultant regions
A.1.1 Similarities between the human-behavior networks
We assess the similarities between the five human-behavior networks by calculating the
Pearson correlation coefficients between these networks (see Table 6). To calculate these
coefficients, we represent each network as a sequence of edge weights (including the 0
weights), where each element of the sequence corresponds to a distinct edge (i.e., a unique
pair of counties or a self-edge) of an undirected network of counties. We then calculate

Table 6 Pearson correlation coefficients between the human-behavior networks

Commutes Facebook Migration Trips

Facebook 0.025
Migration 0.977 0.025
Trips 0.955 0.031 0.969
Twitter 0.941 0.015 0.939 0.925
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Table 7 Similarities between the sets of regions using the Jaccard similarity index

Commutes Facebook Migration States Trips

Facebook 0.763
Migration 0.791 0.865
States 0.769 0.887 0.914
Trips 0.839 0.819 0.850 0.835
Twitter 0.763 0.838 0.896 0.884 0.820

Table 8 Similarities between the sets of regions using the z-Score zR of the Rand coefficient

Commutes Facebook Migration States Trips

Facebook 825.4
Migration 879.5 1021.9
States 902.9 1073.9 1264.4
Trips 1242.5 933.0 1115.9 1034.6
Twitter 810.4 947.0 1356.9 1212.9 981.2

the correlation coefficient for each pair of edge-weight sequences. We find that the Face-
book network has little overlap with the other four human-behavior networks, so its edge
weights differ from typical flows of inter-county commutes, trips, and residential home-
location movements (i.e., migration). However, the Twitter network is strongly correlated
with our human-mobility networks. Therefore, some social-media data does appear to
correlate with movement patterns.

A.1.2 Similarities between regions
We assess the similarities between the different assignments of counties to regions by cal-
culating Jaccard indices and z-scores of Rand coefficients. As one can see in Tables 7 and
8, there are substantial but imperfect similarities.

A.2 More information about our community-detection results
In Table 9, we show the values of the maximized modularity Qmax and the numbers of
resultant regions for each input network and each community-detection algorithm.

A.3 More information about resultant regions and consensus regions
A.3.1 Resultant regions for each input network
After performing community detection, we construct geographic regions by assigning
each county to a single community. In Figs. 4–8, we show maps of the regions that we ob-
tain using community detection on our five human-behavior networks: commutes, Face-
book friendships, migration, trips, and Twitter co-mentions. Many of these networks tend
to be correlated with state boundaries; this is not by design, but instead occurs naturally in
the data. When the human-network regions do not match the regions from state bound-
aries, natural features such as mountain ranges (e.g., the Appalachian range in the trip
regions, as one can see in Fig. 7) and infrastructure such as highways (e.g., connections in
Southern New Mexico and West Texas in the commute regions, as one can see in Fig. 4)
can join regions across states or divide regions within states. Time zones may also play
a role, as we see for the Facebook regions in a division between the Central and Eastern
time zones (see Fig. 5).

For the Facebook, migration, and Twitter regions that we show in Fig. 2, we reassign
outlier counties, which look like ‘holes’ in a map and consist of clusters of up to three
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Table 9 Summary of the results of the community-detection algorithms

Method Data set Number of communities Maximized modularity

Fast Greedy Commutes 30 0.902
Fast Greedy Facebook 12 0.717
Fast Greedy Migration 13 0.588
Fast Greedy Trips 17 0.748
Fast Greedy Twitter 12 0.531
InfoMap Commutes 255 0.945
InfoMap Facebook 8 0.865
InfoMap Migration 49 0.795
InfoMap Trips 134 0.910
InfoMap Twitter 49 0.731
Louvain Commutes 75 0.954
Louvain Facebook 33 0.871
Louvain Migration 28 0.801
Louvain Trips 52 0.915
Louvain Twitter 26 0.738
REDCAP Commutes 48 0.898
REDCAP Facebook 25 0.761
REDCAP Migration 3 0.672
REDCAP Trips 28 0.794
REDCAP Twitter 28 0.608
WalkTrap Commutes 1353 0.211
WalkTrap Facebook 34 0.234
WalkTrap Migration 96 0.245
WalkTrap Trips 1 0.172
WalkTrap Twitter 141 0.270

Figure 4 Regions that we construct using a network of commutes from U.S. Census LODES data [76] that we
aggregate from census blocks to counties. This yields 75 regions, which is the most regions of any of the
examined networks

counties. These counties occur mostly in the Great Plains and likely are not part of the
surrounding communities because of their few connections in these networks. The small
numbers of connections result from their small populations or small numbers of social-
media accounts. We reassign each of these counties to the neighboring region with the
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Figure 5 Regions that we construct from Facebook friendships using the Facebook Social Connectivity Index
(SCI) [7], which is the number of Facebook friendships between two counties divided by the total number of
Facebook accounts in those two counties. There are a total of 33 regions, including one very large region that
includes the entire U.S. West Coast

Figure 6 Regions that we construct using a migration network from the American Community Survey (ACS)
[75]. There are a total of 28 regions. In the migration regions, outliers often belong to a distant region. (For
example, because of the nature of inter-metropolitan migration, a county in Michigan can be part of a region
that is based in Florida)

most geographically-adjacent neighbors, with a preference for neighbors in the same state.
(There are no instances in which a county shares a border with an equal number of coun-
ties from two or more different regions.)
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Figure 7 Regions that we construct using GPS traces (i.e., trips) from SafeGraph [66] in January–February
2020. We aggregate the data from the census-block-group level to the county level. There are a total of 52
regions

Figure 8 Regions that we construct from a network of Twitter co-mentions [74]. There are a total of 26
regions. Some counties are in regions that do not match those of their surrounding communities. This likely
occurs because of small populations and accordingly few Twitter accounts

A.3.2 Creating consensus regions
We combine the states and four human-network regions to create a single set of consen-
sus regions. In this calculation, we do not use the Facebook regions because they are not
effective at demarcating COVID-19 cases. We weight each pair of counties in the county-
adjacency network Ga by the number of times that both counties appear in the same com-
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Figure 9 The agreement count between adjacent counties (i.e., counties that share a boundary). We weight
the edges of this network by the number of times that we assign their two attached nodes to the same
region or state, with six possible opportunities to agree. This visualization illustrates natural divisions between
U.S. states and between regions

munity (or state, for the state network), so edge weights range between 0 (i.e., never in
the same community or state) and 5 (i.e., always in the same community or state). We
create consensus regions by applying the Louvain modularity-maximization algorithm to
this agreement network using the software package Gephi (version 0.10.0) [9]. By visu-
alizing these edge weights on a map (see Fig. 9, which also incorporates the Facebook
regions, yielding a maximum agreement count of 6), we see the locations of strong and
weak agreement.

In our consensus regions, we use the concept of border ‘thickness’ [40]. Thick borders
indicate that there are relatively few crossings in geographic space [46]. Therefore, the
borders are thickest for edge weights of 0 (i.e., two neighboring counties are never in the
same region) and they are thinnest for edge weights of 5.
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