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Abstract
Many network analysis and graph learning techniques are based on discrete- or
continuous-time models of random walks. To apply these methods, it is necessary to
infer transition matrices that formalize the underlying stochastic process in an
observed graph. For weighted graphs, where weighted edges capture observations
of repeated interactions between nodes, it is common to estimate the entries of such
transition matrices based on the (relative) weights of edges. However in real-world
settings we are often confronted with incomplete data, which turns the construction
of the transition matrix based on a weighted graph into an inference problem.
Moreover, we often have access to additional information, which capture topological
constraints of the system, i.e. which edges in a weighted graph are (theoretically)
possible and which are not. Examples include transportation networks, where we
may have access to a small sample of passenger trajectories as well as the physical
topology of connections, or a limited set of observed social interactions with
additional information on the underlying social structure. Combining these two
different sources of information to reliably infer transition matrices from incomplete
data on repeated interactions is an important open challenge, with severe
implications for the reliability of downstream network analysis tasks.
Addressing this issue, we show that including knowledge on such topological

constraints can considerably improve the inference of transition matrices, especially
in situations where we only have a small number of observed interactions. To this
end, we derive an analytically tractable Bayesian method that uses repeated
interactions and a topological prior to perform data-efficient inference of transition
matrices. We compare our approach against commonly used frequentist and
Bayesian approaches both in synthetic data and in five real-world datasets, and we
find that our method recovers the transition probabilities with higher accuracy.
Furthermore, we demonstrate that the method is robust even in cases when the
knowledge of the topological constraint is partial. Lastly, we show that this higher
accuracy improves the results for downstream network analysis tasks like cluster
detection and node ranking, which highlights the practical relevance of our method
for interdisciplinary data-driven analyses of networked systems.

Keywords: Pairwise interactions; Weighted graphs; Network inference; Bayesian
learning; Data efficiency

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-023-00416-3
https://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-023-00416-3&domain=pdf
https://orcid.org/0000-0002-4203-1177
https://orcid.org/0000-0003-2703-1977
mailto:petrovic@ifi.uzh.ch
http://creativecommons.org/licenses/by/4.0/


Perri et al. EPJ Data Science           (2023) 12:48 Page 2 of 24

1 Introduction
Graph models of relational data have become a cornerstone in the analysis of complex
systems (Boccaletti et al. [2]) and an important foundation for the application of machine
learning to graph-structured data from social, technical, and biological systems (Bronstein
et al. [3]). Many network analysis and graph learning techniques are based on discrete- or
continuous-time models of random walks (Masuda et al. [21]) such as, e.g., community
detection algorithms like InfoMap (Rosvall and Bergstrom [35]) or WalkTrap (Pons and
Latapy [32]), node ranking techniques like PageRank (Page et al. [24]), neural graph em-
beddings like DeepWalk (Perozzi et al. [30]) or node2vec (Grover and Leskovec [9]), walk-
based similarity scores that are the basis for link prediction (Liben-Nowell and Kleinberg
[18]), or heat kernels for graphs used for community detection (Kloster and Gleich [14])
and node ranking (Chung [7]). To apply these methods, it is necessary to obtain a transi-
tion matrix that formalizes the underlying stochastic process in the observed graph. This
is trivial when we have full information on repeated interactions in the graph, which en-
ables us to estimate transition probabilities between nodes based on relative frequencies
of observed interactions. However in real-world settings we are often confronted with
incomplete data, which turns the construction of the transition matrix into an inference
problem that we need to address to obtain reliable results.

In this work, we consider situations where we have access to a possibly incomplete set
of observed repeated interactions between a set of nodes. Such data can be represented
as a weighted graph, where the weight of an edge corresponds to the number of observed
interactions between a given node pair. For such weighted graphs, it is common to define
transition probabilities proportional to the edge weights. From a statistical inference point
of view, this method to infer the transition matrix based on observed interactions corre-
sponds to a frequentist approach that uses a maximum likelihood estimation. When few
observations are available, this simple approach suffers from overfitting: On the one hand,
unobserved interactions translate to zero transition probabilities even though transitions
may actually be possible in the underlying graph. On the other hand, those interactions
that were observed are likely to translate to overestimated transition probabilities. This
generates a large variance in inferred transition probabilities that can severely distort the
results of downstream network analysis and graph learning tasks.

However, repeated interactions are often not the only information that we have about the
networked systems that we study. We often have additional knowledge about topological
constraints that determine which of the interactions are theoretically possible and which
others are not. For example, consider a transportation system, where observed interac-
tions represent passengers travelling between connected stations, or a social network,
where interactions represent messages transferred between users, or a Web graph, where
interactions represent users clicking on a hyperlink between two Web pages. In the first
case, the movement of passengers is constrained by the available transportation infras-
tructure, in the second, the spreading of information is constrained by existing social con-
nections, while in the third case, available hyperlinks constrain the possible clickstreams
of users. Such constraints can limit the number of parameters of the model that we seek
to infer. They can thus help us to address the reliable inference of transition matrices and
improve the results of downstream analyses (see steps for the analysis of network data
illustrated in Fig. 1). Therefore, in this paper, we address the following research questions:
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Figure 1 Steps in the analysis of network data. The first step is the inference of the transition matrix from the
network data. In the second step, the transition matrix is used to detect the important nodes, relevant clusters
and other interesting features of the system. The goals of our work are to extend the network inference to use
the topological constraints, to investigate the robustness of the new method to partial knowledge of the
constraints, and to investigate whether this improves downstream analysis tasks

Q1 How can we use the information on topological constraints to improve the infer-
ence of transition matrices from incomplete data on repeated interactions captured
in weighted graphs?

Q2 How is the inference of transition matrices influenced by a partial knowledge of the
underlying topological constraints, which is often the case in real-world settings?

Q3 To what extent can our proposed approach of including topological constraints in the
inference of transition matrices improve the performance of downstream network
analysis tasks like node ranking and community detection?

The remainder of this article is structured as follows: In Sect. 2, we formally define the
inference problem that we address in our work and we introduce two methods that are
commonly used to infer transition matrices without leveraging topological constraints,
namely maximum likelihood estimation and a noninformative Bayesian approach. Ad-
dressing Q1, in Sect. 3 we apply Bayesian learning to the problem of inferring transition
matrices in incomplete data on repeated interactions in a graph. We include the topolog-
ical graph constraints in the prior, and call this method BaCon. Furthermore, we explain
how to select the “shape” hyperparameter. In Sect. 4, we introduce the datasets and the
experimental setup that we use to evaluate our method. We next compare BaCon to the
methods introduced in Sect. 2 (i.e. frequentist and noninformative Bayes approach) that
do not use information on topological constraints. In Sect. 5, we evaluate the extent to
which the inclusion of the topological constraints improves the network inference, and
address Q2, observing the effects of partial knowledge of the constraint. In Sect. 6, we ad-
dress Q3 and explore whether the effects of the network inference carry over to the net-
work analysis results. In Sect. 7, we show how inference of diverse examples of real-world
networks can be further improved with an appropriate choice of the shape hyperparame-
ter, and demonstrate the effects of model selection of the shape hyperparameter. In Sect. 8
we discuss how our work complements existing network analytic methods in the field. We
finally summarize our conclusions and outline future work in Sect. 9.

The results of our study show that (i) the inclusion of topological constraints consid-
erably improves the inference of transition matrices in network data, and (ii) that this
improved inference translates to increased accuracy for downstream network analysis
tasks. Our work highlights the importance of treating the construction of network mod-
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els from (partially observed) interactions as an inference problem that can be addressed
using Bayesian statistics. This is in line with the work of Peel et al. [25], who note that
the standard inference methods in network science have little consideration for inherent
uncertainties and incompleteness of readily-available empirical data, or even an in-depth
understanding of its provenance and measurement procedure. Our results further suggest
that constraints for the topology of interactions in complex systems should be given more
attention as their inclusion can significantly improve modeling accuracy, especially in the
limit of small data. Given the importance of network inference in partially observed or
noisy data we expect our work to be of interest for a broad interdisciplinary community.
An implementation of our method is available as an Open Source project (Zenodo [44]).

2 Background
This section introduces the mathematical formalism for the inference of transition ma-
trices from observations on repeated interactions and outlines two existing strategies for
addressing it. We assume that we observe a multiset of pairwise interactions (i, j) between
nodes i, j ∈ V , we denote it with E and indicate the number of times the interaction (i, j)
occurred with nij. In addition, we are given a directed graph G = (V , E) that represents
the topological constraints, i.e., which edges can be observed and which are impossible.
Given these sources of data, our goal is to infer the transition matrix T that best reflects
the actual transition probabilities in the system.

The simplest option is to assign the transition probabilities in a frequentist way, i.e. pro-
portionally to the observation counts nij and thus πij = nij/

∑
k∈V nik . This corresponds to

a maximum likelihood estimation (MLE) of a multinomial distribution p(j|i). The advan-
tages of this approach are its simplicity and good performance when we have a data set that
is sufficiently large considering the space of possible interactions. In fact, this method is
so common that it has become a standard “preprocessing” step, which is rarely even men-
tioned as a method to “infer” a graph model from observational data. However, this simple
method can require a large number of observations to assign non-zero probabilities to all
edges that are possible based on the underlying topology of the system. In a nutshell, when
few observations are available, it is difficult to determine whether an edge with probabil-
ity zero is not possible or whether it has not been observed yet. From a machine learning
point of view, the erroneous interpretation of edges with zero probability as evidence of
the absence of the associated edge corresponds to an overfitting of the weighted graph
model.

An alternative to a frequentist approach is to use a Bayesian one. The noninformative
Bayesian approach addresses the issue of overfitting by recording the distribution of pa-
rameters πij for a given data set. For every node i, we organize the parameters πij in vectors
�πi = (πij)j∈V . A priori, we would assign, e.g., a uniform prior over the space of transition
probabilities: p(( �πi)i∈V ) = const. =

∏
i∈V Dir(πi|�αi = �1N ), where Dir denotes the Dirichlet

distribution, �αi’s are its concentration parameters, and �1N is the N-dimensional vector
with all components equal to 1. This choice of parameters corresponds to the uniform
distribution. The noninformative Bayesian approach further uses Bayes’ rule to update the
prior distribution of transition probabilities: p((�πi)i∈V |E) = p(E |(�πi)i∈V )p((�πi)i∈V )/p(E). An
advantage of this method is that unobserved edges are still modeled with non-zero prob-
abilities. However, this also introduces problems: First, since all transitions are modelled
with non-zero probabilities, we cannot directly use sparse matrices, which complicates



Perri et al. EPJ Data Science           (2023) 12:48 Page 5 of 24

Figure 2 Illustration of methods to infer transition matrices from repeated interactions on a downstream task
of clustering. The first panel shows the ground truth clusters encoded in the transition probabilities of a
geometric random network with Euclidean metric in which we observe small set of interactions. We use three
different inference methods to construct a transition matrix and detect communities using InfoMap. The
other panels show the clusters detected using the transition matrix inferred with a frequentist,
noninformative Bayesian, and our approach - BaCon. BaCon finds clusters that are closer to the ones detected
from the ground truth matrix

applications to large networks. Second, and more importantly, in the typical case of net-
works with sparse topologies, a large amount of data is required to overcome the uniform
prior on a fully connected graph. From a machine learning point of view, this corresponds
to an underfitting of the weighted graph model.

In the first three panels of Fig. 2, we use a toy example to illustrate the issues of frequen-
tist and noninformative Bayesian network inferences. In the toy example, we consider a
ground-truth transition matrix constrained to a random geometric graph topology (first
panel). The network consists of four clusters expressed in higher transition probabilities
between nodes within the same cluster. We draw a small random sample of repeated inter-
actions from the distribution of edge probabilities in the ground truth network. We apply
the frequentist (second panel) and the noninformative Bayesian method (third panel) to
infer a transition matrix. We further visualize the result of the popular community detec-
tion technique InfoMap on the resulting transition matrix. The frequentist approach de-
tects many spurious communities because of its overfitting issue. The Bayesian approach
detects a single community because the observed data is insufficient for overcoming the
prior.

Neither the frequentist approach, nor the noninformative Bayesian, use the information
on the constraints G = (V , E). Addressing this issue, in the next section, we formally in-
troduce a Bayesian method that leverages topological constraints (BaCon) that are often
known in real-world networked systems. In the fourth panel of Fig. 2, we show a represen-
tative example that illustrates how inclusion of such constraints in the network inference
improves the detection of clusters.

3 BaCon: Bayesian constrained network inference
In this section, we show how the knowledge of topological constraints can be used as a
prior to infer transition probabilities from observations of interactions (Q1). We formally
introduce a Bayesian method (BaCon) that leverages topological constraints that are often
available for real-world networked systems.

We assume that we are given a set of nodes V of size N , and a set of possible edges
E ⊂ V × V that represent a topological constraint for our inference task. I.e. we assume
that an interaction between node i and node j cannot occur if (i, j) /∈ E. For each node
i, we denote its possible successors as S(i). We also assume that we are given a data set
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E of interactions that were observed in the system. Our goal is to infer the best directed
weighted graph model from this data set. The transition probabilities p(j|i) = πij from i to
its successors j ∈ S(i) satisfy:

∑

j∈S(i)

πij = 1, ∀i, j : 0 < πij < 1. (1)

We are interested in the probability density of parameters πij. We again organize them in
vectors �πi, similarly to the noninformative Bayesian approach introduced in the previous
section, but this time only over the possible successors: �πi = (πij)j∈S(i). We capture the in-
formation about impossible transitions using a Dirac delta function as prior for the πij.
Since those transitions can not occur in the data, their probability distribution will not
change. For the possible transitions from a node i, we assume a uniform prior over the
parameter space:

p(�πi|G) = Dir(�πi|�αi = α�1|S(i)|), (2)

where, for the uniform distribution, we choose α = 1.
The choice of α > 1 means that the equiprobable distributions are more likely, and the

choice of α < 1 means that the biased distributions are more likely. We will explore the
choice of α in Sect. 7. In the following we denote all transition probabilities as π := (�πi)i∈V .
The likelihood of observing data E , which contains nij observations of an edge (i, j), is given
by the multinomial distribution:

p(E |π , G) = Z
∏

i

∏

j∈S(i)

π
nij
ij , (3)

where Z denotes the number of permutations of observations. We use Bayes’ rule to up-
date our prior distribution into a posterior after observing data E :

p(π |E ,α, G) =
p(E |π , G) × p(π |α, G)

p(E |α, G)
. (4)

As the multinomial and the Dirichlet distributions are conjugate distributions, the pos-
terior is also a Dirichlet distribution with parameters �αi = �α0

i + �ni, where �α0
i denotes the

a priori concentration parameters, and �ni := (nij)j∈S(i). The posterior p(�πi|E) = Dir(�πi|�αi =
α × �1|S(i)| + �ni) defines an ensemble of parameters consistent with the observations. From
this ensemble we can compute the expected value of the transition matrix as:

E[Tij] =
αij

∑
k αik

.

We will use the expected value of the transition matrix in our experiments where we com-
pare the outlined inference method versus the alternatives.

We showed a method to infer the transition matrix T from observed interactions be-
tween system elements, using the topological information as a key ingredient of the prior
distribution, which provides an answer to the first research question. We highlight that
the method has one free parameter α, which governs whether the prior distribution of the
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transition probabilities favours equiprobable or biased distributions. In our experiments,
we chose α = 1 which corresponds to the uniform prior. However, in Sect. 7, we show the
negative impact that this choice can have on the inference. In the following, we describe
how to select the parameter α from a several candidates, and we experimentally test the
model selection on the two real world datasets for which this approach is of interest.

To select the parameter α, we assume that we do not have a preference between the can-
didates {α1,α2, . . . ,αl}, i.e. we start with a uniform distribution. Thus, the likelihood of the
hyperparameter αi, p(E |αi, G), which is exactly equivalent to the marginal likelihood in
Eq. (4) and can be computed analytically, is directly proportional to the posterior proba-
bility of the hyperparameter α1. Finally, we select the maximum a posteriori αi. For further
reading of this approach, see Kass and Raftery [11].

4 Datasets
In this section, we describe the synthetic and empirical datasets that we use to test BaCon
and investigate the research questions Q2 and Q3. For the synthetic data-sets, we generate
the ground truth transition matrix using three different random graph models to define the
underlying constraints. To generate the transition probabilities, we use a simple procedure
for the transition matrix and centrality ranking comparison and a slightly more complex
one for the task of community detection. We further use five real-world datasets from
ecology, neurology, information systems, transportation systems and technical systems.

4.1 Synthetic datasets
In this section we describe the procedure that we use to generate the synthetic data. First,
we generate the underlying topology G = (V , E), then, based on this topology, we randomly
generate transition probabilities of a ground truth transition matrix Tgt, and finally, we use
the transition matrix to generate the synthetic interactions E . This synthetic generation
process is necessary to ensure that the target pattern (e.g. the ground truth clustering
or the ground truth ranking) cannot be fully recovered only from the graph topology G =
(V , E), and thus that the ground truth probabilities are necessary for the downstream task.

Underlying topology To generate the underlying topology for our synthetic experiments,
we first generate an undirected network using one of three different generative models:
(1) an Erdős-Rényi G(N , M) random graph model, (2) soft random geometric graphs with
Euclidean metrics of latent spaces, and (3) soft random geometric graphs with hyperbolic
metrics of latent spaces. The Erdős-Rényi G(N , M) model (where N = 500 is the num-
ber of nodes and M = 5000 the number of edges) is one of the simplest random graph
models. It generates networks with the small distance between pairs of nodes that charac-
terizes real networks, but without their degree heterogeneity, high clustering values, and
modular structures. In contrast, soft random geometric graphs have high clustering and
display the emergence of modular structures. They generate networks with different de-
gree distributions depending on the metric of the latent space. In our experiments, we
use both a Euclidean metric, which generates networks with high clustering but uniform
degree distributions, and a hyperbolic metric, which generates networks with high clus-
tering and power-law degree distributions (Krioukov et al. [16]). Each of the generative
models isolates distinct aspects of the topology of real-world networks and allows us to
test the effect of these aspects on the inference problem. To produce a geometric graph,
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we scatter N = 500 nodes in a two-dimensional latent space. For the Euclidean metric,
we uniformly scatter nodes in a (0, 1) × (0, 1) square. For the hyperbolic metric, we uni-
formly scatter nodes in a hyperbolic disk of radius R = 1 and constant Gaussian curvature
–ζ 2 with ζ = 1. We connect nodes i and j with probability p((i, j)) = exp(–dij/σ ), where dij

is the pairwise distance of nodes in the latent space and σ = 0.1 is the scale parameter.
Large values of σ indicate a higher probability of connecting to distant nodes, leading to
denser networks. Low values of σ favor connections with closer nodes and lead to sparser
topologies. Having generated the network, we add an edge from a random node of every
connected component to a random node in the largest connected component, thus en-
forcing the connectedness of the network. Finally, we represent the undirected network
as a directed network by converting each undirected edge (i, j) to two directed edges (i, j)
and (j, i). For this choice of parameters, Erdős-Rényi networks contain around 10,000 di-
rected edges, Euclidean networks produce around 12,000 directed edges and hyperbolic
networks produce around 4000 directed edges. Obtaining the network constraint from a
connected undirected network ensures that random realizations of the topology have no
sink nodes, which simplifies the experiments by avoiding potential pathological cases.

Ground truth transition matrix Next, we set the probabilities on the underlying topol-
ogy, thus defining the ground truth model. To generate the ground truth transition matrix
Tgt, we generate the transition probabilities πij of outgoing edges for each node i from
(πij)j∈S(i) ∼ Dir(�αi), with two different choices of αi.

For the experiments on transition matrix inference and on node ranking, we choose
a uniform distribution: �αi = �1S(i). However, to ensure that we do not produce networks
with a single community, we employed the following procedure. We first artificially group
the nodes, and choose a larger value for the component αij of �αi when j is in the same
community as i (αij = 10) then when it is not (αij = 1). We group the nodes of Erdős-Rényi
graph by uniformly placing nodes in three groups; in the case of the random Euclidean
graph, we cut the latent space with a random horizontal and a random vertical line, and
assign nodes to the same group if they belong to the same partition of the latent space; in
the case of random hyperbolic graph, the procedure is the same, except that we cut the
space with two geodesics. By grouping nodes in this way, we ensure that the topology of
the geometric graphs holds some information about the cluster structures, but that the
probabilities are not irrelevant for detecting the cluster structure.

Edge sampling In the third step, we generate a sample of interactions E . Since we do not
expect the starting nodes to be observed with uniform frequency, we assign random “start-
ing probabilities” to different nodes. We draw the starting probabilities from Dir(�α = �1N ).
We choose the starting node i as a multinomial draw of the starting node probability distri-
bution. We choose the successor j as a multinomial draw of the probability distribution of
successors. The sampling simulates the observation of interactions in a networked system.

4.2 Empirical datasets
In this section we describe the empirical weighted networks that we used to evaluate the
methods. The five real-world empirical networks come from different domains.

The first network captures an ecosystem, which is the food chain of Florida bay (Verasztó
et al. [40]). It contains 2106 edges capturing carbon exchange between 128 species. An
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entry Aij of the adjacency matrix represent the biomass exchanged from species i to species
j (i.e. j ate Aij quantity of i). We assume that the non-zero values of the adjacency matrix
define the possible edges.

The second network, denoted as neural, in the domain of neuroscience, captures the
connectome (i.e. the map of neural connections) of a larva of a simple marine worm
(Ulanowicz and DeAngelis [39]). The topology is defined with 11,437 axons connecting
2728 neurons. The entry Aij of the adjacency matrix is the number of synapsis connecting
neuron i to neuron j.

The third network is the Wikipedia web graph used to play the wikispeedia game in West
and Leskovec [42]. In the game, players have to find a short path between two pages in the
graph. The topological constraint is defined by the 239,764 hyperlinks that the players
could use to navigate through 4592 Wikipedia pages. An entry of the adjacency matrix Aij

is the number of times users clicked on the hyperlink from i to j while playing the game.
The fourth network records flights between US airports. The data (TransStat [38]) cap-

tures 286,810 passenger itineraries between 175 US airports as recorded in 2014. An entry
of the adjacency matrix Aij is the number of passengers that flew from i to j, and we assume
that the connection does not exist if none of the observed passengers used it.

The fifth network is the central Chilean power-grid (Kim et al. [13]). The topological
constraint is defined from 444 connections between 347 stations. The entry of the adja-
cency matrix Aij is the capacity of the connection measured in Kilovolts. Although the
powergrid, neural, and ecosystem data sets do not quite fit in our setting (e.g. connection
voltage does not determine how often we observe the connection), we can still use them
to test the inference methods on a diverse set of real-world networks.

Each of the empirical networks defines the adjacency matrix A. We define the underly-
ing constraint G = (V , E) as a graph of non-zero weighted edges (i, j) ∈ E ⇔ Aij > 0. The
ground truth transition matrix Tgt is obtained by normalizing rows of the adjacency ma-
trix A. We simulate observations by sampling edges from the adjacency matrix A of the
corresponding weighted network. We put all edges (i, j) in a single bin and draw them with
probability proportional to Aij. The sampling simulates an input of interactions observed
on a networked system. Since the sampling introduces variability on the observed edges,
we run the experiments multiple times.

5 Effects on inference of weighted graphs
We now explore the effect of using topological constraints in the inference of transition
matrices. We compare the proposed method BaCon, which uses information on the topo-
logical constraint, to the frequentist and the noninformative Bayesian approaches intro-
duced in Sect. 2, which do not incorporate topological information. At the end of the
section, we investigate the research question Q2 and explore how partial knowledge of
topological constraints influences the inference.

Experimental setup The input data consists of a sample of observed edges E and a given
graph constraint G as described in Sect. 4. The target variable is the ground truth tran-
sition matrix Tgt, which we construct as explained in Sect. 4. We use the data to infer
a transition matrix T using each method and compare those transition matrices to the
ground truth Tgt. We quantify the errors in estimating the matrix entries by computing the
Frobenius norm of the difference between the inferred transition matrix and the ground
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truth transition matrix ‖Tgt – T‖. Since the Frobenius norm of a matrix X is defined as
‖X‖ = (

∑
ij X2

ij)1/2, computing the Frobenius norm of the difference between transition
matrices is equivalent to computing the mean square error of the transition probabilities
inferred by the models. The worst value for ‖Tgt – T‖ is 2N where N is the number of
nodes in G; the best is 0, which indicates a perfect match between the inferred matrix and
the ground truth transition matrix. We evaluate the performance of methods for different
sizes of the sample E and we plot how the error of the inferred transition matrix depends
on the number of sampled edges E . We run the experiment 100 times for each sample
size. In all figures, we represent the average error of the frequentist method with the dot-
ted black line, the dashed dark-blue curve shows the average error of the noninformative
Bayesian method. The average error of BaCon is represented with the solid orange curve.
As a reference point, we drew the light-gray dashed horizontal line, which represents the
average difference between the ground truth transition matrix and the transition matrix
constructed based on the unweighted topology, which does not depend on the sampled
edges. We represent the variability in the results’ distribution using vertical error bars
that indicate the 95% confidence intervals (specifically, the intervals between the 2.5-th
and the 97.5-th percentiles).

Results We present our results on the dependency between the inference error (y-axis)
and the sample size of interactions (x-axis) in Fig. 3 for synthetic networks and in Fig. 4
for empirical networks. The results show that the inclusion of the topological constraint
positively affects the inference of the transition matrix. All three methods show an im-
provement in performance with the number of sampled edges and converge to the ground
truth transition matrix for a large number of observations. However, their behavior dif-
fers greatly in the intermediate and small data range. When few edges are available, the
frequentist and noninformative Bayes perform similarly, and both do worse than the un-
weighted topology. In the intermediate range, the two methods display very different be-
haviors. The frequentist approach exhibits a peak in its error (particularly marked for the
synthetic experiments), indicating that the method over-adjusts to the observations. On
the contrary, the noninformative Bayesian method steadily improves performance but at

Figure 3 Effects of the use of constraints on the inference of a transition matrix in synthetic data. The left
panel shows results on Erdős Rényi graphs, the middle panel shows results on geometric Euclidean random
graphs, and the right panel shows results on geometric hyperbolic random graphs. We measure performance
with the Frobenius distance between the transition matrix of the ground truth and that of the inferred model.
Error bars represent the 95% confidence interval (mostly too small to be visible). The inclusion of the
constraints allows BaCon to recover the transition matrix more precisely than both the frequentist and the
noninformative Bayesian approaches
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Figure 4 Effects of the use of constraints on the inference of a transition matrix in empirical data. From left to
right, the panels show the results for wikispeedia, neural, ecosystem, flights, and powergrid networks. We
measure performance with the Frobenius distance between the transition matrix of the ground truth and that
of the inferred model. Error bars represent the 95% confidence interval (mostly too small to be visible). In
accordance with the synthetic results, the inclusion of the constraints allows BaCon to recover the transition
matrix more precisely than both the frequentist and the noninformative Bayesian approaches

a very slow pace: due to the use of a fully connected prior (i.e. the lack of topological in-
formation) each observation only provides very little information for the inference. As a
result, the frequentist method surpasses the noninformative Bayesian when the number of
observed edges increases despite its peak in error in the intermediate data range. BaCon
mediates between these two behaviors. Its inference begins from a better initial perfor-
mance by relying on the constraint provided by the unweighted topology. In the interme-
diate data range, BaCon’s performance improves considerably faster than the noninforma-
tive Bayesian approach because, due to the topological constraints, it has less degrees of
freedom. The constraint also gives BaCon the necessary information to avoid overreliance
on the observations, thus preventing the peak in error that characterizes the frequentist
method. BaCon steadily improves its performance when more data becomes available,
converging to the ground truth transition matrix faster than the other approaches.

To give an idea of how large these improvements can be, an aspect which might be hid-
den by the logarithmic axes, we highlight the difference in the amount of data required
by the different methods to reach a fixed mean square error of 2.5 in synthetic data. The
frequentist method needed over three times more data than BaCon in the case of Erdős-
Rényi random graphs, over four times more data in Euclidean random graphs and dou-
ble the amount of data in the case of hyperbolic random graphs. For the noninformative
Bayesian method the ratios are even more pronounced: it needed over twenty times more
data than BaCon in the case of Erdős-Rényi random graphs and Euclidean random graphs
and over fifty times more data in the case of hyperbolic random graphs.

Discussion With these experiments, we have investigated the impact of including topo-
logical constraints on the inference of a transition matrix. The results highlight that the
inclusion of constraints provides a major improvement in data-efficiency. We noticed both
the overfitting of the frequentist and the underfitting of the noninformative Bayesian ap-
proaches introduced in Sect. 2. The inclusion of constraints provides an alternative source
of information in the limit of small data sizes which prevents overfitting. It also reduces
the degrees of freedom, which prevents underfitting.

It is worth mentioning that the Frobenius norm, which we used to evaluate the inferred
matrix, is not the only matrix norm we tried. However, the other matrix norms showed
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Figure 5 Effects of partial constraints on the inference of a transition matrix. The left panel shows results on
Erdős Rényi graphs, the middle panel shows results on geometric Euclidean random graphs, and the right
panel shows results on geometric hyperbolic random graphs. We measure performance with the Frobenius
distance between the transition matrix of the ground truth and that of the inferred model. Error bars
represent the 95% confidence interval (mostly too small to be visible). Despite the partial information on
constraints, its usage benefits the network inference

the same trends, and we selected the Frobenius norm because of the intuitiveness of its
connection to the mean square error. The results for the other matrix norms are available
in the complementary Zenodo package (Zenodo [44])

One potential threat to the validity of these results is that the constraint we used in the
inference is identical to the constraint we used to generate the data. However, assuming
full knowledge of the constraints is unrealistic for real-world systems. In the next section,
we tackle this case to check whether missing information about constraints invalidates the
BaCon approach.

Sensitivity to partial constraints We now investigate research question Q2 and test the
robustness of our inference method against incomplete knowledge about the underlying
topology. We introduce noise to the constraints by adding spurious edges alongside those
that capture the underlying topology. We note that the addition of such spurious edges
effectively corresponds to a loss of information on the constraint. An addition of all pos-
sible edges corresponds to the noninformative Bayesian method with a fully connected
prior introduced in Sect. 2. Aiming for an equal number of original and spurious edges, we
add 10,000 uniformly random spurious directed edges to the Erdős-Rényi random graphs,
12,000 to geometric Euclidean random graphs, and 4000 to the geometric hyperbolic ran-
dom graphs.

The results in Fig. 5 display that missing information on the constraints decreases the
performance of BaCon in the small data regime, and that it needs more data to make up for
that deficiency. However, the method still outperforms the other two approaches, which
do not use information about constraints at all. Answering Q2, this demonstrates that the
proposed method BaCon is robust to missing information about topological constraints
in complex systems.

6 Effects on downstream analyses of weighted graphs
In this section, we investigate research question Q3 and measure the effects of the infer-
ence on the downstream tasks of node ranking and clustering.

Experimental setup To evaluate the impact of the inference methods on downstream
network analysis tasks, we perform experiments that build on the experimental setup from
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Sect. 5. The input data again consists of the sample of edges E and a graph constraint G,
as described in section Sect. 4. From the input data, we infer the transition matrix using
all three inference methods. However, instead of evaluating the error of the inferred ma-
trix T, in these experiments we perform downstream tasks of node ranking and cluster
detection using the inferred transition matrix. We use PageRank to compute a node rank-
ing on T, and compare it to the corresponding PageRank node ranking obtained based on
the ground truth transition matrix Tgt. We measure the performance using the Kendall-τ
correlation between the two rankings; a perfect match of the rankings leads to τ = 1, un-
correlated rankings lead to τ ≈ 0, whereas the reverse ranking is captured by τ = –1. To
detect clusters, we apply the random-walk based community detection algorithm Infomap
(Rosvall and Bergstrom [35]). This method is a convenient choice for our analysis as it nat-
urally detects clusters in directed networks along with the optimal number of clusters. We
measure the performance by computing the adjusted mutual information (AMI) between
the clusters detected in the inferred transition matrix T and the clusters detected using
the ground truth transition matrix Tgt. A perfect agreement has an AMI score equal to 1,
completely unrelated assignments have AMI of 0. We run 100 independent experiments
for each sample size and each task. We plot the average performance of downstream tasks
as a function of the size of the edge sample E . To represent the variability of the perfor-
mance, we show the 95% confidence intervals as the error bars. The average performance
using the frequentist inference is presented with the dotted black curve, the dashed blue is
for the noninformative Bayesian method, and the solid orange is showing the performance
of BaCon. The dashed light-gray horizontal line, which we show as a reference point, again
represents the average performance obtained using only the unweighted topology.

Node ranking We present the results of the node ranking experiments on synthetic net-
works in Fig. 6, and on the empirical networks in Fig. 7. Except for the ecosystem dataset,
the inclusion of constraints in network inference improves the ranking of nodes. Both the
frequentist and the noninformative Bayesian methods start from a performance of τ = 0
in the limit of very small data sizes, and need considerable data to reach the performance
of the unweighted topology. On the other hand, BaCon defaults to the performance of the
topology in the limit of small data. BaCon performs at least as good as the unweighted

Figure 6 Effects of constraints on the downstream task of node ranking. The left panel shows results on
Erdős Rényi graphs, the middle panel shows results on geometric Euclidean random graphs, and the right
panel shows results on geometric hyperbolic random graphs. We measure performance with the Kendall τ
correlation between the ranking obtained from the ground truth and the inferred transition matrices. Error
bars represent the 95% confidence interval. The positive impact of constraints on network inference translates
to the node ranking task
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Figure 7 Effects of constraints on the downstream task of node ranking. From left to right, the panels show
the results for wikispeedia, neural, ecosystem, flights, and powergrid networks. We measure performance with
the Kendall τ correlation between the ranking obtained from the ground truth and the inferred transition
matrices. Error bars represent the 95% confidence interval (mostly too small to be visible). The positive impact
of constraints on network inference translates to the node ranking task

Figure 8 Effects of partial constraints on the downstream task of clustering. The left panel shows results on
Erdős Rényi graphs, the middle panel shows results on geometric Euclidean random graphs, and the right
panel shows results on geometric hyperbolic random graphs. We measure performance with the Adjusted
Mutual Information (AMI) between the clusters obtained from the ground truth and the inferred transition
matrices. Error bars represent the 95% confidence interval. The positive impact of constraints on network
inference translates to the clustering task

topology, with the only exception of the powergrid dataset. However, also in the power-
grid dataset, BaCon performs better than the frequentist and the noninformative Bayesian
approaches.

Cluster detection We present results of experiments on cluster detection in synthetic
data in Fig. 8 and Fig. 9, and in empirical data in Fig. 10. These results show that the con-
straints also improve the detection of clusters. The flights dataset might appear as an out-
lier, where the noninformative Bayesian inference outperforms the other methods. How-
ever, this is merely due to the fact that the flights dataset exhibits only a single community,
which is what the noninformative Bayesian method always predicts a priori. Although
the variance of the performances is larger compared to the previous task, we see similar
behaviour as in the node ranking experiments. While the frequentist and the noninforma-
tive Bayesian approaches have AMI of zero in the limit of small data sizes (indicating no
correlation between the identified and ground truth clusters), BaCon defaults to the per-
formance of the unweighted topology. We further inspect this behaviour in Fig. 9, where
we show the number of detected clusters in the synthetic graphs introduced in Sect. 4.1.
We compare them against the number of clusters detected in the ground truth transition



Perri et al. EPJ Data Science           (2023) 12:48 Page 15 of 24

Figure 9 Number of detected clusters by each method for a given number of sampled edges. The left panel
shows results on Erdős Rényi graphs, the middle panel shows results on geometric Euclidean random graphs,
and the right panel shows results on geometric hyperbolic random graphs. We show the number of
communities detected by each method against the horizontal band indicating the interval between 2.5-th
and the 97.5-th percentiles of the ground truth number of communities (shaded gray area). Error bars
represent the 95% confidence interval. The positive impact of constraints on network inference translates to
the clustering task

Figure 10 Effects of constraints on the downstream task of clustering. From left to right, the panels show the
results for wikispeedia, neural, ecosystem, flights, and powergrid networks. We measure performance with the
Adjusted Mutual Information (AMI) between the clusters obtained from the ground truth and the inferred
transition matrices. Error bars represent the 95% confidence interval. The positive impact of constraints on
network inference translates to the clustering task

matrix, indicated with the gray horizontal band representing the 95% confidence interval.
The noninformative Bayesian method needs considerably more data to detect more than
one cluster, while the frequentist method generally overestimated the number of clusters.
This means that, although their performance in terms of AMI is similar, they err differ-
ently.

Discussion With the experiments presented above, we investigated the consequences of
using topological constraints on downstream network analysis tasks, i.e. research question
Q3 from Sect. 1. The experiments show that the inclusion of topological constraints in
the inference generally improves the performance of downstream network analysis tasks.
The results also show that the underfitting of the noninformative Bayesian method and
the overfitting of the frequentist method carry over to downstream tasks. Not surpris-
ingly, both methods initially require a sufficient number of observed edges to reach the
performance obtained by the unweighted topology alone. This underlines the dilemma
that practitioners face when they are confronted with a dataset of edge observations and
information of the topology: Which of the two sources will lead to a more reliable analysis



Perri et al. EPJ Data Science           (2023) 12:48 Page 16 of 24

of the underlying network? Instead of choosing between the two sources of information,
BaCon allows to include both. As a result, the downstream analysis is as good as for the
unweighted topology in the limit of small number of observation, and generally at least as
good as the other two methods.

The two outliers, the ecosystem and the powergrid datasets, require special considera-
tion. Although the inclusion of constraints improved the inference and the performance
of the downstream task of cluster detection, they showed different behaviour in the node
ranking task. In the powergrid dataset, although we see that BaCon outperforms the fre-
quentist and noninformative Bayesian methods, which means that the inclusion of topo-
logical constraints improves the inference, we observe that in some cases the unweighted
topology leads to better node ranking than the transition matrix inferred with BaCon.
In other words, for some data sizes, including observations deteriorates the ranking. The
powergrid dataset represents an outlier because most of the weights have the same value
since they represent voltages. For such an equiprobable distribution of the weights, the
uniform distribution (α = 1) is not a good prior, because it leads to weights that are more
biased than the target. In other words, random fluctuations observed in edge samples are
interpreted as actual patterns, which can be viewed as a case of overfitting to the edge ob-
servations in this special example. Although BaCon still performs better than the methods
that do not use constraints, in Sect. 7, we show how we can further improve the inference
by taking prior knowledge about the peakness of the distribution into account.

The ecosystem dataset presents the other extreme. This network has a highly biased
weight distribution, with ten orders of magnitude between the largest and smallest weights
and a Fisher-Pearson coefficient of skewness of 13 (Kokoska and Zwillinger [15]). The flat
prior weight distribution (cf. Sect. 3) used in the experiments outlined above makes such
biased distributions very unlikely and leads to weights that are less biased than the target.
In other words, we are underfitting the observations. This provides a possible explana-
tion why the frequentist method outperforms BaCon, since the frequentist method ex-
hibits a tendency to overfit the observations. However, in the ecosystem dataset we also
observe that the noninformative Bayesian method leads to better node rankings than Ba-
Con, even though we know from Sect. 5 that it underfits the transition probabilities more
than BaCon. The flat prior weight distribution causes underfitting of both BaCon and
noninformative Bayesian methods and thus cannot explain alone the better ranking of the
noninformative Bayesian method. Therefore, to understand this, we have to consider how
the node ranking is impacted by the flat prior weight distribution in conjunction with the
topological constraints. The noninformative Bayesian method underfits with the prior of
a fully connected network, by which all nodes have equal PageRank scores and an unde-
fined ranking. BaCon underfits with the prior of the unweighted topology; in the topology,
nodes have different PageRank scores and their rankings are positively correlated with, but
not identical to the ground truth rankings. Because of the underfitting, the scores of nodes
remain close to the ones given by the prior, and therefore BaCon outperforms the nonin-
formative Bayesian method in the regime of very small data. However, once we consider a
larger number of observed edges, BaCon’s prior actually becomes a hindrance. Since the
PageRank scores of nodes in the topological prior are not all equal, they require more data
to change sufficiently to improve the incorrect rankings. In contrast, the PageRank scores
of nodes with the fully connected prior of the noninformative Bayesian method are all
equal and thus need less data to change sufficiently to adjust the undefined ranking to the
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Figure 11 Differences in node ranking in the ecosystem network as a function of indegree and inweight. The
color encodes the difference between the ranking nodes get based on the ground truth transition matrix Tgt
and the ranking obtained from the unweighted graph topology G. Orange nodes are ranked high by the
ground truth and low by the unweighted topology and the blue the opposite. Grey nodes have similar
rankings with both matrices. The nodes with high (low) indegree but low (high) inweight are ranked opposite
in the topological and weight information and are the reason why BaCon under-performed in the ecosystem
network (see Fig. 7)

ground truth one. We can peek into the mechanism of how inclusion of the topological
prior hurts BaCon’s node ranking in the ecosystem dataset by looking at Fig. 11. In this
figure, we plot the indegree and inweight properties of the nodes, and the discrepancies in
their rankings. The high skewness of the weight distribution makes it possible that some
nodes have high (low) indegree (x-axis) in the topology but low (high) inweight (y-axis)
in the ground truth weighted graph. It is exactly those nodes that have the highest differ-
ences between their ground truth rank and their rank from the topology (the difference
is encoded in the color of the scatter plot markers). This situation cannot occur with the
noninformative Bayesian because all nodes have the same indegree in the prior (the fully
connected graph). In Sect. 7, we will show how to incorporate prior knowledge of the
skeweness of the weight distribution in the inference step.

Finally, we discuss threats to validity. When the information of constraints G is partial
and biased, the inclusion of constraints in the inference can negatively impact the down-
stream tasks. As an example, take a weighted network in which a node v has the highest
centrality and is not connected to all other nodes. If we only know the constraints on
the node v, then the resulting (partially known) topological constraint will be a fully con-
nected network except for the connections to and from node v. Thus, looking only at this
topology, we would assume that the node v is the least important node in the network,
and, since BaCon mixes the information present in constraints and in the observations, it
would negatively impact node ranking. A similar situation can occur with cluster detec-
tion in a weighted network with ground truth clusters C. If the knowledge of the topology
of the constraint is biased in such a way that there is a different node grouping C′ and we
only know constraints across clusters C′, then the inferred clusters could also be biased to-
wards C′. In Sect. 7, we will discuss how our approach allows a practitioner to incorporate
the information about biases of the two datasources in the inference.
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7 Tuning the shape parameter of edge weights
In the previous section, BaCon’s results on ecosystem showed a subpar performance for
node ranking and clustering. Additionally, on powergrid, we observed overfitting in the
medium samples regime. Both observations relate to the characteristics of the datasets’
edge weight distributions: highly biased in ecosystem and equiprobable for powergrid. In
fact, prior knowledge on those systems may lead us to expect that the edge weight distribu-
tions exhibit such characteristics: Ecosystems heavily rely on simpler species to introduce
energy into the system (Chapin et al. [6]). In a power grid, possible voltages are determined
by engineering standards. Leveraging the Bayesian approach of BaCon, we can use these
expectations to formulate non-uniform priors for the edge weight distribution. As dis-
cussed in Sect. 3, by changing α we obtain prior distributions with different shapes: α < 1
favours biased distributions while α > 1 favours equiprobable distributions. By matching
the parameter α to the expected weight distribution in a given system, we can thus include
prior information on the edge weight distribution into our inference, which can make it
more data-efficient. In this section, we demonstrate the benefit of this procedure in the
ecosystem and powergrid data sets.

We show the results of the experiments on ecosystem in Fig. 12 and of the experiments
on powergrid in Fig. 13. The experiments are the same as the ones in the previous section
but, in addition to the uniform prior (α = 1), we now also consider a prior that favours bi-
ased α = 0.01 and equiprobable distributions α = 10. The performance of our method for
three different tasks is shown in the three rows of Fig. 12 (top row: inference of transition
matrix, middle row: node ranking, bottom row: cluster detection). The columns show the
performance for different values of the parameter α (left column: α = 0.01, middle col-
umn: α = 1, right column: α = 10). As expected, ecosystem performs best with the prior
that favours biased distributions and worst with the prior that favours equiprobable dis-

Figure 12 Effect of using different concentration parameters α alongside the topological prior on the
ecosystem network. Rows indicate the task (top to bottom: transition matrix inference, node ranking,
clustering), columns the different values for α (left to right: α = 0.01, α = 1, α = 10). We observe that
compared to the value used in the previous experiment (α = 1) BaCon performance on the ecosystem
network improves for the smaller α (left column)
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Figure 13 Effect of using different concentration parameters α alongside the topological prior on the
powergrid network. Rows indicate the task (top to bottom: transition matrix inference, node ranking,
clustering), columns the different values for α (left to right: α = 0.01, α = 1, α = 10). We observe that
compared to the value used in the previous experiment (α = 1) BaCon performance on the powergrid
network improves for the larger α (right column)

tributions. Conversely, powergrid performs best with the prior that favours equiprobable
distributions and worst with the prior that favours biased distributions.

Finally, we address the question of the choice of α with Bayesian model selection (Kass
and Raftery [11]) as illustrated at the end Sect. 2. We compare choices of α from 50 evenly
spaced points on a log scale from 10–2 to 102. We present the results in Fig. 14. The first
three rows show the results of the experiments on ecosystem and powergrid datasets for
the all three tasks. We see a performance improvement compared to Fig. 7, with an im-
provement of the pagerank results in ecosystem and the disappearing of overfitting on the
intermediate range for the clustering task in powergrid. The fourth row in Fig. 14 shows
the value of α chosen by model selection. For BaCon and the noninformative Bayesian
method, we have an initial phase where few edges are observed and the model selection
chooses a prior that favors equiprobable distributions. With the increase in observations,
the α chosen for the noninformative Bayesian stabilizes around the minimum considered
value. On the contrary, for BaCon the value of α stabilizes around 0.1 for the ecosystem and
10 for the powergrid. This difference illustrates that, thanks to the topological constraint,
the model selection on BaCon successfully chooses the prior that is justified by the dis-
tribution of the weights of existing edges. It chooses the prior that favors equiprobable
distributions for powergrid and the prior that favors biased distributions for ecosystem. In
the noninformative Bayesian approach the model selection favors low shape hyperparam-
eters. This is because many edges cannot be observed, and thus have weight zero, which
biases the distribution.

Discussion Our results show that using BaCon with suitable informative priors elimi-
nates both the poor performance on ecosystem and the overfitting for medium-size sam-
ples in powergrid. For simplicity, we performed our experiments using two specific values
of α (α = 0.01, α = 10). Nemenman et al. [22] remark that the choice of the concentration
parameter α of the Dirichlet distribution which maximizes the variance of the entropy
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Figure 14 Results of the application of model selection on BaCon and the noninformative Bayesian method
with model selection on the powergrid and ecosystem datasets for the tasks of transition matrix inference (first
row), node ranking (second row) and clustering (third row). The fourth row illustrates the prior concentration
parameters α resulting from the model selection in the powergrid and ecosystem datasets for BaCon . The
value for BaCon stabilizes around 0.1 for the ecosystem and around 10 for the powergrid, because ecosystem
has biased edge weights, and powergrid has equiprobable edge weights. Hyperparameter for noninformative
Bayesian approach prefers lower values of the hyperparameter – and favors biased distributions –, because
some edges never appear

of the multinomial distributions drawn from it is the Schurmann–Grassberger estimator
(α = 1/K where K is the alphabet size of the multinomial distribution), albeit they also
note that the resulting variance is narrow. Since the skewness and entropy of a multino-
mial distribution are related, we suspect that the Schurmann-Grassberger estimator might
be the optimal choice of a fixed α that makes the least assumptions about the skeweness
of the distribution. Finally, we highlight that reducing α would help in the case when the
constraint is partially known (and possibly biased), considered at the end of Sect. 6: since
spurious edges have zero weights, they effectively increase the skewness of the weight
distribution, and thus require lower α. In this case, the reduction of α could also be inter-
preted as assigning smaller importance to the topological prior when it is less reliable.

Finally, the choice of the free parameter could be solved with a hierarchical Bayesian ap-
proach (Kemp et al. [12]). However, this would complicate the inference and may require
Monte Carlo simulations, hurting the scalability of the approach. Therefore, we use the
model selection described in Sect. 2 and show that its application on the noninformative
Bayesian has a tendency to choose priors for biased distribution. In contrast, its appli-
cation on BaCon identifies priors favoring equiprobable distributions for powergrid and
biased distributions for ecosystem.

8 Related work
In our work, we propose a Bayesian method to infer transition matrices from data captur-
ing a possibly incomplete set of repeated interactions between nodes in a graph that are
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subject to topological constraints. The inference of Markov chains’ transition matrices
from data has rich literature with interesting developments in bioinformatics (Baldi and
Brunak [1]) and statistical natural language processing (Manning and Schutze [20]). The
problem of inferring the order of higher-order Markov chains has been investigated with
connections to statistical mechanics and information-theoretic techniques (Strelioff et al.
[37]). The Bayesian estimation of transition probabilities was also used in Peixoto and Ros-
vall [29] in network and higher-order network models with community structures. While
that work is focused on possibilities to cluster nodes and sequences using higher-order
patterns, in this paper, we compare the inference methods for the downstream tasks on
the inferred first-order networks, and we additionally address the model selection ques-
tion of making a good choice of shape hyperparameters. The variance of transition proba-
bilities for bigrams and trigrams has been addressed using monograms probabilities to do
smoothing on the transition probabilities (MacKay and Peto [19], Manning and Schutze
[20]). In contrast to these works, the focus of this work is to use existing topological con-
straints, and not smoothing transition probabilities in n-gram models. A related approach
has recently been proposed to address the detection of the optimal order of higher-order
graphical models for causal paths in temporal networks (Petrovic and Scholtes [31]). While
this approach is suitable to address the important problem of model selection in higher-
order network models (Lambiotte et al. [17]), the challenge of inference and model selec-
tion in first-order weighted graphs, which are abundant in practical network analysis, is
largely been overlooked. Also, in addition to Petrovic and Scholtes [31], which focuses on
optimal-order detection, our work discusses the selection of the shape parameters, which
has not been discussed in Petrovic and Scholtes [31], despite it also being important for
the higher-order inference. We further explicitly evaluate the accuracy of the inference in
incomplete data and assess its impact on downstream network analysis tasks for several
synthetic and empirical data sets.

Clearly, the inference of transition matrices from repeated interactions is only one par-
ticular challenge that fits into a larger body of works addressing other types of network
inference problems, i.e. the inference of weighted and unweighted graphs in noisy or in-
complete data, or in data with spurious interactions. A number of works have implicitly ad-
dressed the inference of weighted graphs by adapting downstream network analysis tasks
to incomplete data, or to data that are subject to errors. In Smiljanić et al. [36] a Bayesian
prior is used to avoid overfitting when detecting clusters in data that are subject to both
missing or spurious interactions. This prior regularizes the community detection results
but, differently from the one considered in this paper, does not use a known network topol-
ogy as a constraint. Similarly, the issue of network inference has been implicitly addressed
with the framework of Graph Neural Networks (GNN). In these works, the inferred net-
work structure and a downstream learning task are jointly optimized by the GNN (Wang
et al. [41], Franceschi et al. [8], Wei Jin et al. [10], Zhang et al. [46]). Because of this joint
optimization, these works do not aim at a principled inference of an optimal weighted
graph model given observations, but rather at finding a network model that optimizes the
specific learning task at hand.

Another body of works focuses on inferring the unweighted topology of networks from
incomplete or biased observations of interactions. Early works tackle the problem from
the perspective of a specific domain like, e.g., social systems (Butts [4]) or connectomes in
neuroscience (Priebe et al. [33]) (further references can be found in Young et al. [43]). More
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recent works define the problem in more general terms as the inference of both topology
and a data model connecting the topology to the observations. Here, a data model is de-
fined as a model that produces observations as a function of the network topology and
additional parameters. In Newman [23], the network topology is obtained through a pro-
cedure of expectation-maximization from potentially incomplete or noisy data. In Casir-
aghi et al. [5], the problem is tackled from the perspective of the statistical significance of
the interactions. The method provides a way to infer statistically significant edges from
edges that could have happened at random in the system.

Methods similar to the ones above, but using a Bayesian approach for the inference
of weighted graphs, were proposed where the posterior is obtained through a Markov
Chain Monte Carlo procedure (Young et al. [43], Peixoto [26]). In Peixoto [27], the prior
is a generative model that couples the network inference with the detection of commu-
nities. In Rabbat et al. [34] the directedness of the network is inferred from undirected
co-occurrence data. The data are assumed to be generated by random walks, and Expec-
tation Maximization is used to estimate transition probabilities.

Unlike the methods above, we assume that we have (at least partial) knowledge on which
interactions are possible. We further consider situations where no spurious interactions
can be observed, i.e. we have access to data that represent a subset of the possible in-
teractions. We use this knowledge to define a Bayesian prior that, differently from other
Bayesian priors in the literature, explicitly constrains which interactions are possible. We
obtain a weighted graph inference method that can be solved analytically, thus being com-
putationally efficient. Different from existing methods, we also show how the parameters
controlling our prior can be tuned depending on the expected skewness of the underlying
weight distribution, thus further improving the data efficiency of our method.

9 Conclusion
In this work, we address the problem of inferring transition matrices from data captur-
ing an incomplete sample of repeated interactions in networked systems with a known
topology. Examples include data on users navigating information networks with a known
hyperlink structure, passengers travelling in a transportation network with known phys-
ical topology, or observed social interactions in systems with known social structure. To
the best of our knowledge, no existing inference method has specifically addressed this
problem, despite its large practical relevance for network analysis tasks that rely on tran-
sition matrices constructed from weighted graphs.

We address this issue with a Bayesian approach, where the prior distribution captures
our knowledge of the network topology. An experimental evaluation of our method in
synthetic and empirical datasets shows that it considerably outperforms a common fre-
quentist inference method and a noninformative Bayesian approach both in terms of the
accuracy of the inferred transition matrix, and in terms of the results of downstream net-
work analysis tasks. The prior based on topological constraints regularizes the inferred
probabilities and thus prevents overfitting in small data sets (exhibited by the frequentist
method). It simultaneously limits the degrees of freedom, which prevents underfitting (ex-
hibited by the noninformative Bayesian approach). Our results show that such a prior is
effective even when the knowledge of the constraints is partial. Moreover, thanks to its an-
alytical tractability, our approach does not require expensive simulations. It just requires
Bayesian updating based on a simple counting of interaction occurrences. Highlighting
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issues in networks with biased or peaked distributions of edge weights, we finally show
how the adjustment of a parameter that controls the prior distribution of edge weights
can be used to further improve the data efficiency of our method.

In summary, we propose an intuitive and elegant method for a common problem in
network analysis. Referring to the adjustment of the prior to the expected edge probability
distribution, in future works we seek to address the question how a suitable choice of this
parameter can be learned from the data. We further expect that our method can be used
to improve network inference in situations where we do not have access to a network
constraint, e.g. by combining it with existing methods to infer the unweighted topology.
Finally, considering the fact that our method is particularly useful in situations in which
the amount of data is small compared to the dimension of the space of possible interactions
(i.e. the degrees of freedom determined by the network topology), we expect it to be of
considerable interest for the growing community addressing inference tasks in higher-
order network models (Lambiotte et al. [17]).
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