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Abstract
Malicious actors exploit social media to inflate stock prices, sway elections, spread
misinformation, and sow discord. To these ends, they employ tactics that include the
use of inauthentic accounts and campaigns. Methods to detect these abuses
currently rely on features specifically designed to target suspicious behaviors.
However, the effectiveness of these methods decays as malicious behaviors evolve. To
address this challenge, we propose a language framework for modeling social media
account behaviors. Words in this framework, called BLOC, consist of symbols drawn
from distinct alphabets representing user actions and content. Languages from the
framework are highly flexible and can be applied to model a broad spectrum of
legitimate and suspicious online behaviors without extensive fine-tuning. Using BLOC
to represent the behaviors of Twitter accounts, we achieve performance comparable
to or better than state-of-the-art methods in the detection of social bots and
coordinated inauthentic behavior.

Keywords: Social media; Encoding online behavior; Bot detection; Coordination
detection

1 Introduction
The widespread use of social media makes them a prime target for exploitation by bad
actors. Efforts to inflate the popularity of political candidates [1] with social bots [2], in-
fluence public opinion through the spread of disinformation and conspiracy theories [3, 4],
and manipulate stock prices through coordinated campaigns [5, 6] have been widely
reported. The threats posed by malicious actors are far-reaching, endangering democ-
racy [7, 8], public health [9–11], and the economy [12]. In response, researchers have de-
veloped various tools to detect malicious inauthentic accounts.

However, we are in an arms race. With new detection methods and prevention mecha-
nisms from platforms, malicious actors continue to evolve their behaviors to evade detec-
tion. For example, consider the evolution of social bots: in the early days, spam bots were
easy to identify because they often lacked meaningful profile information and/or demon-
strated naive behaviors [13, 14]. In recent years, bot accounts have become more sophis-
ticated. Some display detailed profiles, either stolen from other users or generated by
deep neural networks [15]. Some mimic human actions and build social connections [16].
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Figure 1 BLOC strings for a sequence of three tweets (a reply, an original tweet, and a retweet) by the @NASA
account. Using the action alphabet, the sequence can be represented by three word p.T .r separated by dots.
Using the content alphabet, it can be represented by these three words (Emt)(mmt)(mmmmmUt) enclosed in
parentheses. See Sect. 3 for details

Others adopt strategies such as coordinated inauthentic behaviors.1 Such coordinated be-
haviors appear to be normal when inspected individually, but are centrally controlled to
achieve some goal [6].

The arms race has spawned a series of more complex detection methods [6, 16, 17].
An important limitation of these methods is that they rely on features crafted specifically
to target previously observed malicious behaviors [18]. These features may not generalize
well to other suspicious behaviors. For example, methods designed to detect sophisticated
social bots tend to overlook coordinated behaviors, and vice versa [19]. Existing methods
also become less useful when facing novel malicious actors, unless the features are ad-
justed accordingly.

To address this challenge, we propose a framework of Behavioral Languages for On-
line Characterization (BLOC), designed to represent social media account behaviors. Not
to be confused with neural network-based language models, the BLOC framework in-
volves formal languages specified by sets of rules for generating strings of symbols that
describe online behaviors. BLOC words consist of symbols drawn from distinct alphabets
representing an account’s actions and content. As an example, Fig. 1 illustrates possible
representations of a sequence of tweets by the official Twitter handle for NASA. BLOC
languages are highly flexible in that they can represent a broad spectrum of legitimate and
suspicious behaviors without extensive fine-tuning. In this paper we show that meaning-
ful behavioral patterns emerge from such representations, facilitating tasks related to the
classification of social media accounts.

To demonstrate the effectiveness of the BLOC framework, we evaluate it on social bot
and coordinated behavior detection tasks, together with previous methods specifically de-
signed for each of the two tasks. To the best of our knowledge, BLOC is the only represen-
tation framework that has been applied to both tasks. Although methods based on BLOC
use significantly fewer features than state-of-the-art methods —making them much more
efficient— they yield better or comparable performance.

1about.fb.com/news/2018/12/inside-feed-coordinated-inauthentic-behavior.

http://about.fb.com/news/2018/12/inside-feed-coordinated-inauthentic-behavior
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2 Related work
We can think of at least two dimensions to characterize inauthentic online behaviors: au-
tomation and coordination. Accounts could be automated but independent, or coordi-
nated but closely managed by humans, or both automated and coordinated, and every-
thing in between. Below we outline research aimed to detect inauthentic behaviors along
these dimensions. Note that not all automated or coordinated behavior is necessarily in-
authentic or malicious. For example, some self-declared bots are harmless or even useful;
and some grassroots campaigns may use coordination to promote beneficial social move-
ments.

2.1 Automation
The behavioral spectrum of social media account automation has human behavior at one
end and bot-like behavior at the opposite end. Somewhere in between are “cyborgs” [20,
21], accounts that cycle between human and bot-like behaviors.

Various machine-learning methods have been proposed for identifying specific kinds of
automated behavior. These methods typically utilize some combination of features such
as social network structure, content/profile characteristics, and temporal patterns [2].

Multiple researchers have characterized authentic human behaviors online in ways that
can inform the design of methods to distinguish them from behaviors generated by au-
tomated, algorithm-driven accounts. Wood-Doughty et al. studied one million accounts
to explore how different demographic groups used Twitter [22]. This was based on the
assumption that user behavior is reflected by indicators such as profile personalization,
temporal information, location sharing, user interaction, and devices. He et al. provided
a method for identifying five classes of behaviors on Twitter: individual, newsworthy in-
formation dissemination, advertising and promotion, automatic/robotic, and other activ-
ities [23]. Researchers have also studied human behavior across other social media plat-
forms. Maia et al. represented YouTube users as feature vectors over a vocabulary consist-
ing of number of uploads, videos viewed, channels visited, system join date, age, and so
on [24]. They then clustered the users into predefined profiles such as small community
member, content producer, and content consumer. Benevenuto et al. studied the online
behavior of over 37 thousand users who accessed four social networks (Orkut, MySpace,
Hi5, and LinkedIn) by analyzing their clickstream data [25].

On the other end of the automation spectrum are social bots [2]. A common theme
of the literature is to build algorithms to distinguish bot-like and human accounts [16],
which requires representing the account characteristics first. The rich information ob-
tained from social media platforms makes it possible to describe accounts along many
different dimensions. Depending on the types of the target accounts, existing methods
use profile information [26], content [13, 27, 28], actions [17], social network [29], and
temporal signatures [17].

Another common approach is to combine account characteristics from different dimen-
sions in the same model [14, 18, 19, 30–32]. Botometer,2 for example, is a publicly avail-
able supervised machine learning system that extracts over 1000 features from a Twitter
account’s profile, content, sentiment, social network, and temporal activity.

2botometer.org.

http://botometer.org
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Digital DNA (DDNA), proposed by Cresci et al. [27, 28], is the most similar method to
BLOC. DDNA encodes each account as a pair of strings of symbols representing actions
and content, respectively. It then considers accounts with long common substrings as bots.
While BLOC languages similarly use sequences of symbols to encode actions and types of
content, they differ significantly from DDNA conceptually and technically.

Conceptually, DDNA was designed for characterizing behaviors, especially automated
ones. In contrast, the focus of BLOC is broader: modeling behaviors irrespective of the
class of the account (bot, cyborg, or human) or intent (malicious or benign). This means
BLOC can be applied to multiple tasks such as individual/group characterization, bot, and
coordination detection as demonstrated in this paper.

There are also two crucial technical differences between BLOC from DDNA. The first
has to do with language features capturing pauses and repetitions (see Sect. 3.1). Pauses
enable studying a variety of behaviors (e.g., repetitive, dynamic, and bursty). For exam-
ple, the absence of long pauses could be revealing of automated behaviors. Additionally,
DDNA truncates repeated content characters, whereas BLOC content words can capture
repetitions to emphasize different behaviors. Repetitions provide a means to weigh and
identify important signals, which is crucial since not all aspects of behaviors are expressed
equally. This can help identify accounts engaging in repetitive behaviors, such as long se-
quences of retweets, typical of certain inauthentic accounts.

The second important difference is between the signature-based method of DDNA and
the vector-based approach of BLOC (see Sect. 3.2). BLOC languages represent behaviors
with words that may capture distinct behavioral patterns. Accounts are thus represented as
word vectors, allowing for similarity measures beyond string matching. Word representa-
tions are also important since accounts can change behaviors, as illustrated by the cyborg
account in Fig. 2. Changes in behavior map to changes in BLOC words. This representa-
tion provides opportunities to study when accounts have been hijacked or repurposed.

2.2 Coordination
Malicious social bots evolve in sophistication over time, making them more effective and
harder to detect. In some cases, it is not sufficient to study individual accounts. A group
of inauthentic accounts can be coordinated by a single entity, whether their behavior are
human-controlled or automated. These kinds of sophisticated deception can only be de-
tected through observations at the group level [16]. This has led to multiple research ef-
forts to detect malicious coordinated behaviors.

While individual bot detection aims to separate individual human and bot-like accounts,
coordination detection involves clustering suspiciously similar accounts into groups [6].
Appropriate definitions of similarity measures are subjective and vary across differ-
ent studies. A common choice is to focus on the temporal dimension, with the action
time series of different accounts compared directly [33, 34] or modeled using temporal
point processes [35]. Other similarity measures focus on duplicated or partially matched
text [36, 37] or on shared retweets [38]. Some methods focus on specific components of
the content, such as embedded links, hashtags, and media [6, 37, 39–41]. Account pro-
file information can also be used to identify similar accounts [42]. Finally, it is possible to
aggregate similarity measures based on different criteria [43].

These methods typically extract account features designed to target specific suspicious
behavioral patterns [6]. The BLOC framework encodes behavioral information into fea-
tures that can be used to calculate similarities without a predefined target behavior. As a



Nwala et al. EPJ Data Science           (2023) 12:33 Page 5 of 22

Table 1 BLOC language parameters

Param. Context Explanation Values

p1 Pauses Session delimiter threshold Time
p2 Pauses Time granularity f1(�) or f2(�)
p3 Word Use sessions for content words Yes or No
p4 Word Tokenization N-gram or pause
p5 Word Sort symbols Yes or No
p6 Word Word truncation length Integer

result, BLOC languages are versatile and can be applied to characterize a broad spectrum
of behaviors. We next provide an in-depth introduction to the BLOC framework.

3 Behavioral languages for online characterization
The central component of BLOC is a collection of two alphabets: actions and content. Each
consists of a set of symbols that represent activities or traits. Collectively, these alphabets
encode behaviors that can be utilized to build models for various tasks and platforms. The
BLOC framework is in fact platform agnostic; similar alphabets can be easily adapted to,
say, Instagram, Facebook, and TikTok.

BLOC languages have several parameters, shown in Table 1. Different combinations of
values for these parameters correspond to different languages and representations. Below
we discuss these parameters in detail, noting recommended values based on extensive
experiments. In Sects. 4 and 5 we apply different BLOC representations to various tasks.

3.1 BLOC alphabets
Let us illustrate how to generate BLOC strings drawn from the alphabets for an arbitrary
Twitter account @Alice. (Note that all symbols below could also be used for Instagram
accounts, excluding the action symbol for resharing one’s own posts, since this action is
not supported on Instagram.)

3.1.1 Action alphabet
The action alphabet includes two sets of action and pause symbols. An action symbol
characterizes a single post by an account with a symbol as outlined below:

T : Post message
P: Reply to friend
p: Reply to non-friend
π : Reply to own post
R: Reshare friend’s post
r: Reshare non-friend’s post
ρ : Reshare own post

For example, the string TpπR indicates that @Alice posted a tweet, then replied to a
non-friend, followed by a reply to herself, and finally retweeted a friend.

The pause symbols characterize the pauses between consecutive actions. Pauses provide
additional context for actions. For example, actions taken with very short (e.g., less than a
second) or highly regular pauses could indicate automation [44].

Let us first define � as the time between two consecutive actions. Based on parame-
ter p2, we have two possible pause alphabets defined by functions that map � values to
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symbols. The function f1 is defined as:

f1(�) =

⎧
⎨

⎩

no symbol if � < p1

. otherwise
(1)

where p1 is a session delimiter threshold. A session is thus defined as a maximal sequence
of consecutive actions separated by pauses shorter than p1. Sessions are important be-
cause they provide natural word boundaries for tokenizing BLOC words (see Sect. 3.2).
We recommend using a value of a minute or less for p1 in Eq. (1).

As an illustration, let us punctuate @Alice’s string of actions (TpπR) with pause sym-
bols using f1 and p1 = 1 minute. Say that Alice pauses 2.5 minutes between the first tweet
and the reply to a non-friend, then 50 seconds pass until her self-reply, and finally she
waits 3 days before the final friend retweet. The resulting BLOC string would be T .pπ .R,
indicating three sessions whose boundaries are marked by the dots.

An alternative pause alphabet assigns different symbols to long pauses for better granu-
larity. We discretize time into a logarithmic scale to represent a wide range of pauses, e.g.,
hours vs. days vs. weeks, by defining f2 as:

f2(�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

no symbol if � < p1

th if p1 ≤ � < 1 hour

td if 1 hour ≤ � < 1 day

tw if 1 day ≤ � < 1 week

tm if 1 week ≤ � < 1 month

ty if 1 month ≤ � < 1 year

tz otherwise.

(2)

Using the same example as above, @Alice’s string of actions using the f2 pause symbols
with p1 = 1 minute would be Tthpπ twR.

3.1.2 Content alphabets
The content alphabet provides a lexical characterization of a post — whether it contains
text, links, hashtags, and so on. Unlike the action alphabet, a single social media post can
contain multiple content symbols from the following list:

t: Text
H : Hashtag
M: Mention of friend
m: Mention of non-friend
q: Quote of other’s post
φ: Quote of own post
E: Media object (e.g., image/video)
U : link (URL)

As an illustration, let us imagine that @Alice’s first tweet only contains text; her reply to
a non-friend has two images and one hashtag; her self-reply mentions one friend and has
one link; and finally she retweets a post that mentions a non-friend. The resulting content
string depends on the p3 parameter. If sessions are not used, each action corresponds to a
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separate content word: (t)(EEH)(UM)(m). Here the contents of the reply to a non-friend
(EEH) and of the self-reply (UM) are separated, even though they were part of the same
session. Using sessions, we get (t)(EEHUM)(m). Note that parentheses separate content
words, and the order of content symbols within a word is arbitrary and defined in the
implementation.

3.2 BLOC vector models
A flexible representation used in many machine-learning tasks, including online bot de-
tection and coordination detection, is obtained by mapping each data point (an account
or behavior in our setting) to a point in a vector space. There are multiple ways to gen-
erate vector representations from BLOC strings. One approach would be to train a deep-
learning model [45] such as word2vec [46] and embed BLOC words or sentences into
dense feature vectors. However, such an abstract vector space would fail to benefit from
the interpretability of BLOC symbols.

Alternatively, we can obtain a vector representation by first tokenizing BLOC strings
into words and then using these words directly as vector space dimensions. Tokeniza-
tion can be done using one of two methods, n-gram or pause, based on parameter
p4 (Table 1). The n-gram method generates tokens of fixed size n by sliding an n-
sized window over the BLOC string. Using n = 2, we generate bi-grams resulting in
a vocabulary of two-symbol words. For example, given the action string Tpπ .r and
the BLOC content string (t)(EH)(U)(mm) with n = 2, we obtain the set of words
{Tp, pπ ,π ., .r, tE, EH , HU , Um, mm}.

The pause method uses pauses to break BLOC action strings into words of variable
length. In addition to serving as word boundary markers, pause symbols are included in
the vocabulary as single-symbol words. For content strings, individual posts mark word
boundaries: all symbols in the same post form a single word. The symbols within each
word may be sorted alphabetically depending on parameter p5. To illustrate pause tok-
enization without sorting, given the same BLOC action string Tpπ .r and BLOC content
string (t)(EH)(U)(mm), we obtain the set of words {Tpπ , ·, r, t, EH , U , mm}.

Pause tokenization often results in long words, for example, the 13-symbol word
ππππππTTπππππ from the cyborg account in Fig. 2. Long words occur when the
pauses between multiple consecutive actions are shorter than p1, meaning that actions
are performed in bursts, which often indicates automation. The distinction between, for
example, rrrr and rrrrr is often not important, so instead of representing both as separate
words in our vocabulary, we could truncate long words after a limit. For example, setting
p6 = 4 would truncate characters that repeat four or more times. The words rrrr, rrrrr,
and rrrrrr would all be replaced by rrr+.

After tokenization, we can represent any account as a vector of BLOC words. In a vector
model, each account is represented as a point (w1, w2, . . . , wk) in a k-dimensional vector
space where each dimension i corresponds to a word. We wish to define a weight wi that
represents how well an account is described by i. The number of times fi that word i occurs
in the BLOC representation of the account, known as term frequency (TF), is not very
discriminative because some words, such as t (text), may be common across all accounts.
Therefore the term frequency is multiplied by a second factor, called inverse document
frequency (IDF), that captures how rare a word is across accounts. We use the TF-IDF
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Figure 2 Illustrations of BLOC action strings (p1 = 1 minute) for a human, a cyborg, and a bot Twitter account
illustrating some behavioral differences across these individuals. If strings are tokenized using pauses, the
human account has the shortest words (average length 1.35 vs. 3.88 for the cyborg and 4.0 for the bot) and is
dominated by isolated retweets and replies. The cyborg account —which we created to post threads of news
updates — exhibits both human (isolated posts) and bot behavior (thread bursts). The bot account mainly
generates retweet bursts

weight [47] for account a defined as follows:

wi(a) = fi(a)
(

1 + log
D
di

)

(3)

where di is the number of accounts with word i and D is the total number of accounts.
Finally, the vectors can be used to build bot or coordination detection systems.

4 Discriminative power of BLOC
The BLOC framework lets us study behaviors at different levels of granularity. We may
study different classes of accounts, such as humans vs. bots. Or we might study different
types of individual accounts within a class, for instance, a political vs. an academic human
account or a spam bot vs. a self-declared bot. In this section we demonstrate such a multi-
resolution approach by characterizing the behavior of individual accounts and groups of
accounts, both when their class labels are known and unknown.

4.1 Characterizing individuals and groups
Figure 2 illustrates the behavioral differences between three individual accounts: a human
account belonging to a journalist; a cyborg account used by one of the authors to post news
updates, either manually or using a software script; and a spambot account identified by
Mazza et al. [17]. These accounts are represented by their respective BLOC action strings.
We observe multiple differences. First, when we tokenize the strings into words separated
by pauses, the human account has the shortest words, with mostly one-symbol words
(e.g., r, T , p). This captures the fact that humans tend to rest between posts. Second, the
cyborg account exhibits a human substring with shorter words, followed by a bot substring
created in a burst. Third, the bot account tends to amplify content with retweet bursts (e.g.,
rrrrrrrrr) rather than creating new content.

Let us shift our focus to studying groups of accounts. Figure 3 presents a Principal Com-
ponent Analysis (PCA) of the BLOC TF-IDF vectors of equal numbers of bot and human
accounts from six different datasets (see Table 2). We observe that the bot and human
accounts in the left column of the figure express more distinct behavioral patterns than
those in the right column. Consequently, accounts in the left column have fewer words in
common and are easier to separate. For example, while both bot and human accounts in
Fig. 3A tweet text-only (t) content, the bot accounts more often include hashtags (Ht). In
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Figure 3 Two-dimensional PCA projections of BLOC TF-IDF vectors of accounts from six datasets that include
both humans and bots (see Table 2): (A) cresci-17, (B) botometer-feedback-19, (C) cresci-rtbust-19,
(D) cresci-stock-18, (E) varol-17, and (F) gilani-17. From each of these datasets, we select an equal number of
bot (orange) and human (blue) accounts. We use all the accounts in the minority class, and sample an equal
number of accounts from the majority class. The Venn diagrams show the top five pause-delimited BLOC
words for the bot and human accounts shown

Table 2 Annotated datasets used in our bot detection evaluation. For each dataset, we report the
reference describing it and the number of accounts that are still active at the time of the present
evaluation

Dataset Ref. # Bots # Humans

astroturf-20 [18] 505 0
botometer-feedback-19 [19] 123 364
botwiki-19 [26] 695 0
celebrity-19 [19] 0 20,911
cresci-17 [48] 5812 2744
cresci-rtbust-19 [17] 352 340
cresci-stock-18 [49] 6926 6155
gilani-17 [32] 1058 1381
midterm-18 [26] 0 7409
political-bots-19 [19] 62 0
pronbots-19 [19] 14,867 0
varol-17 [31] 728 1483
vendor-purchased-19 [19] 928 0
verified-19 [26] 0 1986

Total – 32,056 42,773
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Fig. 3C, bots amplify content with burst of retweets (rrr, rrr+) unlike humans who create
original content (T ). In Fig. 3E, bots share more external links (U) while humans tend to
engage in conversations and commentary (p, q).

In Fig. 3B, bots and humans express similar behavioral traits: both classes have the same
five top words. In Fig. 3D and F, bots and humans share four of their five top words. The
bot accounts are more likely to amplify content (rrr) and link to external websites (Ut) in
Figs. 3D and F, respectively, while their corresponding human accounts are more likely to
engage in conversations (p). In summary, the figure suggests that the behaviors displayed
by the humans tend to be consistent across datasets, whereas the bots have distinct behav-
iors based on the purpose for which they have been created. These findings are consistent
with prior analysis based on ad-hoc features [18]. The BLOC representation is sufficiently
powerful to capture significant differences between these behaviors.

4.2 Behavioral clusters
When behavioral class labels are unavailable, we can characterize online behaviors in an
unsupervised way, using BLOC representations to cluster accounts according to behav-
ioral similarity.

We analyzed tweets collected between January 4 and September 30, 2021 from the Co-
Vaxxy project,3 which studies how online misinformation impacts COVID-19 vaccine
uptake [11]. The dataset [50] consists of over 200 million English-language tweets about
COVID-19 and vaccines, posted by over 17 million accounts. The tweets were collected
with 76 keywords and hashtags covering a variety of neutral (e.g., covid), pro-vaccine (e.g.,
getvaccinated), anti-vaccine (e.g., mybodymychoice), and conspiratorial (e.g., greatreset)
topics.

Given the large number of accounts present in the dataset and the quadratic cost of
pairwise comparison, we focused on the one thousand most active accounts each month.
We based our definition of activity on the number of days in which an account posted
tweets; to break ties (especially for accounts active every day), we used the total number
of tweets an account posted during the collection period.

We applied a three-step, network-based method to identify clusters of accounts with
highly similar behaviors. First, we generated BLOC TF-IDF vectors for each account us-
ing pauses to tokenize words, without sorting symbols, and truncating words (p6 = 4).
Second, we computed the cosine similarities among the 1000 vectors. We built a network
by linking only nodes (accounts) with similarity of at least 0.98 and removing singletons.
This threshold ensures a focus on accounts with a suspiciously high level of similarity.
Third, we applied the Louvain method to identify communities [51].

This procedure was applied every month (January – September) to produce nine behav-
ioral similarity networks consisting of clusters of accounts with highly similar behaviors.
Figure 4 visualizes 24 of the 163 identified clusters. In the figure, a single dot represents a
cluster positioned on axes representing its mean variety of behavior and mean automation
score. For a single account, we measured its variety of behavior by the entropy of its BLOC
string (before tokenization). We estimated account automation by the fraction of times the
account posted using the Twitter API. A user has to create an app in order to use the Twit-
ter API, and Twitter data includes a “user-agent” that identifies the app. Some user-agent

3osome.iu.edu/tools/covaxxy.

http://osome.iu.edu/tools/covaxxy
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Figure 4 Mean variety of behavior vs. mean automation (see text) for 24 communities of accounts with
highly similar behaviors. Each community is represented by a dot, colored according to manual classification
(see text). A few selected communities are highlighted by visualizing the corresponding subnetworks, with
node size and darker color representing degree and tweet count, respectively

values correspond to Twitter native apps (TweetDeck, Twitter for Advertis-

ers, Twitter for Advertisers (legacy), Twitter for Android, Twit-
ter for iPad, Twitter for iPhone, Twitter for Mac, Twitter Media

Studio, Twitter Web App, and Twitter Web Client). While software could in
principle be written to control native apps, we assume the vast majority of these apps are
operated manually. Similarly, we assume non-native apps indicate the use of the Twitter
API and thus likely automation, even though some could be operated manually. The en-
tropy and automation scores are averaged across the accounts in each cluster. The clusters
in Fig. 4 are well separated along the automation axis, suggesting a robust distinction be-
tween human and bot accounts.

We manually inspected the clusters in Fig. 4 to describe the dominant behaviors, sum-
marized in the groups below. Each cluster number has a suffix indicating the month when
it was observed. All the clusters in each group have the same color in Fig. 4.

• Giant connected component (blue): Cluster 3-Sep includes accounts with low
automation scores and high variety of behaviors. These are likely legitimate users who
mostly retweet and occasionally post tweets, with normal pauses. Similar large
components were present on each month.

• Vaccine availability/appointment bots (orange): Cluster 12-Apr includes 12
self-identified bot accounts that track the availability of vaccines and appointments in
various US cities, such as @DCVaxAlerts and @FindAVac_Austin. These
accounts posted messages such as “New available appointments detected! – Provider:
CVS Pharmacy – City: Alamo Heights – Registration link:
www.cvs.com/immunizations/covid-19-vaccine...” They created long bursts of tweets

http://www.cvs.com/immunizations/covid-19-vaccine
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consisting mostly of URLs and text. Overall, these accounts posted the most content.
Similarly, Cluster 17-Jan includes two vaccine appointment bots
(@kcvaccinewatch and @stlvaccinewatch) that created tweet threads.
Cluster 13-Jul includes @CovidvaxDEL, a vaccine appointment status bot for New
Delhi, India; and @ncovtrack, a bot that posted vaccine statistics for various
countries.

• News posting accounts (green): Clusters 14-Apr, 16-Jan, 20-Apr and 22-Feb
include many accounts that mostly post tweets linking to news websites hourly, such
as @canada4news and @HindustanTimes. Some accounts are owned by
international news organizations such as @Independent and @guardian.

• Content amplifying, likely bot accounts (purple): Cluster 4-May includes a pair
of accounts that create no content; they retweet mostly the same tweets repeatedly.
Cluster 19-May includes self-identified bots created by the same self-identified
developer. These bots, @EdinburghWatch and Glasgow_Watch, retweet random
content from Glasgow and Edinburgh, respectively.

• Misinformation sharing and local news accounts (white): Cluster 24-Feb
includes @USSANews owned by ussanews.com, a misinformation website
according to factcheck.org. This account posted links with headlines such as: “31
Reasons Why I Won’t Take the Vaccine.” The same cluster includes
@abc7newsbayarea, the account of a legitimate local news organization. Both
accounts mostly post multiple tweets with images separated by pauses under an hour.

• Spam bots (red): Clusters 10-Mar, 11-Apr, and 23-Aug include accounts that post
repeated content. The accounts in Cluster 10-Mar repeatedly linked to their
respective blogs with exactly seven or thirteen hashtags. Cluster 11-Apr posted
messages soliciting others to follow a specified account. The two accounts in Cluster
23-Aug posted the same pro-vaccine messages repeatedly, 133 and 72 times
respectively.

• Coordinated bots (black): The three accounts in Cluster 21-May created no
content; they retweeted the same account exactly 1004 times each. During the first
week of May 2021, the first 44 characters of their BLOC strings matched. Similarly,
accounts in Cluster 15-May did not create content but always retweeted the same
collection of multiple business accounts advertising various merchandise. Cluster
18-Mar includes a pair of accounts that retweeted one another 313 times.

• Various low automation accounts with different stances on vaccine (yellow):
Finally, Fig. 4 also features clusters of accounts with pro-vaccine (Clusters 1-May and
2-Jan), anti-vaccine (Clusters 5-Mar, 6-Apr, 7-Mar, and 8-May), or a mixture of
both sentiments (Cluster 9-Jun).

5 Evaluation
In this section we evaluate the performance of BLOC models on bot and coordination
detection tasks on Twitter. BLOC code and datasets used in our experiments are avail-
able [52].

5.1 Bot detection
The bot detection task involves separating accounts that are likely operated by human
users from accounts that are likely automated. This is a challenging task, as behaviors of
both classes of accounts are heterogeneous and time-evolving.
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5.1.1 Methods
The BLOC language parameters used for the evaluation are as follows: p1 = 1 minute,
p2 = f2(�), and p4 = bi-gram (Table 1). The other parameters are not applicable to bi-gram
tokenization. We extracted BLOC action and content bi-grams for each annotated Twitter
account. This resulted in a set of 197 bi-grams. These bi-grams can be used as features
within any machine learning model. We obtained TF-IDF feature vectors for each account
and used them to train a random-forest classifier.

We compared the performance of the BLOC model to three baseline models: Botometer-
V4 (the current version of Botometer at the time of writing) [18] and two DNA-based
methods, namely DDNA [27, 28] and DNA-influenced [53]. The latter were selected be-
cause they share some similarities with BLOC.

Botometer-V4 utilizes 1161 different features that can be grouped into six categories
that focus on different account characteristics. For example, user profile features are ex-
tracted from the user profile, like the numbers of friends and followers. Temporal features
measure temporal patterns of the posts, such as frequency and times of day. In the de-
ployed system, different classifiers in an ensemble are trained on different accounts types,
and then these classifiers vote to obtain the final bot score [18]. Here instead, to com-
pare the representation power of BLOC vs. Botometer features with all other things being
equal, we trained a single random-forest classifier with the same features used to train
Botometer-V4.

Digital DNA classifies accounts as bots if they share long sequences of symbols repre-
senting actions and content. Cresci et al. [28] provided their Python code [54], which wraps
a C implementation for the Longest Common Substring (LCS) algorithm. We modified the
code to implement the method described by the authors. The method yields a maximal
common substring length from the training data. This length is then used to determine
a set of accounts in the test data that share a maximal common substring of the same
length. These accounts are classified as bots. We finally apply cross-validation to evaluate
the classifier.

The DNA-influenced bot classifier is based on the rationale that bot accounts are more
likely to be similar to each other, compared to human accounts. The method relies on a
formula to calculate a probability distribution for a given string, and on the symmetrized
KL divergence to calculate the distance between the probability distributions associated
with two strings [55]. In this way, the method calculates the distance between the DDNA
strings corresponding to two accounts [53]. To implement this method, we partitioned
the bot accounts in the training dataset into groups of 50, similar to Gilmary et al. [53].
For each group, we calculated the average distances across all pairs of accounts in the
group. The maximum average distance across all the groups was then used as a decision
threshold: any two accounts in the test dataset were classified as bots if their distance was
less than or equal to the decision threshold.

5.1.2 Datasets
Our evaluation datasets (Table 2) consist of 32,056 Twitter accounts labeled as bots and
42,773 accounts labeled as humans, all selected from the bot repository.4 These accounts
were collected and labeled by multiple researchers between 2017–2019 [19]. To eliminate

4botometer.osome.iu.edu/bot-repository.

http://botometer.osome.iu.edu/bot-repository


Nwala et al. EPJ Data Science           (2023) 12:33 Page 14 of 22

Table 3 Precision, recall, and F1 for different bot classifiers using 5-fold cross-validation, along with
numbers of features. The best values for each metric are shown in bold. DNA-influenced classifiers
produced recall of 1.0 because they always predicted that all account were bots

Model Precision Recall F1 Features

BLOC 0.899 0.884 0.892 197
Botometer 0.929 0.914 0.921 1160
DNA-influenced 0.499 1.000 0.666 –
Digital DNA (b3_type) 0.796 0.529 0.636 –
Digital DNA (b3_content) 0.866 0.183 0.303 –
Digital DNA (b6_content) 0.868 0.187 0.308 –

a potential bias in the comparative analysis that might result from the class imbalance,
we took the union of all datasets but used a random sample of 32,056 accounts from the
majority class (humans).

5.1.3 Results
We evaluated the BLOC model, Botometer, three variants of Digital DNA (b3_type,
b3_content, and b6_content) [28], and DNA-influenced by predicting bot and human la-
bels, all on the same annotated dataset in Table 2. We computed precision, recall, and F1

from 5-fold cross validation.
As reported in Table 3, Botometer-V4 slightly outperformed the BLOC model on the

F1 metric. However, the BLOC model used significantly fewer features. DNA-influenced
outperformed Digital DNA, even though it labeled all accounts as bots.

5.2 Coordination detection
Multiple nation states utilize social media for information operations that target their cit-
izens, foreign nationals, organizations, etc. Twitter defines information operations as a
form of platform abuse, which involves artificial amplification or suppression of informa-
tion or behavior that manipulates or disrupts the user experience.5 Twitter deletes the
public tweets of accounts engaged in information operations, but publishes datasets con-
taining these tweets.

Let us use the term driver to refer to an account engaged in some information opera-
tion. Drivers may employ tactics such as spamming, impersonation, obfuscation, and/or
targeting of individuals or communities. We consider all these behaviors coordinated but
do not distinguish among them. Our task is to separate the drivers from regular (control)
accounts tweeting about the same topics.

5.2.1 Methods
Coordination detection is typically based on unsupervised learning, namely, identify-
ing clusters of accounts with suspiciously similar behaviors. Our coordination detection
method and evaluation are more related to supervised learning, as described below. BLOC
words express behavioral traits. We generated TF-IDF vectors as described in Sect. 5.1.1
and then calculated the similarity between two accounts via the cosine between their two
vectors.

We compared the BLOC model to three baseline methods, which make different as-
sumptions about the behavioral traits that may be shared among coordinated accounts [6]:

5help.twitter.com/en/rules-and-policies/platform-manipulation.

http://help.twitter.com/en/rules-and-policies/platform-manipulation
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hashtag sequences (Hash), activity (Activity), and co-retweet (CoRT). The hashtag base-
line method identifies coordinating accounts by finding those that mostly use the same
sequences of hashtags (e.g., the same hashtag 5-grams). The activity method looks for ac-
counts that are synchronized in the times when they post tweets: accounts that often tweet
or retweet within the same time window are considered suspicious. Similar to Pacheco et.
al. [6], we considered accounts that consistently posted tweets within 30-minutes from
one another to be suspicious. The co-retweet method identifies coordinating accounts by
finding those that mostly retweet the same sets of tweets. We generated TF-IDF vectors
of hashtag 5-grams, of activity time intervals, and of retweeted tweet IDs, as described
by Pacheco et. al. [6]. For all baselines, the cosine between TF-IDF vectors was used to
calculate similarity.

We also evaluated a combined method. For a pair of accounts, the combined method
takes the maximum among four cosine similarity values computed with the BLOC model
and the three baselines.

We employed a leave-one-out classification in conjunction with k-nearest-neighbors
(KNN) classifiers to label an account as a driver or non-driver. This approach is “super-
vised” in the sense that KNN infers the unknown label of an account using the known labels
of its neighbors. Specifically, for the mixture of driver and control accounts, we computed
pairwise cosine distance using their BLOC (or Hashtag, Activity, CoRT) vectors. For each
account, we predicted its label to be the majority class from all its k nearest neighbors.
We report the maximum F1 obtained across k values (k = 1, . . . , 10) to compare the five
methods.

5.2.2 Datasets
Twitter published over 141 information operation datasets [56]. These datasets include
tweets by drivers across 21 countries, during different time periods between 2008 and
2021. To ensure a fair assessment of the classifiers for detecting information operation
drivers, we built control datasets that include tweets by accounts not engaged in informa-
tion operations, but who posted about the same topics around the same time. For each
information operation, we extracted all the hashtags used by the drivers. Then we used
these hashtags as queries to Twitter’s academic search API,6 which does not impose date
restrictions. We extracted accounts that posted tweets on the same dates and with the
same hashtags as the drivers. Finally, for each of these accounts, we reconstructed their
timelines by extracting a maximum of 100 tweets posted on the same dates as the drivers.
We were able to create control datasets for 36 information operations, as shown in Table 4.
These represent 18 of the countries and the entire time period.

Some information operations lasted a few months (e.g., China_3 in Table 4), others over
five years (e.g., Iran_7 in Table 4). Therefore, we could run the experiment of detecting
drivers for different time periods (e.g., first year, last year, all years). From the perspective
of mitigation, we followed the principle that it is desirable to detect drivers as early as
possible, with as little information (tweets) as possible. We believe it is more difficult to
detect drivers early, since sufficient tweets with coordination signals might be absent.

Based on the above principle, we ran each experiment by incrementally adding two
weeks of data until the end of the first year in which at least 10 drivers were observed,

6developer.twitter.com/en/products/twitter-api/academic-research.

http://developer.twitter.com/en/products/twitter-api/academic-research
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Table 4 Selected information operation. We list life spans, the number of weeks used for evaluation
(since the start of the information operations), and the counts of drivers and control accounts active
during the evaluation weeks. Note that the evaluation weeks are not necessarily contiguous

Information Op. Life span Eval. week # Drivers # Control

Armenia 2014 – 2020 4 27 1462
Bangladesh 2010 – 2018 8 10 929
Catalonia 2011 – 2019 20 14 906
China_1 2008 – 2019 20 11 905
China_2 2008 – 2019 44 53 4019
China_3 2021 4 95 165
China_4 2020 – 2021 18 1623 4681
China_5 2021 10 1247 4890
Cuba 2010 – 2020 26 11 3415
Ecuador 2010 – 2019 22 10 1767
Egypt_UAE 2012 – 2019 40 59 350
Ghana_Nigeria 2014 – 2020 28 53 1102
Iran_1 2012 – 2018 32 23 824
Iran_2 2010 – 2015 22 11 407
Iran_3 2011 – 2020 20 14 791
Iran_4 2014 – 2019 38 13 2088
Iran_5 2013 – 2019 28 14 701
Iran_6 2020 – 2020 8 104 1247
Iran_7 2010 – 2020 52 16 11,842
Mexico_1 2019 – 2019 18 119 2097
Mexico_2 2020 – 2021 44 240 6340
Qatar 2013 – 2020 18 11 7393
Russia_1 2009 – 2018 4 12 498
Russia_2 2011 – 2018 2 10 168
Russia_3 2009 – 2020 6 10 5200
Russia_4 2014 – 2020 24 21 2973
Spain 2019 – 2019 8 215 1681
Thailand 2018 – 2020 8 166 1133
UAE 2011 – 2019 34 17 1662
Uganda_1 2019 – 2020 54 124 11,323
Uganda_2 2020 – 2021 54 342 10,526
Venezuela_1 2010 – 2018 28 48 891
Venezuela_2 2015 – 2018 8 71 995
Venezuela_3 2012 – 2019 16 17 1412
Venezuela_4 2020 – 2021 54 139 12,365
Venezuela_5 2021 22 249 5447

Total 5219 114,595

or the end of the campaign — whichever occurred first. In other words, the first instance
of our experiment was run on two weeks of data, the second on four weeks of data, and
so on. The use of increasing evaluation intervals is meant to explore how accuracy de-
pends on the amount of data accumulated. For each coordination detection method, we
generated vectors corresponding to all driver and control accounts active in each infor-
mation operation and evaluation interval. Table 4 reports on the full evaluation periods
and numbers of driver and control accounts in our datasets.

5.2.3 Results
Figure 5 plots the F1 values of the best-performing classifiers for a subset of information
operations. The best KNN classifier is the one with the k value (k = 1, . . . , 10) yielding the
maximum F1. The x-axis for each plot represents the number of evaluation weeks, while
the y-axis represents the F1 score of the best classifier. The information operations are
ordered in descending order of their respective combined F1@Week 10 score, to capture
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Figure 5 F1 scores of the best-performing classifiers for detecting information operation drivers for the
subset of campaigns with at least 10 weeks worth of data. The weeks displayed on the x-axis represent those
in which the drivers were active (evaluation weeks); they are not necessarily contiguous. The plots are ordered
in descending order of F1 score calculated at week 10 using the combined method

the difficulty of detecting their drivers. The combined F1@Week 10 score of an information
operation is the F1 score calculated with 10 weeks worth of data (F1@Week 10) using the
combined method. Table 5 outlines the F1@Week 10 scores for all information operations.

According to Fig. 5 and Table 5, the BLOC model outperforms the baselines in
most campaigns. The drivers from information operations originating from China (e.g.,
China_4 and China_5) were the easiest to detect; the F1 scores for all coordination de-
tection methods except Hash were above 0.9. The hardest drivers to detect were those
from the UAE information operation. We also note in Fig. 5 that in some campaigns
(Venezuela_4, Venezuale_3, and Egypt_UAE), the accuracy of different methods improves
in a correlated fashion with more training data. This suggests that drivers display multi-
ple coordination signals simultaneously. Yet, having more data does not necessarily imply
higher accuracy in detecting drivers. In several campaigns there is no clear temporal trend,
and in a few cases (e.g., Iran_4 and Iran_3) adding more data hinders detection. This sug-
gest that drivers may change their behaviors and become harder to detect as a result.

Figure 6 compares the performance of BLOC and the three baseline coordination detec-
tion methods. The x-axis represents the mean F1 and the y-axis represents the mean num-
ber of features of all classifiers, across all information operations. Both values were calcu-
lated with data from the first 10 weeks of the information operations. The BLOC classifiers
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Table 5 F1 scores of BLOC and baseline classifiers for the detection of information operation drivers,
calculated with data from the first 10 weeks of each campaign (F1@Week 10). For campaigns with less
than 10 weeks of data, the entire dataset was used. Information operations are sorted by the F1 score
of the combined method (combined F1@Week 10). The best method for each campaign is shown in
bold. Note that F1 = 0 when the similarity signal used by a classifier cannot be observed in the
behavior of a particular campaign’s drivers. No co-retweets were observed between any pairs of
drivers in China_1

Information Op. BLOC Activity CoRT Hash Combined

China_3 0.995 0.968 0.182 0.973 0.995
China_4 0.996 0.846 0.844 0.205 0.994
China_5 0.981 0.919 0.991 0.504 0.980
Iran_6 0.961 0.986 0.978 0.000 0.976
Venezuela_2 0.936 0.864 0.000 0.000 0.929
Venezuela_5 0.869 0.815 0.903 0.830 0.910
Spain 0.876 0.936 0.892 0.859 0.904
Mexico_2 0.851 0.569 0.312 0.071 0.874
Mexico_1 0.833 0.511 0.163 0.000 0.859
Uganda_1 0.850 0.807 0.898 0.432 0.850
Thailand 0.769 0.815 0.808 0.226 0.832
Uganda_2 0.800 0.574 0.940 0.227 0.807
Venezuela_4 0.819 0.603 0.754 0.391 0.779
Venezuela_1 0.820 0.188 0.000 0.000 0.776
Catalonia 0.957 0.667 0.762 0.308 0.774
China_2 0.762 0.000 0.000 0.000 0.762
Armenia 0.760 0.875 0.895 0.851 0.760
Ghana_Nigeria 0.612 0.866 0.741 0.528 0.700
Russia_1 0.667 0.000 0.000 0.000 0.667
Iran_2 0.625 0.200 0.000 0.000 0.667
Venezuela_3 0.857 0.400 0.500 0.000 0.643
Iran_5 0.435 0.353 0.000 0.286 0.545
Qatar 0.381 0.154 0.364 0.533 0.500
Russia_3 0.500 0.000 0.000 0.000 0.500
Ecuador 0.533 0.000 0.000 0.000 0.500
Iran_1 0.286 0.000 0.000 0.000 0.500
Russia_4 0.483 0.000 0.000 0.118 0.452
Egypt_UAE 0.444 0.000 0.000 0.000 0.435
China_1 0.429 0.000 0 0.000 0.429
Iran_7 0.476 0.000 0.000 0.200 0.421
Bangladesh 0.600 0.316 0.333 0.286 0.345
Iran_3 0.316 0.000 0.000 0.000 0.316
Iran_4 0.182 0.667 0.857 0.000 0.267
Russia_2 0.200 0.000 0.200 0.000 0.211
UAE 0.200 0.000 0.000 0.000 0.182

outperformed all baselines in the coordination detection task with a mean F1 = 0.659 with
the least number of features (108). The combined classifiers had a similar mean F1 = 0.658,
but employed the largest number of features (5869).

6 Discussion
In response to the far-reaching threats posed by influence operations on social media, re-
searchers developed methods that target specific kinds of malicious behaviors. The effec-
tiveness of some of these — which mostly depend on hand-crafted features — is however
temporary since malicious actors evolve their tactics to evade detection. In this paper, we
proposed BLOC, a language framework that represents the behavior of social media users
irrespective of class (e.g., bot or human) or intent (e.g., benign or malicious). BLOC words
map to features derived in an unsupervised manner. We note that the BLOC framework
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Figure 6 Mean number of features vs. mean F1 of BLOC and four baseline classifiers for detecting drivers
across information operations, estimated with data from the first 10 weeks of each information operation’s
lifespan

does not make feature engineering irrelevant, in fact one could engineer features using
BLOC.

Although BLOC is a platform-agnostic framework, we demonstrated its flexibility
through two real-world applications on Twitter. In the bot detection task, a BLOC model
performed better than similar methods (Digital DNA and DNA-influenced) and compa-
rably to a state-of-the-art method (Botometer-V4), with a much lower number of features.

It is not straightforward to attribute the BLOC improvement over DDNA because the
two methods are different in terms of both language features and machine-learning al-
gorithms — vector-based versus signature-based models. To tease apart these two con-
tributions of the BLOC framework, we evaluated a hybrid method using the same vec-
tor representation and machine-learning model as in BLOC but in conjunction with the
DDNA language. In other words, both BLOC and DDNA strings were tokenized into bi-
grams, and then TF-IDF vectors were classified with a random forest model. BLOC slightly
outperformed the hybrid method (precision 0.879, recall 0.851, F1 0.865). The bulk of the
improvement can therefore be attributed to the higher recall provided by the vector-based
classifier over the signature-based approach. The language features distinguishing BLOC
and DDNA representations — pauses and repetitions — also provide useful signals in dis-
criminating between automated and human accounts across a variety of datasets.

In the coordination detection task to identify the drivers of information operations dur-
ing the early stages of their life span, a BLOC model outperformed baseline methods.
The performance of all classifiers varied across information operations, which highlights
the heterogeneity of the driver behaviors. This is consistent with Twitter’s reports, which
reveal that drivers include humans, automated accounts, coordinating accounts, and so
on [57, 58]. So it comes as no surprise that the drivers of some information operations are
easier than others to detect.
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We also compared the performance of all classifiers on information operation datasets
extracted from the last weeks of the life spans of the drivers — right before they were
detected by Twitter. The average F1 scores of all classifiers increased significantly (by
25–101%), suggesting that Twitter detected the drivers when their behaviors became more
conspicuous. The activity method slightly outperformed the BLOC model when the eval-
uation was run during the last weeks of a campaign, with mean F1 = 0.855 vs. 0.824, al-
beit using 1680 vs. 116 features. This suggests that synchronization is a strong signal for
platforms to identify coordinated campaigns. For example, the activity method failed to
identify the drivers of the Egypt_UAE information operation based on early data (F1 = 0),
but succeeded at the end (F1 = 1). By contrast, the BLOC model achieved F1 = 0.444 based
on early data and F1 = 0.978 at the end.

Collectively, these results indicate that BLOC models are versatile, effective, efficient,
and applicable to multiple tasks. Also importantly, they indicate that one can achieve
promising results in bot and coordination detection tasks without accounting for seman-
tics that can be extracted from content.

We must note, however, that since BLOC representations do not capture specific con-
tent or contextual information, they may not be applicable to a variety of tasks that require
a semantic understanding of the content, such as user stance detection and ideology pre-
diction. This means that a pair of accounts on opposite ends of the political spectrum (e.g.,
@HuffPost and @FoxNews) could share similar BLOC words since BLOC strips away
semantics such as ideology, instead focusing on behavior (e.g., original content creation).
Therefore, future directions for this work include augmenting the BLOC framework to
capture semantic information.

The development of new techniques such as BLOC for identifying malicious behavior
could trigger changes in tactics by “puppet masters” to evade detection. We argue that
even though this is possible, the introduction of BLOC could raise the bar for malicious
social media accounts to appear authentic, discounting the benefits of automated tactics
such as flooding and coordination.
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